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A new mathematical treatment of the problem of droplet growth via diffusion of molecules from a
supersaturated vapor is presented. The theory is based on a semiquantitative analysis with good
physical arguments and is justified by its reasonable predictions. For example it recovers the time
honored growth law in which, to a high degree of approximation, the droplet radius increases with
the square root of time. Also, to a high degree of approximation, it preserves material balance such
that, at any time, the number of molecules lost from the vapor equals the number in the droplet.
Estimates of the remaining approximational error are provided. On another issue, we show that, in
contrast, the conventional treatment of droplet growth does not maintain material balance. This issue
could be especially important for the nucleation of another droplet in the vicinity of the growing
droplet where the rate of nucleation depends exponentially on supersaturation. Suggestions for
further improvement of rigor are discussed. ©2004 American Institute of Physics.
@DOI: 10.1063/1.1740752#

I. NATURE OF THE PROBLEM

Diffusion controlled growth of a droplet in a supersatu-
rated vapor has been considered repeatedly in the
literature.1–6 The phenomenon is of major importance to col-
loid chemistry, atmospheric science, and many other disci-
plines, including the new endeavor of nanotechnology. How-
ever, even after many years, an exact analytical solution of
the associated boundary value problem is not available, al-
though relatively satisfactory approximate solutions were
achieved at an early stage of inquiry. The chief impediment
to an exact solution has been the movement of the boundary
~surface of the droplet! during droplet growth, resulting in a
decidedly nonlinear situation.

Favored paths to approximation have usually incorpo-
rated the following steps:

1. In the simplest approach, the differential equation de-
scribing the diffusional transport of molecules to the droplet,
based on the continuity equation, into which Fick’s law has
been substituted, is first relaxed by setting the time derivative
equal to zero. This destroys the pointwise conservation of
molecules except for the case of steady state transport. In the
case of spherical symmetry with which we are concerned, the
solution of the remaining differential equation~now an ordi-
nary differential equation! is simply

n~r !5A1
B

r
, ~1!

wherer is the radial coordinate of position with origin at the

center of the droplet,n is the concentration of diffusing mol-
ecules, andA andB are constants which can be determined
by the application of time independent boundary conditions,
one of which is applied at the droplet surface, assumed sta-
tionary and located atr 5R. It is clear that this solution is
inappropriate for a nonfixed or moving boundary.

2. Nevertheless, a more or lessad hocpartial solution to
the problem has usually been achieved by accommodating
time-dependent boundary conditions~e.g., movement of the
boundary! by allowing A andB to depend on time and to be
determined by these conditions. The result is a concentration
profile that varies with time and which may be characterized
as ‘‘quasisteady.’’ Then the diffusion flux into the droplet is
evaluated using the time dependent gradient obtained from
this profile and, from it, the rate of growth of the droplet is
established. The qualitative rationale behind this procedure is
that ~at least in a vapor! the rate of change of the radius of a
dense droplet is small compared to a typical distance through
which a molecule diffuses in unit time. Indeed, it is not a bad
approximation and it leads to the well-known growth law

R~ t !5bt1/2, ~2!

wheret is time andb is a constant, and it has been assumed
that R(0)50.

A primary difficulty with the above approximation is its
failure to maintain material balance. This is to be expected
since Eq.~1! is the long time limit of the following expres-
sion.

n~r ,t !5n02~n02n`!
R

r F12FS r 2R

2ADt
D G , r>R, ~3!a!Author to whom correspondence should be addressed. Electronic mail:

reiss@chem.ucla.edu

JOURNAL OF CHEMICAL PHYSICS VOLUME 121, NUMBER 1 1 JULY 2004

3870021-9606/2004/121(1)/387/7/$22.00 © 2004 American Institute of Physics

Downloaded 25 Jun 2004 to 128.97.138.104. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp

http://dx.doi.org/10.1063/1.1740752


wheren(r ,t) is thenonsteadyconcentration of diffusant atr
at timet, and whereR is a ‘‘fixed’’ radius of a sink~droplet!
on whose surface the concentration of diffusant is maintained
constant atn` the equilibrium vapor density of the drop,
while n05n(r ,0).n` is the initial concentration of vapor
molecules in the diffusion field extending betweenr 5R and
r 5`. Finally, D is the diffusivity of a vapor molecule, while

F~u!5
2

Ap
E

0

u

e2j2
dj, ~4!

is the Laplacian probability integral or error function.
Equation~3! is a solution of the continuity equation,

]n~r ,t !

]t
5

D

r

]2

]r 2
~rn~r ,t !!, ~5!

into which Fick’s law has been substituted, and which is
subject to the following initial and boundary conditions

n~r ,0!5n0 , r .R, ~6!

n~R,t !5n` . ~7!

Since Eq.~3! satisfies the continuity equation, it obviously
maintains material balance in the sense that the integrated
flux, i.e., the flux of molecules entering the sphere of radius
R integrated over the timet, is equal to the decrease of the
number of vapor molecules in the diffusion field over the
same time. However, it is essential to note that the equation
accomplishes this using anonsteady n(r ,t) and astationary
boundary atr 5R where the concentration of molecules does
not vary with time. Furthermore, at infinite time, Eq.~3!
converges on a true steady state in which the time derivative
in Eq. ~5! converges on zero. However, it is clear, even with-
out a quantitative analysis, that as soon as the boundary atR
is allowed to move, there canneverbe a true steady state. In
the conventional approach leading to Eq.~2! and Eq.~5! with
the time derivative suppressed, is used in conjunction with
the boundary condition, Eq.~7!, applied at amovingbound-
ary R(t). Clearly, this involves an immediate contradiction
since, with a moving boundary the diffusion cannot be steady
so that]n/]t cannot vanish. Thus, it is evident on ana priori
basis that the conventional approach cannot maintain mate-
rial balance. By how much it fails is a matter for quantitative
study, some of which we address below. We remark that even
a modest failure could represent a significant problem for an
associated theory of nucleation in the surrounding vapor,
since nucleation rates depend so sensitively on supersatura-
tion. On the other hand, for the rate of droplet growth, a
modest failure would not be so serious, since the growth rate
is more or less linear in the diffusant gradient outside of the
droplet.

The question then arises as to how to improve the ap-
proximation inherent in the conventional approach so that
material balance is at least closely, even if not exactly,
achieved. In the pursuit of this goal we can steal a hint from
Eq. ~3! which does not represent a steady state and achieves
material balance, among other things, by referring to afixed
boundary atr 5R. Can we somehow involve some fixed

boundary in the moving boundary theory and, even though
diffusion might not be steady, maintain material balance?

In the following sections we develop such an approach
in which both a fixed boundary and a nonsteadyn(r ,t) play
roles, and where Eq.~2! is eventually generated even though
material balance isalmostachieved. First, however, we re-
turn to the conventional approach in order to both demon-
strate the magnitude of the failure of material balance and to
introduce some important parameters.

II. QUANTITATIVE CRITIQUE OF THE CONVENTIONAL
APPROACH AND THE FAILURE
OF MATERIAL BALANCE

The question of the spatial distribution of the vapor in
the vicinity of a growing droplet has been considered in a
nonspecific way by Goodrich.4 He converted the diffusional
boundary value problem containing an outward-moving
droplet boundary into two coupled integral equations. How-
ever, he focused on the time dependence of the droplet radius
and on an iterative solution leading to the equation describ-
ing that time dependence. Equation~2! was confirmed as the
zeroth-order term of an expansion in powers of the square
root of the ratio of excess vapor density to liquid density, and
corrections to Eq.~2! were found as higher order terms in the
expansion. However, the behavior of the vapor density out-
side of the droplet was not studied.

Returning to the conventional approach, since the
change of volume of the droplet is due to the diffusion flux
of molecules coming from the vapor, the time rate of change
of R is given by

dR

dt
5y lD

]n~r ,t !

]r U
r 5R

, ~8!

wherey l is the volume per molecule in the liquid. This rela-
tionship between the radius of the growing droplet and the
vapor concentration renders the problem nonlinear. Approxi-
mating the diffusion as quasistationary so that Eq.~1!, with A
and B regarded as functions of time, applies, and using the
boundary condition, Eq.~7!, together with a second bound-
ary condition, namely

n~`,t !5n0 , ~9!

yields

n~r ,t !5n02
~n02n`!R~ t !

r
. ~10!

Substitution of this result into Eq.~8! yields, after integration
with respect to time, Eq.~2! with

b[@2Dy l~n02n`!#1/2. ~11!

It is instructive to examine a revised version of Eq.~3!
obtained by substitutingR(t) of Eq. ~2! @with b given by Eq.
~11!#, in place ofR. Clearly, sinceR is then no longer con-
stant, Eq.~3! is no longer an exact solution of the boundary
value problem that led to Eq.~3! in the first place. However,
we can show that under the physical conditions of droplet
growth in the vapor, the revised Eq.~3! can be used to derive
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an equation only slightly different from Eq.~2!. To show this
we proceed as follows. Substitute the revised Eq.~3! into Eq.
~8! to obtain

dR2

dt
5b2S 11

R~ t !

ApDt
D 5b2S 11

2a

Ap
D , ~12!

where

b52D1/2a, ~13!

anda is the dimensionless parameter

a[@y l~n02n`!/2#1/2. ~14!

The usefulness ofa will lie in the fact that it is very small in
the sense thata!1. It is actually equal to the square root of
one half of the ratio ofn02n` , the excess vapor density, to
1/y l the density of the liquid droplet. Hence, the condensa-
tion of a significant amount of vapor changes the radius of a
growing droplet only relatively slightly. For example, for the
condensation of water vapor atT>273 K, we obtaina;5
•1023. We return later to the effects of this small parameter.

AssumeR(t)/(Dt)1/2!1. This amounts to assuming that
the radius of the droplet at any timet is much smaller than
the distance through which a molecule in the vapor can dif-
fuse during the same time, and is an idea obviously sug-
gested by the fact that the liquid is so dense compared to the
vapor. A more quantitative confirmation of this fact is pre-
sented below. If this is the case, Eq.~12! is reduced to
dR2/dt5b2 and its solution isR2(t)5b2t1R2(0), where
R(0) is the droplet radius at time zero, i.e., when diffusional
growth of the droplet is activated, i.e., the time at which
R2(0)'l2 wherel is the mean free path of molecules in the
vapor. Then it does follow that:

R2~ t !@R2~0!'l2, ~15!

so thatR2(t)5b2t1R2(0) may be well approximated by

R~ t !5bt1/252D1/2at1/2, ~16!

which is identical to Eq.~2!.
According to Eq. ~16! we may write R(t)/(Dt)1/2

52a, confirming the assumptionR(t)/(Dt)1/2!1, sincea
has been shown to be so much less than unity@in view of Eq.
~14!#. The time regime, within which Eq.~15! is valid, is
bounded from below. Using Eq.~16! in Eq. ~15!, we find

R25b2t54Da2t@l2 or t@
l2

4Da2
5t lower-bound. ~17!

With l;1024 cm, a;5•1023, and D;1 cm2 s21, the
lower boundt lower-bound, for the time beyond which Eq.~15!
is valid, is therefore 1023 s. This means that the quasisteady
state is established very rapidly in comparison to the time
required for the droplet to grow, and gives support to the
quasisteady approximation.

The reader should note that we used the smallness ofa
in neglecting the second term in parentheses in Eq.~12! and
the smallness ofR(0) in arguing for the neglect of the initial
size of the droplet so as to reproduce Eq.~2!, in connection
with which it had been assumed thatR(0)50. What we have
shown is that, starting with the solution of a boundary value

problem in whichR was fixed and where material balance
was maintained, the fixedR could be replaced by anR vary-
ing with time in accordance with Eq.~2!, i.e., by anR(t)
obtained through the use of the quasisteady approximation,
and that, to a very high degree of approximation, this step
returned the quasisteadyR(t). Along the way it was demon-
strated that this good result owed its validity to the fact that
the density of the liquid was so much greater than that of the
vapor and to the fact that the distance through which a mol-
ecule diffused during timet was always much larger than the
droplet radius.

What has not been shown is that the result, besides fur-
nishing a good approximation to the time dependence of the
droplet radius, also provides a good approximation to mate-
rial balance. In fact, as we now show, it fails in this respect.

At any time t the number of molecules that have been
extracted~as a result of droplet growth! from the vapor must
be given by

N~ t !5 4
3p@R~ t !#3n014pS E

R~ t !

`

r 2~n02n~r ,t !!dr D .

~18!

In this equation, the first term on the right is the number of
molecules that have disappeared from the vapor in the region
occupied by the droplet because there is no longer any vapor
in that region. The second term is clearly the number of
molecules that have disappeared from the vapor in the region
outside of the droplet. Substitution of Eq.~16! into the first
term on the right side of Eq.~18! shows that this term is of
the order ofa3 and, sincea is such a small quantity, the first
term may be discarded. Substitution of the revised Eq.~3!
into the second term on the right side of Eq.~18!, and per-
formance of the integration, yields~after discarding the first
term!

N~ t !54pR~ t !~n02n`!Dt18p1/2R2~ t !~n02n`!~Dt !1/2.
~19!

Equations~2! and ~11! may be used to write Eq.~19! in the
form

N~ t !5
2pR3~ t !

y l
1

4pR3~ t !

y l
S 2

p D 1/2

@y l~n02n`!#1/2.

~20!

The second term on the right of this equation may be dis-
carded since it is of the first order in the small parametera.
Thus we can write

N~ t !'
2p@R~ t !#3

y l
. ~21!

Now the number of molecules in the droplet at timet is

n~ t !5
4p@R~ t !#3

3y l
. ~22!

From Eqs.~19! and ~20! we find

N~ t !

n~ t !
'

3

2
. ~23!

Thus, it is obvious that the conventional quasisteady ap-
proach to the solution of the moving boundary problem does
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not maintain material balance between the vapor and the
droplet, even though, as we have shown, it leads to a viable
approximation for the time rate of change of the droplet ra-
dius. Although the failure of this ratio to maintain material
balance is only of the order of 50% it could still be signifi-
cant as far as nucleation in the vapor surrounding the droplet
is concerned.

In closing this section, it should be noted that other at-
tempts have been made to ameliorate the material balance
problem. These include the use of the ‘‘method of finite zone
continuity’’6 as well as approaches used in studies of diffu-
sional kinetics in adsorption.7–10 However, these approaches
are not detailed enough to be used in a theory of nucleation
in a nonuniform medium.

III. REFORMULATION: MAINTENANCE OF BOTH
MATERIAL BALANCE AND CONVENTIONAL
GROWTH RATE

Over the years, the conventional theoretical growth rate,
R(t)5bt1/2, has been shown to agree quite closely with ex-
periment, even though, as demonstrated in the previous sec-
tion, the associated theory does not predict strict material
balance. A desirable goal would, therefore, be the develop-
ment of a theory that predicts the conventional rate as well as
material balance, even if only to a high degree of approxi-
mation. The ease of formulation of such a theory can benefit
appreciably from the physical insight gained in the last sec-
tion from the consideration of the quasisteady state.

At the outset, it should be indicated that we will not
follow absolutely rigorous paths. This was the case in the
evolution of the conventional theory where physical insight
played an important role and where the justification of the
theory was partly connected to its success in predicting the
results of experiment. A similar mixture of insight and math-
ematical rigor are involved in the construction of the refined
theory that maintains material balance as well as the conven-
tional growth law for the droplet.

It is convenient to begin with the infinite time limit of
Eq. ~3!. BecauseF~0!50, with R finite andt→`, this lim-
iting form is

n~r ,t !5n02
~n02n`!

r
R→n02

~n02n`!

r
R~ t !,

~24!
R→R~ t !5bt1/2,

where the second expression is simply the limiting form of
the revised Eq.~3! with R(t) substituted forR. However, we
also note that the second form is identical with Eq.~10!
which was derived from Eq.~1! using Eqs.~7!–~9!. But these
equations are the foundation of the conventional quasisteady
state approach so that the limiting form of the revised Eq.~3!
corresponds to the conventional theory.

Now, as Eq.~17! indicates the quasisteady state is estab-
lished very rapidly. This is especially true at small values of
r @l in Eq. ~17! is simply an example of a small value ofr#.
Thus for a finite range ofr in the neighborhood of the droplet
surface, say out tor 5R* we may assume that the quasi-
steady state prevails. We can thus choose a fixed value ofR,
sayr 5R0 , such thatR0,R* , and Eq.~24! will require that

n~R0 ,t !5n02@n02n`#
bt1/2

R0
. ~25!

Now, in spite of the quasisteady approximation, the ac-
tual physical process is governed by the nonsteady continuity
equation, namely Eq.~5!. The real process is, therefore, ev-
erywhere nonsteady. It is, therefore, nonsteady atr .R0 . We
can try to characterize this nonsteady behavior in the do-
main, r .R0 , by solving Eq.~5! subject to a boundary con-
dition at r 5R0 that is algebraically identical to Eq.~25!, i.e.,

n~r ,t !5n02@n02n`#
bt1/2

R0
, r 5R0 , ~26!

together with the initial condition

n~r ,0!5n0 , r>R0 , ~27!

with which Eq.~26! is consistent. The solution of this bound-
ary value problem is11

n~r ,t !5n02
2bt1/2~n02n`!

p1/2r
E

z

`S 12
z2

t2D 1/2

exp~2t2!dt,

r>R0 , ~28!

where

z5
r 2R0

2~Dt !1/2
. ~29!

Equation~28! will form the basis of our new approximation.
Besides being an exact solution, it satisfies the continuity
equation and a boundary condition, Eq.~26!, at a fixed
boundary. Therefore, it conserves material, i.e., the flux of
molecules atr 5R0 , integrated over time equals, at timet,
*R0

` @n02n(r ,t)#4pr 2dr.

In the regionr ,R0 where Eq.~28! doesnot provide an
exact description of the transport process, Eq.~24! has been
assumed to provide a good approximate description of trans-
port. Indeed, as an approximation, we have assumed that Eq.
~24! continues to provide a good description out tor 5R*
.R0 . This implies that Eqs.~24! and ~28! overlap, not ex-
actly, but rather well in the region,R0<r<R* . Furthermore,
we know that the two solutions yieldexactlythe same value
of n(r ,t) at r 5R0 . This follows from the identity of Eqs.
~25! and~26!. Thus, as far as the vapor density is concerned,
the two solutions are matched at the boundary,r 5R0 be-
tween the respective regions in which they apply.

At r 5R0 , it would also be desirable to match their de-
rivatives with respect tor. Then, the flux leaving the vapor
beyondr 5R0 , would equal the flux in the regionr ,R0 ,
and since the latter flux is quasisteady almost all of the mol-
ecules leaving the former region and entering the latter re-
gion would reach the sink represented by the surface of the
droplet. Indeed, if the flux wassteadyrather than only qua-
sisteady, all of the molecules would reach the droplet and be
absorbed. However, the flux in question, besides being only
quasisteady, is not exactly matched to the flux leaving the
regionr .R0 . These two features contribute to the ‘‘approxi-
mate’’ nature of the theory. At the same time, because ‘‘qua-
sisteady’’ is almost ‘‘steady,’’ and because of the above men-
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tioned probable good overlap between the solutions in the
region R0<r<R* , the approximation should be good. As
indicated earlier, ultimately, its validity will depend upon
how well the theory agrees with experiment.

The number of molecules lost in traversing the region
r ,R0 can be minimized by choosingR0 as close toR(t) as
possible, i.e., by making the regionr ,R0 as small as pos-
sible. Actually, we can take thead hoc step of settingR0

5R(t)5bt1/2. This, of course, while eliminating the region
r ,R0 , will partially invalidate the solution, Eq.~28!, which
is predicated onR0 representing afixed boundary, but it is
similar to the step taken in the conventional quasisteady ap-
proach which provides a pretty good prediction of the rate of
droplet growth. Again, the adequacy of the approximation
will depend upon the goodness of the prediction that it al-
lows. Notice that, if we do take this step, the boundary con-
dition, Eq. ~26!, will be reduced ton(R,t)5n` which is
identical with Eq.~7! and is, therefore, exactly the boundary
condition that we want!

A brief overview of the new approximation is in order.
First we note that Eq.~28! not only establishes material bal-
ance, but it also describes a nonsteady situation such that the
time derivative in the continuity equation is not set to zero.
This represents a considerable departure from the conven-
tional approach where the time derivative is actually set to
zero in order to generate an equation like Eq.~1!. Then by
settingR0 equal toR(t), the approximation eliminates the
quasisteady region that dominates the conventional ap-
proach. Of course, this approximation destroys the rigor of
Eq. ~26!, but it preserves the acceptable droplet growth law,
Eq. ~2!. On the other hand it might go much further than the
conventional approach in maintaining material balance.
Whether or not it does is examined in the following section.

It is also possible to give a semiquantitative argument as
to why the replacement of the fixed boundaryR0 with the
moving oneR(t) does not seriously damage the original
mathematical result. The argument proceeds as follows. At
time t, the sphere of fixed radiusR0 may, during a following
time intervalDt, be regarded as the future radiusR(t1Dt)
of the droplet at the timet1Dt. This means that the fixed
R0 , duringDt, must be only slightly larger thanR(t). Dur-
ing the intervalDt, the flux through the sphere of radiusR0

can be evaluated from the exact result, Eq.~28!, that contains
the parameterR0 . Since, duringDt, the volume (4p/3)@R0

3

2@R(t)##3 is so small, very few molecules could accumulate
in it. Furthermore, this flux quickly achieves a quasisteady
state. Thus, essentially all of the molecules diffusing through
the outer sphere of radiusR0 are absorbed by the droplet.
During the next interval of time, the same procedure can be
used. Thus, throughout the growth of the droplet only a small
error will be generated by regardingR0 asR(t).

The assumption that the concentration profile is quasi-
steady in the region wherer satisfies the inequalityR(t),r
,R0 may be justified if the time~estimated asR0

2/D) re-
quired for the establishment of a quasisteady profile in this
region is much shorter than the time required for the radius
of the growing droplet to reachR0 . Using Eq.~2!, the latter
time may be estimated asR0

2/b2. Thus, for the required time
ratio to be fulfilled, the inequalityb2/D!1 must be true. In

view of Eq. ~13!, this condition is reduced toa2!1 which
has been shown to be true.

In the procedure just described, the zero of time in each
time stepDt is essentially the actual time at the beginning of
that step, and the initial size of the droplet is the actual size
at the beginning ofDt. BeyondR0 the transport is governed
by the differential equation that satisfies the time-dependent
boundary condition atR0 .

One might ask why the situation is not reduced to the
conventional approach whenR0 is replaced byR(t), since,
in that approach, the fixed boundary atR in Eq. ~3! is also
replaced byR(t). The answer is that, in the conventional
approach, the condition, Eq.~7!, at the fixed boundary is
independent of time and, therefore, cannot match a quasi-
steady concentration, like that given by Eq.~25!, at a posi-
tion r 5R slightly beyondR(t). In contrast, in the new ap-
proach, the new time-dependent condition atR0 , Eq. ~26!,
can match the quasisteady concentration and, therefore, as-
sures the continuity of the concentration profile at theR0

interface between the quasisteady solution and the nonsteady
solution given by Eq.~28!. Then when the quasisteady re-
gion is essentially eliminated by the replacement ofR0 by
R(t), transport in the diffusion field will be nonsteady and to
a high degree of approximation will satisfy the continuity
equation with a nonzero derivative, so that material balance
will be maintained to the same degree of approximation.
Thus the new approach shouldalmostestablish material bal-
ance while, at the same time preserving Eq.~2!. How well it
succeeds in this respect is the subject of the following sec-
tion.

IV. CONVENTIONAL GROWTH LAW AND MATERIAL
BALANCE IN THE NEW APPROACH

In connection with the conventional approach, it was
demonstrated that the conventional rate law, Eq.~16!, was
consistent~within an error of ordera! with Eq. ~12! which
was derivable from Eq.~3! with R(t) substituted for the
equation’s fixedR, i.e., from the revised Eq.~3!. In effect, the
law was derived from the revised equation. We will now
show that the same rate law can be derived from Eq.~28!
with the conventionalR(t) substituted for the fixedR0 , i.e.,
derived from a revised Eq.~28!.

The conventional growth law, Eq.~16!, can be written as

1

y l

d

dt S 4p@R~ t !#3

3 D54pR~ t !D~n02n`!

54pbt1/2D~n02n`!5 j ~ t !, ~30!

where j (t) is the number of molecules passing into the
spherical volume of radiusR(t) per unit time. That this is
just another form of Eq.~16! can easily be shown by inte-
grating the differential equation on the left, subject toR(0)
50.

Now it is clear thatj (t) can also be written as

j ~ t !54pr 2D
]n~r ,t !

]r U
r 5R~ t !

, ~31!

since the right-hand side of this equation represents the total
diffusive flux through the spherical surface of radiusR(t).
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Since we now wish to examine the properties of the new
approach,n(r ,t) given by the revised Eq.~28! will now be
substituted into Eq.~31! to obtain

j ~ t !54pbt1/2D~n02n`!@11R~ t !/~Dt !1/2#. ~32!

In the algebraic manipulations leading to Eq.~32! the follow-
ing relation must be used

lim
z→0

2

p1/2
zE

z

` exp~2t2!

t~t22z2!1/2
dt5p1/2, ~33!

where z is given by Eq. ~29!. From Eq. ~16!, we find
R(t)/(Dt)1/252a!1. Thus, with a small error of ordera,
this ratio can be neglected in Eq.~32!, yielding the result

j ~ t !>4pbt1/2D~n02n`!. ~34!

This relation is identical to the right-hand equation in Eq.
~32!, and shows that the revised Eq.~28! is consistent, to
within a small error of ordera, with the conventional growth
law and that, in effect, the growth law can be derived from
the revised Eq.~28!. Thus the new approach preserves the
conventional growth law.

Next, we examine how closely the new~nonsteady! ap-
proach leads to material balance. For this purposeN(t), de-
fined in connection with Eq.~18!, must be evaluated using
n(r ,t) prescribed by the revised Eq.~28!. The result is

N~ t !516p1/2btD1/2~n02n`!E
0

`

@2~Dt !1/2z1R~ t !#dz

3E
z

`S 12
z2

t2D 1/2

exp~2t2!dt, ~35!

wherez is given by Eq.~29!. Using Eq.~16!, and the follow-
ing definite integrals:

2

p1/2E0

`

zdzE
z

`S 12
z2

t2D 1/2

exp~2t2!dt5
1

6
,

~36!
2

p1/2E0

`

dzE
z

`S 12
z2

t2D 1/2

exp~2t2!dt>0.44,

in Eq. ~35!, we obtain

N~ t !5
4pR3~ t !

3y l
~112.62a!. ~37!

Comparing Eq.~37! with Eq. ~22!, shows that, to within a
small error of ordera, N(t) the number of molecules lost
from the vapor equals the number of molecules accumulated
in the drop. Thus the new approach maintains material bal-
ance to within a very small error of ordera.

V. USE OF THE a-TERM AS A CORRECTION
AND CONCLUDING REMARKS

The analysis of the preceding sections has shown that
the new approach, related to the revised Eq.~28!, preserves
both material balance and the conventional droplet growth
law, Eq. ~2!, to within errors of ordera. In contrast, the
conventional approach related to the revised Eq.~3!, gener-
ates a much larger error@see Eq.~23!# in regard to material

balance. One might argue that the ratio 3/2 in Eq.~23! is still
only slightly different from the unity that would represent
material balance, so that the conventional approach still pro-
vides an acceptable approximation. This is true for some
purposes, for example, as far as the droplet growth law is
concerned, but its accuracy is questionable in regard to phe-
nomena~in the neighborhood of a growing droplet! such as
nucleation12 and adsorption from the gaseous phase, where
rates can be extremely sensitive to the concentration profile
in the vapor.

The parametera, defined by Eq.~14!, is essentially a
measure of the ratio of the vapor density to that of the liquid.
Its smallness emphasizes the fact that, during growth, the
droplet radius changes very slowly in comparison to the rate
of molecular transport in the vapor, so that to a first approxi-
mation, the droplet surface might be regarded as stationary.
Even before any quantitative analysis, this supports a quali-
tative explanation as to why both the conventional and the
new approaches lead to a satisfactory droplet growth law.
This raises the question of whether the exact solution to the
problem can be represented as an expansion in powers ofa.
If this were the case, then in Eq.~32!, retaining the terms of
ordera might result in even more accurate approximations.
However, for this to be the case, the terms of ordera in, for
example, Eq.~32! for j (t) and in a corresponding equation
for dn(t)/dt, the rate of change of the number of molecules
in the droplet, would have to be linear terms in bona fidea
expansions. There is really no assurance that this is the case.
In fact, expressions fordn/dt obtained from the new ap-
proach, based on Eq.~28!, and from the approach of
Goodrich,4 yield different expressions for thea-terms. Only
one of these expressions could be right and it is obviously
likely that both are wrong.

For the record, the two expressions are presented as Eqs.
~38! and ~39!, below. The formula from the new approach
follows from Eqs.~4!, ~31!, and~32!, and is

dn

dt
54pbt1/2D~n02n`!F11

R~ t !

~Dt !1/2G . ~38!

The formula obtained by Goodrich@Eq. ~13! in Ref. 4#, ex-
pressed in our notation, is

dnG

dt
54pR~ t !D~n02n`!

3F11
1

~4pD !1/2E0

t dR~t!/dt

~ t2t!1/2
dtG , ~39!

where the subscriptG denotes ‘‘Goodrich.’’ In Eq.~39! the
initial radius of the droplet has been set equal to 0.

Evaluation of the second term in the square brackets on
the right-hand side of Eq.~38!, making use of Eq.~16!,
yields 2a whereas the second term in square brackets on the
right-hand side of Eq.~39! equals (Ap/16)a. Clearly, thea
terms in these expressions are different. It is remotely pos-
sible that one of them is correct but, in the absence of rigor-
ous evidence, there is no compelling reason to believe that
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either is correct. Thus, including the terms linear ina, as a
means of improving the approximations, must be considered
unreliable.

For a theory of nucleation in the vapor proximate to a
growing drop, knowledge of the profile of vapor concentra-
tion is important. Consequently, it is of interest to compare
the profiles generated, respectively, by the conventional ap-
proach and the new approach. For this purpose, it is conve-
nient to employ the following parameter:

w~r ,t !5
n02n~r ,t !

n02n`
. ~40!

At time t during the growth of the droplet, this is the relative
decrease in vapor supersaturation at positionr. In nucleation
theory, the deviation of the nucleation rate from its value in
the uniform vapor with the concentrationn0 can be ex-
pressed in terms of the quantityw(r ,t).13 This deviation is
determined~at vapor supersaturations typical for homoge-
neous nucleation! by w(r ,t), in the exponential factor in the
expression for the nucleation rate, multiplied by a large di-
mensionless parameter having a magnitude between 40 and
50, approximately equal to the number of molecules in the
condensation nucleus. It is therefore of special interest in
regard to nucleation, to examineDw, the difference in the
w(r ,t)’s obtained by the use of Eqs.~3! and ~28!, respec-
tively, and it is especially interesting to examine this differ-
ence as a function ofa.

Figure 1 is illustrative in this respect. In the figure,x is
distance measured in units of the radius,R(t)5bt1/2, of the
growing droplet. In these units it is easily seen thatw(r ,t)

the relative decrease in vapor supersaturation does not de-
pend on time, independent of whether it is evaluated using
Eqs.~3! or ~28!. The curves in Fig. 1 show the differenceDw
between the values of thew(r ,t) functions found using so-
lutions ~3! and ~28!, respectively. Curves 1, 2, and 3 corre-
spond toa50.05, 0.025, and 0.005. They demonstrate a mi-
nor disparity between the conventional and new approaches.
This disparity is however significant for a calculation of the
nucleation rate in the vicinity of growing droplet.

We have presented above the treatment of the moving
boundary problem assuming that the growing droplet is ho-
mogeneous and consists of condensate liquid only. Neverthe-
less, the whole approach can be extended to the growth of a
spherical drop with a heterogeneous solid core in the course
of heterogeneous vapor nucleation on wettable condensation
nucleus. At this point, the case where the radiusRn of the
solid condensation nucleus satisfies the inequalityR2(t)
@Rn

2 @which is similar to Eq.~15!# is evident and does not
require any change in formulas. The case of a large radius of
the condensation nucleus,Rn<R(t), can be described by the
insertion ofRn as an initial droplet radius in the law of drop-
let radius growth@in Eqs. ~2! and ~16!#. To do this we just
need to add a corresponding initial shift in timet in Eqs.~26!
and ~28!. Another situation is the case of droplet formation
on a partly wettable plane solid substrate where the spherical
symmetry of the problem is disturbed. This case requires a
distinct analysis.

In closing, it should be reiterated that the new approach,
developed in this paper, for dealing with the moving bound-
ary problem, has been supported only by a semiquantitative
analytical argument and by the reasonable prediction of
growth rate and material balance. For the future it remains
desirable to develop a more rigorous analysis, possibly
through a perturbative or variational approach utilizing the
parametera.
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FIG. 1. The differenceDw between the valuesw(r ,t) of the relative de-
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spectively. Curves 1–3 correspond toa50.05, 0.025, and 0.005, respec-
tively. x denotes ther /R(t) ratio.
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