САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

На правах рукописи

 \supset

СЛАДКОФФ Левка

МНОГОПЕТЛЕВЫЕ РАСЧЕТЫ В ЗАДАЧАХ НЕЛИНЕЙНОЙ СТОХАСТИЧЕСКОЙ ДИНАМИКИ

Специальность: 01.04.02 - теоретическая физика

Автореферат диссертации на соискание ученой степени кандидата физико-математических наук

> Санкт-Петербург 2009 г.

Работа выполнена на кафедре статистической физики физического факультета Санкт-Петербургского государственного университета

Научный руководитель:

доктор физ.-мат. наук, профессор Аджемян Лоран Цолакович

Официальные оппоненты: доктор физ.-мат. наук, профессор Антонов Николай Викторович кандидат физ.-мат. наук, старший науч. сотрудник Деркачев Сергей Эдуардович

Ведущая организация:

Санкт-Петербургский государственный электротехнический университет "ЛЭТИ"

Защита состоится «23» апреля 2009 г. в 15 часов на заседании совета Д.212.232.24 по защите докторских и кандидатских диссертаций при Санкт-Петербургском государственном университете по адресу: 199034, Санкт-Петербург, Университетская наб., 7-9, _____

С диссертацией можно ознакомиться в библиотеке Санкт-Петербургского государственного университета

Автореферат разослан «____» марта 2009 г.

Ученый секретарь диссертационного совета, доктор физ.-мат. наук, профессор

Щекин А. К.

Актуальность темы исследования

Ренормгрупповой (РГ) подход является в настоящее время основным инструментом исследования фазовых переходов II рода и критических явлений, а также задач неравновесной нелинейной стохастической динамики. Он позволяет обосновать критический скейлинг и рассчитать параметры этого скейлинга — критические индексы и универсальные отношения амплитуд — в виде ε -разложений. Эти разложения являются асимптотическими, поэтому расчет начального отрезка ряда дополняется информацией о поведении старших членов разложения с последующим суммированием по Борелю. Развитые аналитические методы расчета позволили рассчитать 5 членов ε -разложений в задачах критической статики, проведенное затем борелевское суммирование привело к хорошему согласию с экспериментальными данными. Расчеты в задачах критической динамики существенно сложнее, поэтому здесь в наиболее простой А-модели достигнута лишь точность $O(\varepsilon^3)$, в большинстве задач неравновесной динамики обычно сосчитан лишь первый член разложения.

Результаты в статике и динамике не удавалось улучшить с 1991 и 1984 гг. соответственно. Это связано с тем, что аналитические методы расчета констант ренормировок сталкиваются в высших порядках теории возмущений с трудностями принципиального характера. Весьма актуальной задачей является поэтому разработка методов численного расчета констант ренормировок. Задача нетривиальна, поскольку требует вычисления многократных интегралов, содержащих сингулярности по параметру ε все возрастающей степени с увеличением порядка теории возмущений. Таким многопетлевым расчетам и посвящена настоящая диссертационная работа.

Цели работы

Целью работы является разработка алгоритма численного расчета констант ренормировок в старших порядках теории возмущений и использование такого подхода в двух задачах стохастической динамики: ренормгрупповом описании процесса турбулентного перемешивания пассивной примеси и модели А критической динамики.

Научная новизна

Полученные в диссертации результаты показали, что задачи нелинейной стохастической динамики могут эффективно решаться на основе сочетания теоретикополевых методов и численного расчета констант ренормировок. Такой подход позволил существенно продвинуться в решении двух рассмотренных задач стохастической динамики и достичь результатов, которые не удавалось получить чисто аналитическими методами.

Практическая и теоретическая ценность

Предложенный в работе метод численного расчета констант ренормировок продемонстрировал свою эффективность на примере впервые выполненного четырехпетлевого расчета в задаче критической динамики. Этот метод может составить основу полностью автоматизированного расчета констант ренормировок, дополнив уже имеющиеся компьютерные программы построения фейнмановских диаграмм и расчета комбинаторных коэффициентов, что даст возможность продвижения в старшие порядки теории возмущений в широком классе задач критической статики и динамики, а также задачах нелинейной неравновесной стохастической динамики.

Апробация работы

Результаты работы докладывались на международных конференциях "Renormalization Group 2005" (Helsinki, 2005 г.), "Renormalization Group and Related Topics" (Дубна, 2008 г.).

Публикации

По материалам диссертации опубликовано 3 печатные работы, список публикаций приведен в конце автореферата.

Структура и объем работы

Диссертация состоит из Введения, 4-х глав, выносимых на защиту основных результатов диссертации, Заключения, 3-х приложений и списка цитируемой литературы из 59 наименований. Работа изложена на 119 стр., содержит 11 таблиц и 20 рисунков.

ОСНОВНОЕ СОДЕРЖАНИЕ РАБОТЫ

Во введении сформулированы актуальность, цель и задачи работы, а также приведен обзор результатов в области применения методов ренормгруппы в теории критических явлений и стохастической динамике.

В первой главе излагается процедура сведения двух рассмотренных задач стохастической динамики к теоретико-полевой формулировке и ренормировка полученных моделей. В общем виде задача нелинейной стохастической динамики описывается уравнением

$$\partial_t \varphi(\mathbf{x}, t) = U(\mathbf{x}, t; \varphi) + \eta(\mathbf{x}, t) , \qquad (1)$$

где φ — поле, характеризующее состояние системы, U — функционал от φ и его производных в один и тот же момент времени, η — случайная сила с гауссовым распределением, заданная коррелятором $\langle \eta(\mathbf{x},t)\eta(\mathbf{x}',t')\rangle = D(\mathbf{x}-\mathbf{x}',t-t')$ и нулевым средним $\langle \eta(\mathbf{x},t)\rangle = 0$. Частным случаем уравнения (1) является уравнение Ланжевена, для которого функционал U представим в виде вариационной производной от статического функционала действия S^{st} , а коррелятор пропорционален линейному оператору α по **x**:

$$U(\varphi) = \alpha \frac{\delta S^{st}(\varphi)}{\delta \varphi(\mathbf{x})} , \quad D(\mathbf{x} - \mathbf{x}', t - t') = 2\alpha \delta(\mathbf{x} - \mathbf{x}')\delta(t - t') .$$
(2)

Для наиболее простой модели, так называемой модели A по [1], рассматривается статическое действие φ^4 -модели

$$S^{st}(\varphi) = -(\partial \varphi)^2 / 2 - \tau_0 \varphi^2 / 2 - g_0 \varphi^4 / 24 , \quad \alpha = \lambda_0 , \qquad (3)$$

где λ_0 вещественная постоянная. Тем самым уравнение (1) принимает вид

$$\partial_t \varphi = \lambda_0 \left(\partial^2 \varphi - \tau_0 \varphi - g_0 \varphi^3 / 6 \right) + \eta .$$
⁽⁴⁾

Задачу (4) можно свести к квантовополевой модели с действием

$$S(\varphi,\varphi') = \lambda_0 \varphi' \varphi' + \varphi' \left[-\partial_t \varphi + \lambda_0 (\partial^2 \varphi - \tau_0 \varphi - g_0 \varphi^3 / 6) \right] , \qquad (5)$$

где φ' — вспомогательное поле. Диаграммы теории возмущений модели (5) содержат ультрафиолетовые (УФ) расходимости, проявляющиеся в виде полюсов по $\varepsilon = 4-d$, где d — размерность пространства. Эти расходимости могут быть устранены мультипликативной ренормировкой полей $\varphi = \varphi_R Z_{\varphi}, \ \varphi' = \varphi'_R Z_{\varphi'}$ и параметров $\lambda_0 = \lambda Z_{\lambda}, \ \tau_0 = \tau Z_{\tau}, \ g_0 = g \mu^{\varepsilon} Z_g$. В результате получаем ренормированное действие (индекс "R" у полей опускается)

$$S_R(\varphi,\varphi') = Z_1 \lambda \varphi' \varphi' + \varphi' \left[-Z_2 \partial_t \varphi + \lambda (Z_3 \partial^2 \varphi - Z_4 \tau \varphi - Z_5 g \mu^{\varepsilon} \varphi^3 / 6) \right] , \qquad (6)$$

где $Z_1 = Z_{\lambda} Z_{\varphi'}^2$, $Z_2 = Z_{\varphi'} Z_{\varphi}$, $Z_3 = Z_{\varphi'} Z_{\lambda} Z_{\varphi}$, $Z_4 = Z_{\varphi'} Z_{\lambda} Z_{\tau} Z_{\varphi}$, $Z_5 = Z_{\varphi'} Z_{\lambda} Z_g Z_{\varphi}^3$. Задача состоит в вычислении констант ренормировок $Z_1 - Z_5$, знание которых позволяет с помощью метода ренормгруппы рассчитать критические индексы системы. Показано [2], что константы ренормировки Z_3 , Z_4 , Z_5 совпадают с соответствующими константами статической модели (3), известными с пятипетлевой точностью. С учетом равенства $Z_1 = Z_2$ остается лишь одна независимая динамическая константа.

Следующая рассматриваемая задача – изучение турбулентного перемешивания пассивной примеси в несжимаемой жидкости. Движение жидкости описывается стохастическим уравнением Навье-Стокса

$$\partial_t \varphi_i + (\varphi_k \partial_k) \varphi_i = \nu_0 \partial^2 \varphi_i - \partial_i p + \eta_i .$$
⁽⁷⁾

Эта задача имеет стандартный вид (1), но не является уравнением Ланжевена (2), т.к. соответствующий ей функционал $U(\varphi)$ нельзя представить в виде вариационной производной. Предполагается, что случайная сила η имеет гауссово распределение с коррелятором

$$D(\mathbf{x} - \mathbf{x}', t - t') = \delta(t - t') \int \frac{d\mathbf{k}}{(2\pi)^d} P_{ij}(\mathbf{k}) g_0 \nu_0^3 N(k) e^{i\mathbf{k}(\mathbf{x} - \mathbf{x}')} , \qquad (8)$$

где $P_{ij}(\mathbf{k}) = \delta_{ij} - k_i k_j / k^2$ — поперечный проектор и $N(k) = k^{4-d-2\varepsilon}$ — спектр накачки. Перемешивание пассивной примеси описывается уравнением диффузии с учетом конвективного переноса

$$\partial_t \psi + (\varphi_k \partial_k) \psi = \kappa_0 \partial^2 \psi , \qquad (9)$$

где ψ – концентрация примесных частиц, а κ_0 – коэффициент диффузии. Эта за-

дача также сводится к квантовополевой с действием

$$S(\varphi,\varphi',\psi,\psi') = g_0 \nu_0^3 \varphi' N \varphi' / 2 + \varphi' \left[-\partial_t \varphi + \nu_0 \partial^2 \varphi - (\varphi \partial) \varphi \right] + \psi' \left[-\partial_t \psi + u_0 \nu_0 \partial^2 \psi - (\varphi \partial) \psi \right] , \quad (10)$$

где $u_0 \equiv \kappa_0/\nu_0$. Ренормировка осуществляется соотношениями $\nu_0 = \nu Z_{\nu}, u_0 = u Z_u,$ $Z_{\kappa} = Z_u Z_{\nu}, g_0 = g \mu^{2\varepsilon} Z_g$ с условием связи $Z_g Z_{\nu}^3 = 1$, что приводит к ренормированному действию

$$S_{R}(\varphi,\varphi',\psi,\psi') = g\nu^{3}\mu^{2\varepsilon}\varphi'N\varphi'/2 + \varphi'\left[-\partial_{t}\varphi + \nu Z_{\nu}\partial^{2}\varphi - (\varphi\partial)\varphi\right] + \psi'\left[-\partial_{t}\psi + u\nu Z_{\kappa}\partial^{2}\psi - (\varphi\partial)\psi\right] .$$
(11)

Во второй главе излагается техника вычисления многопетлевых диаграмм на примере расчета константы ренормировки Z₂ динамической А-модели.

Возможность мультипликативной ренормировки теории, т.е. устранения в теории возмущений полюсов по ε за счет подходящего выбора констант ренормировки, обусловлена тем, что вычеты при полюсах функций Грина носят локальный характер, т.е. являются в Фурье-представлении полиномами по импульсам и частотам. В частности, константу Z_2 можно определить, потребовав УФ-конечности 1-неприводимой функции $\Gamma = \partial_{i\omega} \langle \psi' \psi \rangle_{1\mu} |_{\mathbf{p}=0,\omega=0}$. В терминах ренормированных переменных ряд теории возмущений для этой величины имеет вид

$$\Gamma_R = Z_2 \Big[1 + \sum_{n=1}^{\infty} (g \mu^{\varepsilon} Z_g)^n \gamma_0^{(n)} (m Z_{\tau}^{1/2}) \Big] , \quad m \equiv \tau^{1/2} .$$
 (12)

Рассчитываемые по диаграммам величины $\gamma_0^{(n)}$ содержат полюса по ε , которые должны быть устранены в каждом порядке теории возмущений по ренормированному заряду g за счет выбора констант Z_i . Этот выбор неоднозначен и зависит от используемой схемы вычитаний, в схеме минимальных вычитаний MS (от англ. Minimal Subtraction) константы ренормировки имеют вид

$$Z_2 = 1 + \sum_{n=1}^{\infty} g^n \sum_{k=1}^{n} C_{nk} \varepsilon^{-k} , \qquad (13)$$

т.е. вычитаются только полюса по ε . При известных статических константах Z_g , Z_{τ} коэффициенты C_{nk} этого разложения определяются из требования сокращения

полюсов в (12). В теории ренормировки доказывается, что учет Z_g, Z_τ в (12) можно заменить действием определенной \mathbf{R}' -операции

$$\Gamma_R = Z_2 + \sum_{n=1}^{\infty} (g\mu^{\varepsilon})^n \mathbf{R}' \gamma_0^{(n)}(m) .$$
(14)

По соображениям размерности $\gamma_0^{(n)}(m) \sim m^{-n\varepsilon}$, так что переходом к безразмерным переменным интегрирования можно ввести функцию

$$\gamma^{(n)}(s) \equiv \mu^{n\varepsilon} \gamma_0^{(n)}(m) , \quad s \equiv m/\mu$$
(15)

и переписать (14) в виде

$$\Gamma_R = Z_2 + \sum_{n=1}^{\infty} g^n \mathbf{R}' \gamma^{(n)}(s) .$$
(16)

В теории ренормировки доказывается, что в схеме MS величина $\mathbf{R}' \gamma^{(n)}(s)$ не зависит от *s*, поэтому в (16) можно положить s = 1.

Расходимость (полюса по ε) величин $\gamma^{(n)}(s)$ обусловлена вкладами в соответствующие диаграммы от областей малых расстояний и времен. Различают поверхностную расходимость, когда вся диаграмма "стягивается в точку" и расходимость в подграфе, когда стягивается в точку некоторый фрагмент диаграммы. Расходящиеся подграфы образуют в общем случае сложную перекрывающуюся систему, что сильно осложняет нахождение вычетов в полюсах. Действие R'-операции сводится к вычитанию расходимостей в подграфах, так что в величине $R'\gamma^{(n)}$ остается лишь вклад поверхностной расходимости, чем в конечном счете и обусловлена ренормируемость теории.

Мы хотим использовать R'-операцию для выделения вычетов при полюсах. Основой для этого будет утверждение о том, что если некоторая диаграмма γ не имеет поверхностной расходимости, то величина R' γ УФ-конечна, т.е. не содержит полюсов по ε . Если данную величину удается представить в виде единого интеграла, не содержащего особенностей, то его зависимость от ε можно искать разложением в ряд подынтегрального выражения с последующим численным нахождением коэффициентов. При использовании схемы MS этого, однако, не удается сделать, т.к. процедура отбора полюсов в этой схеме не дает возможности записать УФконечную величину R' γ в виде единого интеграла. Поэтому в вычислительных целях использовалась другая известная схема ренормировки (назовем ее $\overline{\mathbf{R}'}$), основанная на вычитании из расходящейся величины соответствующего начального отрезка ряда по частоте и импульсу. Если в величине $\overline{\mathbf{R}'}\gamma$ полагается затем s = 1, такая схема носит название схемы *примитивных вычитаний* [2]. В нашем случае операция вычитания осуществлялась с помощью операторов \mathbf{K}_0 и \mathbf{K}_2 , определенных равенствами

$$K_0 f(p^2, \omega) = f|_{p^2 = 0, \omega = 0} , \quad K_2 f(p^2, \omega) = \partial_{p^2} f|_{p^2 = 0, \omega = 0} \cdot p^2 + \partial_{\omega} f|_{p^2 = 0, \omega = 0} \cdot \omega .$$
(17)

В п-том порядке теории возмущений разность

$$\delta \mathbf{R}' \gamma^{(n)} = \mathbf{R}' \gamma^{(n)} - \overline{\mathbf{R}'} \gamma^{(n)} \tag{18}$$

определяется произведением диаграмм младших порядков, что позволяет строить итерационную процедуру для нахождения $R'\gamma$ по известной $\overline{R'}\gamma$.

Диаграммы $\gamma^{(n)}(s)$ имеют поверхностную расходимость, поэтому к ним описанный способ расчета непосредственно не применим. Чтобы ее устранить, достаточно продифференцировать $\gamma^{(n)}(s)$ по s. Поскольку $\gamma^{(n)}(s) \sim s^{-n\varepsilon}$, нетрудно затем по производной восстановить саму функцию: $\gamma^{(n)}(s) = -\frac{1}{n\varepsilon}s\partial_s\gamma^{(n)}(s)$. Учитывая, что в конечном ответе будет положено s = 1, и вводя оператор $\widehat{\partial}_s$ равенством $\widehat{\partial}_s f(s) \equiv -\partial_s f(s)|_{s=1}$, запишем

$$\gamma^{(n)}\big|_{s=1} = \frac{1}{n\varepsilon}\widehat{\partial}_s\gamma^{(n)}(s).$$
⁽¹⁹⁾

Величина $\overline{\mathbf{R}'}\widehat{\partial}_s\gamma^{(n)}(s)$ УФ-конечна, однако непосредственно достичь поставленной цели дифференцированием $\overline{\mathbf{R}'}\gamma^{(n)}(s)$ по *s* не удается, т.к. операции $\overline{\mathbf{R}'}$ и $\widehat{\partial}_s$ не коммутируют — операция $\widehat{\partial}_s$, действуя на подграфы, может сделать их не существенными (не дающими расходимостей), что отражается на содержании $\overline{\mathbf{R}'}$ -операции, по определению действующей на существенные подграфы. Дело облегчается тем, что коммутатор $J_b^{(n)} \equiv (\widehat{\partial}_s \overline{\mathbf{R}'} - \overline{\mathbf{R}'} \widehat{\partial}_s)\gamma^{(n)}(s)$ определяется произведением диаграмм младшего порядка, что делает возможным построение итерационной процедуры.

Таким образом, основой дальнейших расчетов является соотношение

$$\mathbf{R}'\boldsymbol{\gamma}^{(n)} = \frac{1}{n\varepsilon} \left(J_a^{(n)} + J_b^{(n)} \right) + \delta \mathbf{R}' \boldsymbol{\gamma}^{(n)} , \qquad (20)$$

которое позволяет итерациями находить $\mathbf{R}'\gamma^{(n)}$, вычисляя величины $J_a^{(n)} \equiv \overline{\mathbf{R}'}\partial_s\gamma^{(n)}(s)$, разложимые в ряд Тэйлора по ε . Коэффициенты этого ряда определяются многократными конечными интегралами, не содержащими параметров, и их можно рассчитывать с помощью стандартных компьютерных программ.

Операция $\overline{\mathbf{R}'}$ является естественной в описанном способе вычислений и ее можно было положить в основу процедуры ренормировки. Мы все же остановились на схеме минимальных вычитаний по двум причинам. Во-первых, статические константы ренормировки и, следовательно, положение неподвижной точки известны именно в MS схеме. Во-вторых, эта схема позволяет произвольно изменять способ инфракрасной регуляризации диаграмм, выбирая наиболее технически удобный.

Вычислить по изложенной схеме двухпетлевые и трехпетлевые вклады $\gamma^{(2)}$ и $\gamma^{(3)}$ особенно просто, т.к. для них оказывается $\delta \mathbf{R}' \gamma^{(n)} = 0$. Такой расчет дает следующие значения коэффициентов для константы ренормировки Z_2 из (13):

$$C_{31} = 0.0118412$$
, $C_{21} = C_{32} = \frac{-\ln(4/3)}{8}$, $C_{11} = C_{22} = C_{33} = 0$. (21)

Впервые этот результат был получен в работе [3], где все расчеты проводились аналитически.

Новый результат в работе получен в четвертом порядке теории возмущений, в котором необходимо было рассчитать 25 четырехпетлевых диаграмм. Им соответствуют 4 группы A, B, C, D топологически эквивалентных диаграмм, в которых не различаются поля φ и φ'

В группе А имеется 4 диаграммы, их легче остальных вычислять, т.к. и в этом случае $\delta R' \gamma_A^{(4)} = 0$. УФ-конечная величина $J_{Aa}^{(4)}$ представлялась в виде единого формально 20-ти кратного интеграла, который после упрощений сводился к 9-ти кратному и вычислялся численно методом Монте-Карло. Вклад $J_{Ab}^{(4)}$ в свою очередь выражался через уже вычисленные трехпетлевые диаграммы

$$J_{Ab}^{(4)} = -\frac{3}{2} \overline{\mathbf{R}'} \,\gamma^{(3)} \,. \tag{22}$$

Диаграммы группы С и D естественно объединить, т.к. они вычисляются схожим образом, это дает 17 различных диаграмм. Величины $J^{(4)}_{CDa}$ также сводятся к 9ти кратным интегралам. Вклады $J^{(4)}_{CDb}$ и $\delta \mathbf{R}' \gamma^{(4)}_{CD}$ выражаются через диаграммы низших порядков

$$J_{CDb}^{(4)} = -\gamma^{(2)} K_0 \overline{R'} \,\widehat{\partial}_s \Gamma_4^{(3)} - 6 \overline{R'} \,\gamma^{(3)} , \qquad \delta R' \gamma_{CD}^{(4)} = \gamma^{(2)} (1 - K) K_0 \Gamma_4^{(3)} , \qquad (23)$$

где $\Gamma_4^{(3)}-$ сумма трехпетлевых диаграмм 1-неприводимой функции

$$\Gamma_4 = -\frac{\left\langle \psi'\psi^3 \right\rangle_{1\mathrm{H}} \Big|_{\mathbf{p}=0,\omega=0}}{\lambda g \mu^{\varepsilon}} \ . \tag{24}$$

Группа В включает 4 диаграммы, их сложнее всего вычислять, т.к. здесь впервые появляются квадратично расходящиеся подграфы. Величины $J_{Ba}^{(4)}$, как и для остальных диаграмм, сводятся к 9-ти кратным интегралам, а $J_{Bb}^{(4)}$ и $\delta \mathbf{R}' \gamma_B^{(4)}$ выражаются через произведения двухпетлевых диаграмм.

Суммируя вклады диаграмм всех четырех групп, находим величину $\gamma^{(4)}$ (четвертый порядок теории возмущений), что определяет соответствующие коэффициенты для константы ренормировки Z_2 :

$$C_{41} = -0.02491$$
, $C_{42} = 0.039440$, $C_{43} = \frac{-9\ln(4/3)}{64}$, $C_{44} = 0$. (25)

В третьей главе приводятся детали двухпетлевого расчета констант ренормировок для модели турбулентного перемешивания пассивной примеси. Запишем уравнения Дайсона для функций отклика $\Gamma_{\varphi\varphi'}$, $\Gamma_{\psi\psi'}$ и собственно энергетических операторов $\Sigma_{\varphi'\varphi}$, $\Sigma_{\psi'\psi}$ в ренормированных переменных при нулевой внешней частоте ω

$$R_{\varphi}(\xi,g) \equiv -\left.\frac{\Gamma_{\varphi\varphi'}(k,\omega)}{\nu k^{2}}\right|_{\omega=0} = Z_{\nu} - \left.\frac{\Sigma_{\varphi'\varphi}(k,\omega)}{\nu k^{2}}\right|_{\omega=0} ,$$

$$R_{\psi}(\xi,g,u) \equiv -\left.\frac{\Gamma_{\psi\psi'}(k,\omega)}{u\nu k^{2}}\right|_{\omega=0} = Z_{\kappa} - \left.\frac{\Sigma_{\psi'\psi}(k,\omega)}{u\nu k^{2}}\right|_{\omega=0} .$$
(26)

Здесь введены безразмерные функции R_{φ} , R_{ψ} от безразмерных аргументов ξ , g и u где $\xi \equiv k/\mu$. Интересующие нас константы ренормировки Z_{ν} и Z_{κ} имеют вид

$$Z_{\nu,\kappa} = 1 + \frac{a_{11}^{(\nu,\kappa)}}{\varepsilon}g + \left(\frac{a_{21}^{(\nu,\kappa)}}{\varepsilon} + \frac{a_{22}^{(\nu,\kappa)}}{\varepsilon^2}\right)g^2 + O(g^3).$$
(27)

В однопетлевом приближении для нахождения величин $a_{11}^{(\nu)}$ и $a_{11}^{(\kappa)}(u)$ потребуем УФ-конечность линейного коэффициента разложения соответственно функций $R_{\varphi}(\xi = 1, g)$ и $R_{\psi}(\xi = 1, g, u)$ по g. Вычислив полюсную часть собственно энергетических операторов $\Sigma_{\varphi'\varphi}$ и $\Sigma_{\psi'\psi}$ в (26), приходим к результату, полученному в [4]

$$a_{11}^{(\nu)} = -\frac{(d-1)S_d}{8(d+2)} , \quad a_{11}^{(\kappa)}(u) = -\frac{(d-1)S_d}{4du(d+2)} .$$
(28)

РГ-функции $\beta_{g,u}$ определяются соотношениями $\beta_g(g) \equiv \mu \partial_{\mu}|_0 g$ и $\beta_u(g,u) \equiv \mu \partial_{\mu}|_0 u$, где $\mu \partial_{\mu}|_0 -$ оператор $\mu \partial_{\mu}$ при фиксированных затравочных параметрах g_0 , ν_0 , u_0 . Положение неподвижной точки (g_*, u_*) определяется условиями $\beta_g(g_*) = 0$ и $\beta_u(g_*, u_*) = 0$. Используя однопетлевые выражения для констант ренормировки Z_{ν} , Z_{κ} (27, 28), находим

$$g_* = \frac{-\varepsilon}{3a_{11}^{(\nu)}} + O(\varepsilon^2) , \quad u_* \equiv u_*^{(0)} + u_*^{(1)}\varepsilon + O(\varepsilon^2) = \frac{1}{2}\left(\sqrt{\frac{9d+16}{d}} - 1\right) + O(\varepsilon) .$$
(29)

Определим теперь однопетлевые вклады a_{φ} , a_{ψ} функций отклика $\Gamma_{\varphi\varphi'}$, $\Gamma_{\psi\psi'}$ как линейные коэффициенты разложения по g при d = 3 соответственно функций $R_{\varphi}(\xi = 1, g) = 1 + a_{\varphi}g + O(g^2)$ и $R_{\psi}(\xi = 1, u, g) + a_{\psi}(u)g + O(g^2)$. Ответ можно выразить через два интеграла, численный расчет дает

$$a_{\varphi} = -0.047718\,\overline{S}_3 \,, \quad a_{\psi}(u_*^{(0)}|_{d=3}) = -0.04139\,\overline{S}_3 \,.$$
 (30)

Двухпетлевые вклады в константу ренормировки Z_{κ} легче найти из условия УФконечности $R_{\psi}(\xi, g, u)$ при $\xi \to 0$. Впервые выполненный в данной работе численный расчет 8 двухпетлевых диаграмм для $\Sigma_{\psi'\psi}$ позволил найти коэффициенты $a_{21}^{(\kappa)}$ и $a_{22}^{(\kappa)}$ из (27):

$$B(u_*^{(0)}) \equiv \frac{a_{21}^{(\kappa)}(u_*^{(0)}|_{d=3})}{\overline{S}_d^2} = -4.1666 \cdot 10^{-3}, \ C(u) \equiv \frac{a_{22}^{(\kappa)}(u)}{\overline{S}_d^2} = -\frac{3u^2 + 9u + 16}{720u(1+u)^3}.$$
(31)

Двухпетлевой расчет константы ренормировки Z_{κ} был выполнен в работе [5]:

$$a_{21}^{(\nu)} = \frac{3(d-1)^2 \overline{S}_d^2 \lambda}{128(d+2)^2} , \qquad (32)$$

где $\lambda \simeq -1.101$ при d = 3. Соотношения (31), (32) позволяют найти двухпелевые выражения для координат неподвижной точки ($u_*^{(1)}$ определен в (29)):

$$g_* = \frac{8(d+2)\varepsilon}{3(d-1)\overline{S}_d} (1+\lambda\varepsilon) + O(\varepsilon^3) , \quad u_*^{(1)} = \frac{2(d+2)}{d(1+2u_*^{(0)})} \left[\lambda - \frac{128(d+2)^2}{3(d-1)^2} B(u_*^{(0)})\right] . \tag{33}$$

В четвертой главе проводятся необходимые выкладки для нахождения физических величин из констант ренормировок.

Начнем с динамической А модели. До этого все вычисления проводились в случае, когда поле параметра порядка φ — скаляр. Обобщение на *n*-компонентное поле при использовании R'-операции не вызывает трудностей, нужно только домножать двухпетлевой, трехпетлевой и четырехпетлевые вклады A, B и CD на соответствующие "индексные" структуры, которые легко находятся. РГ-функция γ_2 определяется соотношением $\gamma_2 = \beta_u \partial_u \ln Z_2$ где $\beta_u(u) \equiv \mu \partial_\mu|_0 u \in \mu \partial_\mu|_0$ — оператор $\mu \partial_\mu$ при фиксированных затравочных параметрах g_0 , τ_0 , λ_0 . Таким образом находим

$$\gamma_2 = \frac{n+2}{3}u^2 \frac{\ln(4/3)}{4} \left[1 - 0.49393 \frac{n+8}{9}u + \left(-0.2511 \frac{n^2 + 6n + 20}{27} - 0.1700 \frac{n+2}{3} + 1.806 \frac{5n+22}{27} \right) u^2 + O(u^3) \right]. \quad (34)$$

Координата неподвижной точки u_* определяется условием $\beta_u(u_*) = 0$, коэффициенты ее разложения по ε в схеме MS известны (из статики) с точностью до 5-го порядка [6], нам потребуются только первые три коэффициенты.

Динамический критической индекс z принято записывать в виде

$$z = 2 + R\eta$$
, $R \equiv \gamma_2(u_*)/\eta - 1$, (35)

где η — известный статический индекс Фишера. Величина R удобна для использования, т.к. ее зависимость от n проще, чем у $\gamma_2(u_*)$ и η :

$$R = (6\ln(4/3) - 1) \left\{ 1 - 0.18848 \varepsilon + \left[-0.1000 + \frac{4.78 n + 21.5}{(n+8)^2} \right] \varepsilon^2 + O(\varepsilon^3) \right\} .$$
 (36)

До настоящего момента величина R была известна с точностью до ε и оба члена разложения не зависели от n. Полученный в рамках данной работы следующий член разложения показал, что гипотеза о полной независимости R от n не верна.

Вернемся к динамическому критическому индексу, при n=1 получаем

$$z = 2 + \frac{6\ln(4/3) - 1}{54}\varepsilon^2 + 0.0110363\varepsilon^3 - 0.00558\varepsilon^4 + O(\varepsilon^5).$$
 (37)

Хотя мы имеем дело с асимптотическим рядом, в данном случае последняя поправка оказывается в два раза меньше предыдущей. При d = 3 ($\varepsilon = 1$) индекс zпринимает значение 2.01890, что находится в согласии с экспериментом. Таким образом, в динамической задаче критического поведения впервые в рамках ε -разложения получен четвертый порядок теории возмущений. На основе этих результатов были осуществлены различные варианты борелевского суммирования с использованием асимптотики высоких порядков. В целом погрешность ответов оставалась большой, что, по-видимому, объясняется существенным отклонением рассчитанных членов ряда по ε от соответствующих найденных к настоящему моменту вкладов в асимптотику высоких порядков. Поэтому для повышения точности, кроме расчета следующего порядка ε -разложения, полезным может оказаться уточнение самой асимптотики.

Во второй задаче — турбулентного перемешивания пассивной примеси — рассчитывается турбулентное (эффективное) число Прандтля u_{eff}^{-1} , имеющее смысл отношения эффективных коэффициентов диффузии и вязкости. Переход к РГпредставлению для функций отклика (26) в инерционном интервале позволяет обосновать следующее определение этой величины:

$$u_{eff} = u_* \frac{R_{\psi}(\xi = 1, g_*, u_*)}{R_{\varphi}(\xi = 1, g_*)} .$$
(38)

Примечательно, что величина u_{eff} в такой записи не зависит от выбора схемы ренормировки. Подставляя однопетлевые вклады a_{φ} , a_{ψ} функций отклика в разложение u_{eff} по g, а потом по ε при $(g, u) = (g_*, u_*)$, получаем:

$$u_{eff} = u_* \left\{ 1 + \left[a_{\varphi} - a_{\psi}(u_*) \right] g_* + O(g_*^2) \right\} = u_*^{(0)} \left\{ 1 + \varepsilon \left(u_*^{(1)} / u_*^{(0)} + \left[a_{\varphi} - a_{\psi}(u_*^{(0)}) \right] g_*^{(0)} \right) + O(\varepsilon^2) \right\} .$$
(39)

Таким образом, для нахождения двухпетлевого значения турбулентного числа Прандтля необходимо рассчитать положение неподвижной точки (g_*, u_*) с двухпетлевой точностью а функции отклика с однопетлевой точностью. Проведенный при d = 3 расчет дал для u_{eff} следующее разложение по ε

$$u_{eff} = \frac{\sqrt{43/3} - 1}{2} \left(1 - 0.0358 \,\varepsilon \right) + O(\varepsilon^2) \,. \tag{40}$$

При физическом $\varepsilon = 2$ это дает для турбулентного числа Прандтля значение 0.7693 (без учета двухпетлевой поправки было 0.7179). Как видно, величина поправки составляет всего лишь 7 % по сравнению с главным членом. Такая ситуация не характерна для рассчитанных ранее в рамках ε -разложения характеристик турбулентных течений, таких, как константа Колмогорова и фактор асимметрии. Большая величина поправок для этих величин обусловлена вкладом диаграмм, имеющим сингулярность при $d \rightarrow 2$, которые и при d = 3 вносят доминирующий вклад [5]. Рассмотрение зависимости от размерности пространства показало, что и в нашей задаче в поправках к эффективным коэффициентам диффузии и вязкости присутствуют сингулярные при $d \rightarrow 2$ слагаемые, которые при d = 3 дают большой вклад. Однако в отношении этих величин сингулярные вклады сокращаются и результирующая поправка для числа Прандтля оказывается небольшой. Этим, по-видимому, объясняется хорошее согласие с экспериментальным значением турбулентного числа Прандтля 0.81 ± 0.05.

В заключении приведены выносимые на защиту основные результаты диссертации:

1. Разработан метод численного расчета констант ренормировок, основанный на использовании R-операции теории ренормировок. Он позволяет свести задачу нахождения вычетов в полюсах фейнмановских диаграмм к вычислению многократных интегралов, не содержащих особенностей.

 На основе предложенного метода проведен четырехпетлевой расчет констант ренормировки и ренормгрупповых функций модели А критической динамики. Динамический критический индекс рассчитан в порядке ε⁴.

3. Проведено борелевское суммирование полученного *є*-разложения с учетом асимптотического поведения старших членов ряда. Полученный результат находится в согласии с экспериментальными данными.

4. Методом ренормгруппы во втором порядке теории возмущений рассмотрена задача турбулентного перемешивания пассивной примеси. Проведен двухпетлевой расчет констант ренормировки и ренормгрупповых функций. С точностью до ε² определено положение неподвижной точки ренормгрупповых преобразований.

5. Рассчитаны функции отклика в задаче турбулентного перемешивания пассивной примеси. Во втором порядке теории возмущений найдено значение турбулентного числа Прандтля. Учет впервые рассчитанного вклада порядка ε² заметно улучшил согласие с экспериментом.

Основное содержание диссертации изложено в следующих работах:

 Adzhemyan L. Ts., Honkonen J., Kim T. L., Sladkoff L. Two-loop calculation of the turbulent Prandtl number // Phys. Rev. E. - 2005. - Vol. 71. - Pp. 056311-1-056311-9. (личный вклад 25%)

2. Adzhemyan L. Ts., Honkonen J., Kim T. L., Kompaniets M. V., Sladkoff L., Vasil'ev A. N. Some specific features of the ε expansion in the theory of turbulence and the possibility of its improvement // J. Phys. A: Math. Gen. - 2006. - Vol. 39. -Pp. 7789-7799. (личный вклад 17%)

 Аджемян Л. Ц., Новиков С. В., Сладкофф Л. Расчет динамического индекса модели А критической динамики в порядке ε⁴ // Вестник СПбГУ. — 2008. — Т. 4, № 4. — С. 110-114. (личный вклад 33%)

Список цитируемой литературы:

- Hohenberg P. C., Halperin B. I. Theory of dynamical critical phenomena // Rev. Mod. Phys. - 1977. - Vol. 49. - Pp. 435-479.
- [2] Васильев А. Н. Квантовополевая ренормгруппа в теории критического поведения и стохастической динамике. — СПб.: ПИЯФ, 1998.
- [3] Антонов Н. В., Васильев А. Н. Критическая динамика как теория поля // ТМФ. – 1984. – Т. 60, № 1. – С. 59–71.
- [4] Аджемян Л. Ц., Васильев А. Н., Гнатич М. Ренормгрупповой подход к теории турбулентности: включение пассивной примеси // ТМФ. – 1984. – Т. 58, № 1. – С. 72–78.
- [5] Adzhemyan L. Ts., Antonov N. V., Kompaniets M. V., Vasil'ev A. N. Renormalization-group approach to the stochastic Navier-Stokes equation: two-loop approximation // Int. J. Mod. Phys. B. - 2003. - Vol. 17. - Pp. 2137-2170.
- [6] Kleinert H., Neu J., Schulte-Frohlinde V., Chetyrkin K. G., Larin S. A. Five-loop renormalization group functions of O(n)-symmetric φ⁴-theory and ε-expansions of critical exponents up to ε⁵ // Phys. Lett. B. - 1991. - Vol. 272, no. 1-2. - Pp. 39-44. - Erratum: Phys. Lett. B. - 1993. - Vol. 319, no. 4. - P. 545.