Methods of the Nucleation Theory in Kinetics and Thermodynamics of Micellization
Outline

• The work of aggregate formation in nucleation theory and micellization
• The droplet and quasi-droplet models
• Equilibrium and quasi-equilibrium Boltzmann distributions of aggregates
• Becker-Döring and fusion-fission kinetic equations of aggregation
• Fast and slow relaxation
• Ionic micellar solutions
The work of aggregate formation in nucleation theory and micellization

Work of aggregate formation as a function of aggregation number and concentration of surfactant monomers

Work of droplet formation as a function of aggregation number and vapor concentration
The droplet model

\[W_n = b_1 n^{4/3} - \left[\ln \left(\frac{c_1}{c_{10}} \right) + \frac{4}{3} \left(\frac{2b_1 b_3}{3} \right)^{1/2} \right] n + b_3 n^{2/3} \]

\[n_0 = \left(\frac{b_3}{2b_1} \right)^{3/2} \]

The inflection point

\(b_1 \) is proportional to the square of the monomer charge or to dipole moment (associated with the electric repulsion at the aggregate surface);

\(b_3 \) is proportional to the surface tension of the hydrophobic nucleus of the aggregate

The droplet model excludes a penetration of solvent molecules into the micelle core
The quasi-droplet model

\[W_n = a_1 n^2 - a_3 n^{3/2} - \left[\ln\left(\frac{c_1}{c_{10}}\right) - \frac{9a_3^2}{32a_1} \right] n \]

\[n_0 = \frac{9a_3^2}{64a_1^2} \]

\(a_1 \) is proportional to the square of the monomer charge or dipole (associated with the electric repulsion at the aggregate surface)

\(a_3 \) is proportional to the hydrophobic contribution per monomer

The quasi-droplet of molecular aggregate permits partial drowning of solvent molecules
The work of aggregation was computed for a droplet model and the profiles for globular, spherical and cylindrical micelles as functions of the aggregation number. The results are shown for the total surfactant concentrations in solutions above the cmc2.

Coexistence of spherical and cylindrical micelles

Work of aggregation as a function of aggregation number at the total surfactant concentration above cmc2

\[\frac{\partial W_n}{\partial c_1} = -\frac{n-1}{c_1} \]

\[W_n = W_s + \frac{(n - n_s)^2}{\Delta n_s^2} \]

approximation for the aggregation work of stable spherical micelles

\[\Delta n_s = \left[\frac{2}{\left(\frac{\partial^2 W_n}{\partial n^2} \right)_{n=n_s}} \right]^{1/2} \]

approximation for the aggregation work of stable cylindrical micelles

\[W_n = W_0 + \frac{n - n_0}{n_s - n_0} \]
Equilibrium and quasi-equilibrium Boltzmann distributions of aggregates

\[c_s = c_1 e^{-W_s} \]

\[c_0 = c_1 e^{-W_0} \]

Condition of complete equilibrium

\[c_n = c_s e^{-(W_n-W_s)} \]

quasi-equilibrium distribution of spherical aggregates

\[c_n = c_0 e^{-(W_n-W_0)} \]

quasi-equilibrium distribution of cylindrical aggregates
Molecular mechanism of aggregation in surfactant solutions.

Becker-Döring kinetic equation of aggregation

\[\{n-1\} + \{1\} \rightleftharpoons \{n\} \]

\[\frac{\partial c_n(t)}{\partial t} = J_{n-1} - J_n \]

\[J_n = j_n^+ c_n(t) - j_{n+1}^- c_{n+1}(t) \]

- stepwise attaching and detaching

- Becker-Döring kinetic equation of aggregation

- aggregation rate (nucleation rate)

- the attaching rate of surfactant molecules by a spherical aggregate

- the attaching rate of surfactant molecules by a cylindrical aggregate

- the detaching rate of surfactant molecules by an aggregate
Fusion-fission kinetic equation of aggregation

\[\{n\} + \{i\} \xrightleftharpoons[j_{n,i}^+\text{ and } j_{n,i}^-]{j_{n+i,i}^-} \{n + i\} \]

aggregate attaching and detaching

\[\frac{\partial c_n}{\partial t} = \frac{1}{2} \sum_{i=1}^{n-1} J_{n-i,i} - \sum_{i=1}^{\infty} J_{n,i} \]

fusion-fission kinetic equation of aggregation

\[J_{n,i} \equiv j_{n,i}^+c_n - j_{n+i,i}^-c_{n+i} \]

fusion-fission aggregation rate

\[j_{n,i}^+ = K_{n,i}c_i \]

the rate of of attaching aggregate \(\{i\} \) by aggregate \(\{n\} \)
Kinetic description of fast relaxation

\[\xi_n \equiv \frac{(c_n - \bar{c}_n)}{\bar{c}_n} \]

As follows from the Becker-Döring equation

\[\frac{\partial \xi_n(t)}{\partial t} = j^+_s \frac{\partial}{\partial n} \left(\bar{c}_n \frac{\partial \xi_n(t)}{\partial n} \right) - \xi_1(t) j^+_s \frac{\partial \bar{c}_n}{\partial n} \]

\[\frac{\partial \xi_n(t)}{\partial t} = \frac{j^+_n}{n_*} \frac{\partial}{\partial n} \left(n\bar{c}_n \frac{\partial \xi_n(t)}{\partial n} \right) - \xi_1(t) \frac{j^+_n}{n_*} \frac{\partial}{\partial n} \left(n\bar{c}_n \xi_n(t) \right) \]

\[\bar{c}_1 \xi_1(t) = - \int_{2}^{\infty} n\bar{c}_n \xi_n(t) \, dn \]

Closed set of kinetic equations of fast relaxation

The balance of total amount of surfactant

deviation from the quasi-equilibrium distribution at the end of fast relaxation

kinetic equation for spherical micelles and monomers at \(n_s - \Delta n_s < n < n_s + \Delta n_s \)

kinetic equation for cylindrical micelles and monomers at \(n > n_0 \)
Relative deviation ξ_1 of monomer concentration c_1 from its quasi-equilibrium value
Kinetic description of slow relaxation

\[c = c_1(t) + n_s c_{SM}(t) + n_c c_{CM}(t) \]

\[\frac{dc_{SM}}{dt} = J^{(1)}_1 - J^{(1)}_m - (J^{(2)}_1 - J^{(2)}_m), \]

\[\frac{dc_{CM}}{dt} = J^{(2)}_m - J''^{(2)} \]

The last two equations follow from the Becker-Doering equation as the balance equations for variation of total concentrations of spherical and cylindrical micelles due to direct and reversal transitions in the quasi-steady regime over potential barriers between premicellar aggregates and spherical micelles and between spherical and cylindrical micelles.

\[J'_1 = \frac{c_1 J^{+_1}_{j_c}}{\pi^{1/2} \Delta n^{(1)}_c} \exp \left(-W^{(1)}_c \right), \]

\[J''_1 = \frac{c_{SM} J^{+_1}_{j_c}}{\pi \Delta n^{(1)}_c \Delta n_s} \exp \left[- \left(W^{(1)}_c - W_s \right) \right] \]

\[J'_2 = \frac{c_{SM} J^{+_2}_{j_c}}{\pi \Delta n^{(2)}_c \Delta n_s} \exp \left[- \left(W^{(2)}_c - W_s \right) \right], \]

\[J''_2 = \frac{c_{CM} J^{+_2}_{j_c}}{\pi^{1/2} (n_s - n_0) \Delta n^{(2)}_c} \exp \left[- \left(W^{(2)}_c - W_0 \right) \right] \]

\[\Delta n^{(1)}_c - \text{the half-width of the first potential peak of the aggregation work} \]

\[\Delta n^{(2)}_c - \text{the half-width of the second potential peak of the aggregation work} \]
Solution of kinetic equations of slow relaxation for coexisting spherical and cylindrical micelles

\[\delta c_1(t) \equiv c_1(t) - \tilde{c}_1 \]

\[\delta c_{SM}(t) \equiv c_{SM}(t) - \tilde{c}_{SM} \]

\[\delta c_{CM}(t) \equiv c_{CM}(t) - \tilde{c}_{CM} \]

Closed set of equations of slow relaxation

\[\frac{d(\delta c_{SM})}{dt} = -\alpha_{11}\delta c_{SM} - \alpha_{12}\delta c_{CM} \]

\[\frac{d(\delta c_{CM})}{dt} = -\alpha_{21}\delta c_{SM} - \alpha_{22}\delta c_{CM} \]

If \(c \approx n_*c_{CM} \)

\[\alpha_{11} = \frac{1}{\tilde{c}_{SM}} \left(\tilde{J}_1' + \tilde{J}_2' \right) \]

\[\alpha_{21} = -\frac{1}{\tilde{c}_{SM}} \tilde{J}_2' \]

\[\alpha_{12} = \frac{\tilde{n}_s}{c} \tilde{J}_1' - \frac{2\tilde{n}_*}{c} \tilde{J}_2' \]

\[\alpha_{22} = \frac{2\tilde{n}_*}{c} \tilde{J}_2' \]

\[\delta c_{SM} = A_1 e^{-t/t_{r1}} + A_2 e^{-t/t_{r2}} \]

\[\delta c_{CM} = B_1 e^{-t/t_{r1}} + B_2 e^{-t/t_{r2}} \]

\[t_{r2} \approx \left(2\tilde{c}_{SM} + \tilde{c}_{CM} \right) / 2\tilde{J}_1' \]

\[t_{r1} = \frac{1}{(1/\tilde{c}_{SM} + 2/\tilde{c}_{CM}) \tilde{J}_2'} \]

These are the characteristic times of slow relaxation

\[t_{r2} / t_{r1} >> 1 \]
Power and exponential laws of slow relaxation

In addition to the final stage of relaxation with the exponential law of decay of concentration disturbances in time, the preceding stage with the power law variation of concentrations in time has significance in the whole relaxation. It is just the power law stage when the main nonlinear changes in relaxing parameters of micellar solution occur that can be clearly fixed in experiment.

Between the first and second CMC

\[
t_r \approx \frac{\tilde{c}_1}{\ddot{n}_s \ddot{J}_1} \left(1 + \frac{\tilde{\alpha}}{2} \frac{\Delta \ddot{n}_s^2}{\ddot{n}_s} \right),
\]

- the time of exponential relaxation

\[
t_r^{(u)} \approx \frac{\tilde{c}_1}{\ddot{n}_s \ddot{n}_c \ddot{J}_1} \left(1 + \frac{\tilde{\alpha}}{2} \frac{\Delta \ddot{n}_s^2}{\ddot{n}_s} \right),
\]

- the time of power relaxation from above

\[
t_r^{(b)} \approx \frac{\tilde{c}_1}{\ddot{n}_s \ddot{J}_1} \left(1 + \frac{\tilde{\alpha}}{2} \frac{\Delta \ddot{n}_s^2}{\ddot{n}_s} \right) \left(\ddot{n}_s - \ddot{n}_c + \tilde{\alpha}^{-1}\right)
\]

- the time of power relaxation from below

\[
\tilde{\alpha} \equiv \frac{\ddot{n}_s \tilde{c}_M}{\tilde{c}_1}
\]

micellization degree
The dependence of monomer concentration on time at slow relaxation between first and second cmc

The dependence of specific times of slow relaxation on the micellization degree
Ionic micellar solutions

\[W_{\{n\}} = \frac{\mu_{s_{\{n\}}} - \sum_i n_i \mu_i}{kT} \]

the minimal work required to form an ionic aggregate \(\{n\} \) around arbitrary surface-active ion

\[z_{\{n\}} = \sum_i n_i z_i \]

the aggregate charge number

\[\mu_{s_{\{n\}}} = G_{\{n\}}^0 + kT \ln \Lambda_{\{n\}}^3 + kT \ln a_i \]

the Gibbs energy of an ionic aggregate \(\{n\} \) around arbitrary surface-active ion

\[\mu_i = g_i^0 + kT \ln \Lambda_i^3 + kT \ln a_i \]

the chemical potential of the monomer of sort \(i \) in solution

\[\frac{\partial W_{\{n\}}}{\partial \ln a_i} = \delta_{i1} - n_i \]

\[W_{\{n\}} = W_{\{n\}}^h + W_{\{n\}}^{surf} + W_{\{n\}}^{conc} + W_{q}^{el} \]

\[W_{q}^{el} = \int_0^q \varphi_s(q') dq' \]
Publications cited

