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The work of aggregate formation in

nucleation theory and micellization

wf W

&0

0 nczh n, 40 &0 B 100 1
Work of aggregate formation as
a function of aggregation number
and concentration of surfactant
monomers

804 W

604 ¢

409

201 ' 3

1 0 ncah &0 \ B0 100 \12’0 n
Work of droplet formation as a
function of aggregation number

and vapor concentration .



The droplet model
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ng = (bs/2b, )3/2 the inflection point

b Is proportional to the square of the monomer charge or to dipole moment
I (associated with the electric repulsion at the aggregate surface);

b, IS proportional to the surface tension of the hydrophobic nucleus of the
aggregate

The droplet model excludes a penetration of solvent molecules into the micelle core
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The quasi-droplet model

a

as

92
W =an?—-a.n?—|In(c,/c..)— 4
n=—q A3 (1/ 10) 30,

1

ng = 9a§/64a12 the inflection point

Is proportional to the square of the
monomer charge or dipole (associated with
the electric repulsion at the aggregate
surface)

IS proportional to the hydrophobic
contribution per monomer

The quasi-droplet of molecular aggregate permits partial drowning of solvent

molecules



Polymorphic transformations of micelles
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globular aggregates computed for a droplet model
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Coexsistence of spherical and cylindrical micelles
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Equilibrium and quasi-equilibrium

Boltzmann distributions of aggregates
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Molecular mechanism of aggregation in
surfactant solutions.

Becker-Doring kinetic equation of aggregation

- stepwise attaching and detaching

oc, (t) _ g - Becker-Déring kinetic equation of
ot ~“ndl “n aggregation

Jn — jZCn (t) _j;+1cn+1(t)

- aggregation rate (nucleation rate)

4 o O n%® - the attaching rate of surfactant molecules
In = Jn, & 723 by a spherical aggregate
1%%s
T ' () - the attaching rate of surfactant molecules
Jn = Jn, 5_1ﬁ_* by a cylindrical aggregate
Jra=Jn AC”L - the detaching rate of surfactant molecules
Chi by an aggregate



Fusion-fission kinetic equation of

aggregation

Jni
{n}+{i}< = >{n + 1} aggregate attaching and detaching
O n-1 0 fusion-fission kinetic equation of
6; — EZ Jpii— Z I aggregation
i=1 i=1
Jn,l. = J:L_l " _jr_L+i,iCn+i fusion-fission aggregation rate

o the rate of of attaching aggregate {i}
Jni =K, c by aggregate {n}



Kinetic description of fast relaxation

_ ~ N\~ {eviaﬁon from the quasi-equilibrium ’
‘in - (Cn —Chn )/Cn distribution at the end of fast relaxation
As follows from the Becker-Doring kinetic equation for spherical micelles
s equation and monomers at ng—Ang,<n<ng+An,
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© kinetic equation for
L c& (t)= —j nc, &, (t)dn cylindrical micelles
and monomers at
L n>n,
Closed set of kinetic
equations of fast The balance of total
relaxation amount of surfactarg 11
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Kinetic description of slow relaxation

e~ (0) e (0 ey (1)____| Thopateeol

dCSM/dt:J’(l) _Jﬂ(l) _(JI(Z) _J”(Z))’ dCCM/dt: J,(Z) _J”(Z)

The last two equations follow from the Becker-Doering equation as the balance equations
for variation of total concentrations of spherical and cylindrical micelles due to direct and
reversal transitions in the quasi-steady regime over potential barriers between premicellar
agregates and spherical micelles and between spherical and cylindrical micelles.

1) (1) The direct and reversal

" C
J| = %exp(—Wf)), J] = SM({)C exp[—(Wf) —Ws)mteady fluxes over the
T "An; TAn;’ Ang first potential peak of
Qhe aggregation work

, ':(2) +(2)
B R P

peak of the aggregation work
The direct and reversal steady

fluxes over the second potential
peak of the aggregation work

Angl) - the half-width of the first potential
2

An'? - the half-width of the second potential
peak of the aggregation work
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Power and exponential laws of slow relaxation

In addition to the final stage of relaxation with the exponential law of decay of
concentration disturbances in time, the preceding stage with the power law
variation of concentrations in time has significance in the whole relaxation. It is
just the power law stage when the main nonlinear changes in relaxing parameters
of micellar solution occur that can be clearly fixed in experiment.

Between the first and second CMC

- the time of exponential relaxation

t(u) G (l+ ﬁ ] - the time of power relaxation from
roe = ~ ~ 3 ~ 1
A A Jy 2 Mg above
n

- the time of power relaxation from
g below

o= T
micellization degree 15
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The dependence of monomer
concentration on time at slow
relaxation between first and
second cmc
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lonic micellar solutions

“?n} — Zi N the minimal work requirgd to form an ionic
W{n} = aggregate {n} around arbitrary surface-
KT active ion

Zny = Zi:nizi the aggregate charge number
an} = G{On} + KT In Afn} +KT Ing, the Gibbs energy of an ionic aggregate {n}
around arbitrary surface-active ion

w =g +kTInA3 +kT Ina, the chemical potential of the
monomer of sort i in solution

s h surf conc el
Winy =Wy +Weny +Weny ™ +Wg

q
qul - I(Ps (ql)dq’
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