САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

Физический факультет Кафедра статистической физики

Расчёт химического потенциала молекулы в двухкомпонентной системе методом Монте-Карло

Дипломная работа студента группы 20.Б-06.фз Чепурнова Льва Альбертовича

 $\begin{tabular}{ll} $Hayuhu\cite{u}$ руководитель:} \\ {\rm K.\Phi.-M.H.,} \ {\rm ДОЦЕНТ}\ {\rm KA\PhiЕДРЫ}\ {\rm CTATUCTUЧЕСКОЙ}\ {\rm \PhiИЗИКИ}\ {\rm BOЛКOB} \\ {\rm H.A.} \end{tabular}$

Санкт-Петербург 2024 г.

Содержание

1.	Введение	3			
2.	Моделирование 2.1. Модель твердых сфер	3			
	2.2. Модель Леннард-Джонса	5			
	2.3. Двухкомпонентная система	6			
3.	Методы вычисления химического потенциала	7			
	3.1. Метод Кирквуда	8			
	3.2. Метод Видома	10			
	3.3. Метод расширенного ансамбля	11			
4. Результаты		11			
5. Заключение					
Сп	Список литературы				

1. Введение

Целью данной работы является вычисление химического потенциала для ряда простых молекулярных систем. Химический потенциал - термодинамическая характеристика системы, для канонического ансамбля вычисляемая по формуле

$$\mu = \left(\frac{\partial F}{\partial N}\right)_{V,T}$$
 [1] [2]. Численное значение этой величины необходимо в самых раз-

ных областях естественных наук. Например, с помощью химического потенциала можно рассчитать ширину запрещенной зоны полупроводников [3]. Эта важная характеристика определяет разработочные параметры современных полупроводниковых приборов. Химический потенциал позволяет вычислить работу образования капли, которая, в свою очередь, необходима для рассчета важных термодинамических параметров в теории нуклеации [4]. Наконец, такое явление, как диффузия газов и жидкостей происходит из-за переноса вещества в соответствии с градиентом химического потенциала, поэтому величина последнего оказывается полезной также в физике, химии и биологии [5]. Особенностью химического потенциала является тот факт, что его практически невозможно получить из эксперимента. Есть несколько трудоемких и дорогостоящих методов, позволяющих сделать это напрямую, но далеко не всегда есть возможность организовать ряд таких измерений [6]. В таких случаях решением проблемы является компьютерное моделирование. В наше время существует множество таких методов для вычисления химического потенциала. Автором работы были написаны компьютерные программы на языке Python[7] для моделирования однокомпонентной, состоящей из молекул аргона, и двухкомпонентной, содержащей аргон и ксенон, систем, а также реализованы методы Кирквуда [8] и Видома [9] для рассчета химического потенциала в них. Для проверки полученных результатов использовался программный пакет MDynaMix [10], в котором реализован метод расширенного ансамбля [11] для вычисления химического потенциала. Также была получена зависимость химического потенциала от состава смеси.

2. Моделирование

В данной работе для моделирования молекулярных систем использован метод Монте-Карло [12]. Этот метод является стохастическим, его суть состоит в описании процесса с помощью случайных чисел. После многократного моделирования на основе статистики строятся вероятностные характеристики заданного процесса. Для удобства случайные числа обычно заменяют псевдослучайными, генерация которых производится посредством специальных библиотек в языках программирования, как, например [13]. Первая работа по моделированию аргона была выполнена А. Раманом в своей работе [14]. Параметры модели аргона, использованные в этой статье, часто применяюся и по сей день для моделирования простых систем. В данной работе также использованы параметры взаимодействия Леннард-Джонса[15], взятые из статьи [14]. В качестве предварительного этапа было проведено модели-

рование системы, состоящей из твердых сфер.

2.1. Модель твердых сфер

Сначала строилась система, находящаяся в NVE ансамбле, состоящая из кубической ячейки с размером L=34.8 Å и периодическими граничными условиями, в которой находилось N частиц. В работе использовалось значение N=729. Действуя так же, как в работе [12], мы реализовали случайное изменение координаты случайно выбранной частицы. Таким образом, моделировалось равновесное состояние системы. Периодические граничные условия необходимы для достижения термодинамического предела. Периодичность реализуется следующим образом: если координаты частицы в процессе изменения выходят за пределы ячейки, то частица появляется с противоположной стороны с соответствующими координатами.

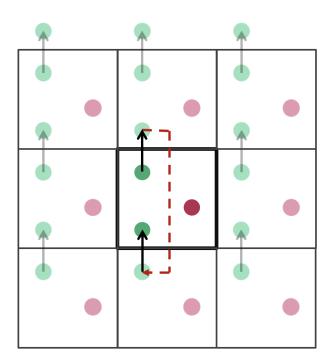


Рисунок 1. Реализация периодических граничных условий

В процессе моделирования с заданной частотой координаты всех частиц в системе записывались в файл в формате «.xmol» [16]. С помощью программы VMD [17] рассчитывались радиальные функции распределения, необходимые для расчета химического потенциала методом Кирквуда. Для модели твердых сфер необходимо ввести простейшее взаимодействие - запрет на "наложение" частиц. При этом потенциал взаимодействия будет выглядеть следующим образом:

$$u(r) = \begin{cases} 0, r > \sigma \\ \infty, r \leqslant \sigma \end{cases} \tag{1}$$

Это значит, что если при случайном изменении координаты частицы ее расстояние до другой станет меньше, чем сумма радиусов этих частиц, то такое состояние приниматься не будет, и система вернется в предыдущее состояние. На этом этапе стало полезным считать, какая часть шагов принимается. Был введен коэффициент принятия, показывающий отношение количества принятых шагов к общему их числу. В наших расчетах количество шагов Монте-Карло для модели твердых сфер выбиралось равным 1 млн, при этом коэффициент принятия составлял 10-20%.

2.2. Модель Леннард-Джонса

Далее нами была смоделирована система частиц, взаимодействующих с потенциалом Леннард-Джонса [15]:

$$u(r) = 4\epsilon \left[\left(\frac{\sigma}{r} \right)^{12} - \left(\frac{\sigma}{r} \right)^{6} \right], \tag{2}$$

где r — расстояние между центрами частиц, ϵ — глубина потенциальной ямы, σ — расстояние, на котором энергия взаимодействия становится равной нулю. Параметры ϵ и σ являются характеристиками атомов соответствующего вещества. В работе были использованы значения $\frac{\epsilon}{k}=120~K$, где k — постоянная Больцмана,

$$k=1.380649\cdot 10^{23}~rac{ extstyle extstyle K}{K},~\sigma=3.4~ ext{Å}~,~rac{\epsilon}{k}=120~K,$$
 взятые из работы [14].

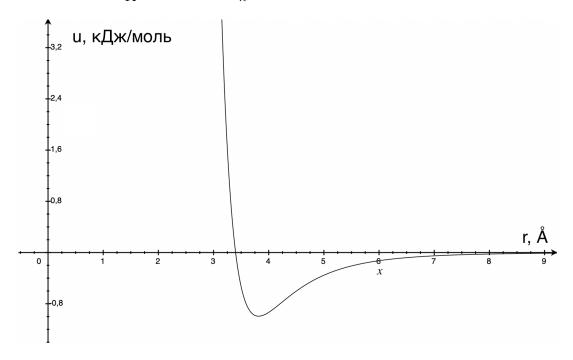


Рисунок 2. Потенциал Леннард-Джонса для аргона

В процессе моделирования мы получали значение энергии отдельной конфигурации системы путем прямого суммирования.

$$E = \sum_{i < j}^{N} u_{i,j},\tag{3}$$

где $u_{i,j}$ — энергия взаимодействия между частицами i и j, N — количество частиц в системе.

Согласно стандартному алгоритму Н. Метрополиса [12], каждая новая конфигурация в системе принималась с вероятностью

$$P = min\left(1, \exp\left(-\frac{E_{new} - E_{old}}{T}\right)\right),\tag{4}$$

где E_{new} – значение энергии в текущий момент, E_{old} – значение энергии на предыдущем шаге, T – значение температуры в кельвинах. В работе было использовано значение T=94.4~K. Энергия в формуле выражена в единицах k.

Таким образом мы моделировали систему «мягких сфер» - частицы чувствуют друг друга на расстоянии, но с некоторой долей вероятности могут подойти достаточно близко друг к другу.

Для такой системы в программе VMD была посчитана радиальная функция распределения g(r), она представлена на Рисунке 3.

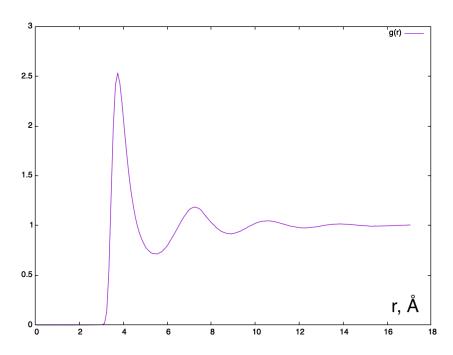


Рисунок 3. График функции g(r) для модели Леннард-Джонса

2.3. Двухкомпонентная система

Для моделирования двухкомпонентной системы был использован потенциал Леннард-Джонса с соответствующими значениями σ и ϵ . При взаимодействии разнородных

атомов σ и ϵ вычислялись по правилам Лоренца-Бертло [18] [19].

$$\sigma_{Ar,Xe} = \frac{\sigma_{Ar} + \sigma_{Xe}}{2} \tag{5}$$

$$\epsilon_{Ar,Xe} = \sqrt{\epsilon_{Ar}\epsilon_{Xe}} \tag{6}$$

В работе были использованы значения $\sigma_{Ar}=3.4~{\rm \AA}$, $\sigma_{Xe}=3.9~{\rm \AA}$, $\frac{\epsilon_{Ar}}{k}=120~K$, $\frac{\epsilon_{Xe}}{k}=62~K$, взятые из документации программы MDynaMix.

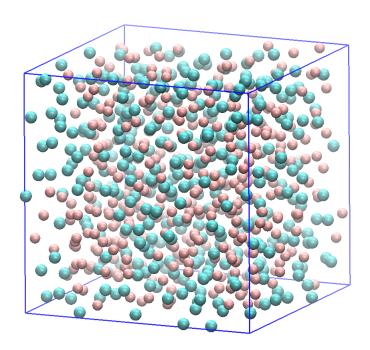


Рисунок 4. Вид двухкомпонентной системы в программе VMD

3. Методы вычисления химического потенциала

Так как мы рассматриваем систему со сравнительно большим количеством частиц, химический потенциал в ней приблизительно равен изменению свободной энергий Гельмгольца F при добавлении в систему одной частицы и дальнейшем термостатировании. В работе были проведены вычисления химического потенциала тремя методами. Для метода Кирквуда и Видома были написаны программы на языке Python, а для проверки результатов использовалась программа MDynaMix, в которой реализован метод расширенного ансамбля. Опишем эти методы подробнее.

3.1. Метод Кирквуда

Метод был предложен Д. Кирквудом в 1942 году в работе [8]. Упоминание о нем можно найти в книге И. Фишера [20], где он и был впервые так назван. Также данный метод описан в книге Т. Хилла [21]. Выведем формулу для вычисления химического потенциала в методе Кирквуда, действуя аналогично работам [22] [21]. Рассмотрим систему из N частиц объема V и температурой T. Запишем гамильтониан для этой системы.

$$H = \sum_{i=1}^{N} \frac{\mathbf{p}_i^2}{2m} + U(\mathbf{r}_1, ..., \mathbf{r}_N), \tag{7}$$

где \mathbf{r}_i - радиус-вектора частиц, \mathbf{p}_i - их импульсы, m - их масса, а $U(r_1,...,r_N)$ - потенциальная энергия их взаимодействия.

Так как мы рассматриваем канонический ансамбль, то статистическая сумма для такой системы записывается в следующем виде:

$$Q = \frac{1}{(2\pi\hbar)^{3N}N!} \int \cdots \int e^{-H/kT} d\mathbf{r}_1 ... d\mathbf{r}_N d\mathbf{p}_1 ... d\mathbf{p}_N$$
 (8)

Интегрируя это выражение по импульсам, получим

$$Q = \frac{Z}{\Lambda^{3N} N!},\tag{9}$$

где Z - конфигурационный интеграл, $Z=\int \cdots \int e^{-U/kT}d{\bf r}_1...d{\bf r}_N$, а Λ - длина волны

де Бройля,
$$\Lambda = \frac{2\pi\hbar}{\sqrt{2\pi mkT}}$$
 .

Так как

$$F = -kT \ln Q,\tag{10}$$

то свободная энергия запишется

$$F = -kT \ln \frac{2\pi\hbar}{\sqrt{2\pi mkT}}. (11)$$

Химический потенциал в системе можно найти по формуле

$$\mu = \left(\frac{\partial F}{\partial N}\right)_{V,T} \approx F(N) - F(N-1). \tag{12}$$

Подставим (11) в (12):

$$\mu = -kT \left(\ln \frac{Z_N}{V Z_{N-1}} + \ln \frac{V}{N\Lambda^3} \right). \tag{13}$$

Здесь Z_N - конфигурацинный интеграл системы из N частиц.

Далее необходимо ввести так называемый параметр включения взаимодействия ξ для одной из частиц системы, $\xi \in [0,1]$. Этот параметр внедряют в качестве множителя в потенциал взаимодействия выбранной частицы с остальными, регулируя таким образом степень "реальности" частицы - ее влияние на систему. Тогда энергия взаимодействия U будет состоять из двух слагаемых: суммарной энергии взаимодействия выбранной частицы с другими частицами системы и потенциальной энергии взаимодействия системы из N-1 частицы.

$$U(\mathbf{r}_{1},...,\mathbf{r}_{N},\xi) = \sum_{i\neq j}^{N} \xi u(\mathbf{r}_{1i}) + U_{N-1} = \xi \sum_{i\neq j}^{N} u(\mathbf{r}_{1i}) + \frac{1}{2} \sum_{\substack{i,k=1\\i\neq k\neq j}}^{N} u(\mathbf{r}_{ik}),$$
(14)

где мы считаем выбранной j-ую частицу, а $\mathbf{r}_{ik} = \mathbf{r}_k - \mathbf{r}_i$

Причем при $\xi=0$

$$U(\mathbf{r}_1, ..., \mathbf{r}_N, 0) = U_{N-1}, \tag{15}$$

а при $\xi = 1$

$$U(\mathbf{r}_1, ..., \mathbf{r}_N, 1) = U_N. \tag{16}$$

Тогда отношение конфигурационных интегралов в (13) можно выразить с помощью ξ :

$$Z_N(\xi = 1) = Z_N,\tag{17}$$

$$Z_N(\xi=0) = \int \cdots \int_V e^{-U_{N-1}/kT} d\mathbf{r}_1 \dots d\mathbf{r}_N = V \int \cdots \int_V e^{-U_{N-1}/kT} d\mathbf{r}_1 \dots d\mathbf{r}_{j-1} d\mathbf{r}_{j+1} \dots d\mathbf{r}_N = V Z_{N-1}.$$
(18)

Следовательно,

$$\ln \frac{Z_N}{V Z_{N-1}} = \ln \frac{Z_N(\xi = 1)}{Z_N(\xi = 0)} = \int_0^1 \frac{\partial \ln Z(\xi)}{\partial \xi} d\xi.$$
 (19)

Здесь $Z(\xi) = \int_{V} \cdots \int_{V} e^{-U(\mathbf{r}_1, \dots, \mathbf{r}_N, \xi)/kT} d\mathbf{r}_1 \dots d\mathbf{r}_N.$

Тогда

$$\frac{\partial Z(\xi)}{\partial \xi} = -\frac{1}{kT} \int \dots \int e^{-U(\mathbf{r}_1, \dots, \mathbf{r}_N, \xi)/kT} \sum_{i=2}^N u(\mathbf{r}_{1i}) d\mathbf{r}_1 \dots d\mathbf{r}_N.$$
 (20)

Все слагаемые равны между собой, поэтому

$$\frac{\partial \ln Z(\xi)}{\partial \xi} = -\frac{1}{NkT} \iint_{V} u(\mathbf{r}_{12}) \rho^{(2)}(\mathbf{r}_{1}, \mathbf{r}_{2}, \xi) d\mathbf{r}_{1} d\mathbf{r}_{2}. \tag{21}$$

под $\rho^{(2)}$ предполагается двухчастичная функция распределения

$$\rho^{(2)}(\mathbf{r}_1, \mathbf{r}_2, \xi) = \rho^2 g(r, \xi), \tag{22}$$

 $\rho = N/V, r$ - расстояние между частицами.

Тогда можем переписать (21) в виде

$$\frac{\partial \ln Z(\xi)}{\partial \xi} = -\frac{N}{VkT} \int_{0}^{\infty} u(r)g(r,\xi)4\pi r^{2} dr.$$
 (23)

Подставляя (23) и (19) в (13), получаем итоговое выражение для химического потенциала:

$$\mu = kT \ln \frac{N\Lambda^3}{V} + \frac{N}{V} \int_0^1 \int_0^\infty u(r)g(r,\xi) 4\pi r^2 dr d\xi$$
 (24)

Для реализации данного метода в нашей системе было необходимо модифицировать потенциал Леннард-Джонса, добавив в него множитель ξ :

$$u(r) = 4\epsilon \xi \left[\left(\frac{\sigma}{r} \right)^{12} - \left(\frac{\sigma}{r} \right)^{6} \right]$$
 (25)

Далее необходимо получить ряд радиальных функций распределения для разных значениях параметра $\xi \in [0,1]$, проинтегрировать каждую их них по r, а затем выполнить численное интегрирование полученных значений по переменной ξ . В итоге получаем величину химического потенциала.

3.2. Метод Видома

Следующий метод был предложен Б. Видомом [9]. Проведем вывод формулы для химического потенциала, взятый из книги [23]. Рассмотрим систему, состоящую из N частиц. Энергия их взаимодействия запишется так же:

$$U_N = \frac{1}{2} \sum_{i,j=1}^{N} u(\mathbf{r}_{ij})$$
 (26)

Перепишем выражение (13) для химического потенциала в таком виде:

$$\mu = kT \ln \frac{N\Lambda^3}{V} - kT \ln \frac{\int \cdots \int e^{-U_{N+1}/kT} d\mathbf{r}_1 ... d\mathbf{r}_{N+1}}{V \int \cdots \int e^{-U_N/kT} d\mathbf{r}_1 ... d\mathbf{r}_N}$$
(27)

Это выражение можно воспринимать как сумму $\mu=\mu_{id}+\mu_{ex}$, где $\mu_{id}=kTln\frac{N\Lambda^3}{V}$ - химический потенциал идеального газа, а μ_{ex} - избыточный химический потенциал. Введем выражение

$$\Delta U_{N+1} = U_{N+1} - U_N, \tag{28}$$

и с учетом выражений (27) и (28) перепишем выражение для μ_{ex} в виде

$$\mu_{ex} = -kT \ln \frac{\int_{V} \left\langle e^{-\Delta U_{N+1}/kT} \right\rangle_{N}}{V}.$$
 (29)

Здесь $\langle e^{-\Delta U_{N+1}/kT}\rangle_N$ - усреднение в каноническом ансамбле функции $e^{-\Delta U_{N+1}/kT}$. Для вычисления избыточного химического потенциала методом Видома раз в несколько шагов Монте-Карло в систему в случайное место ячейки добавляется одна пробная частица, для которой считается значение $e^{-\Delta U_{N+1}/kT}$. Усредняя полученное значение по количеству внесений дополнительной частицы в систему, получаем значение химического потенциала.

3.3. Метод расширенного ансамбля

Метод расширенного ансамбля [11] - это метод Монте-Карло, основанный на построении ансамбля, состоящего из подансамблей, отличающихся друг от друга только одним параметром, называющимся параметром расширения. В процессе моделирования с вероятностью, определенной балансировочными параметрами, которые настраиваются специальными методами в процессе моделирования, система может совершить переход в соседний по значению параметра подансамбль. Системы с максимальным и минимальным значением параметра расширения - те системы, разность свободной энергии F между которыми и требуется найти. Для настройки балансировочных параметров может быть успешно применен алгоритм Ванга-Ландау [24], построенный на немарковском блуждании между всеми системами для построения плотности состояний. Пакет MDynaMix использует в рассчетах метод молекулярной динамики, заключающийся в интегрировании уравнений движения частиц и получении таким образом эволюции системы. Поэтому в программе используется гибридный метод, сочетающий в себе метод молекулярной динамики и метод расширенного ансамбля. В процессе моделирования методом молекулярной динамики с задаваемой частотой делается шаг Монте-Карло, во время которого с некоторой вероятностью и происходит переход системы в соседний подансамбль.

4. Результаты

При помощи метода Кирквуда были смоделированы системы с 17 значениями ξ , равными 0, 0.00025, 0.00075, 0.001, 0.00325, 0.00775, 0.015, 0.03, 0.05, 0.07, 0.09, 0.15, 0.3, 0.5, 0.7, 0.9 и 1. Для каждой системы с помощью программы VMD была

построена радиальная функция распределения. Некоторые из них представлены на Рисунке 5.

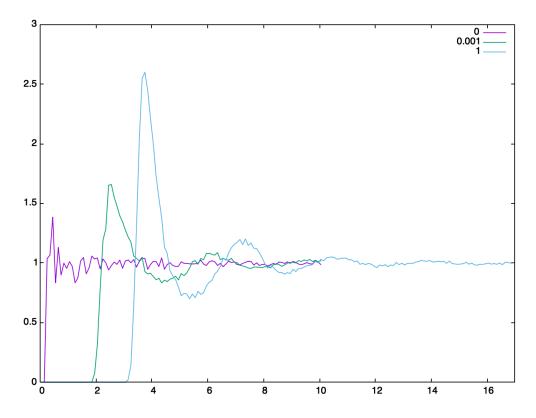


Рисунок 5. Графики радиальных функций распределения систем с разными значениями $\xi \in [0,1]$

После интегрирования полученных функций по r и численного интегрирования по полученным значениям и подстановки результата в формулу (24), при помощи метода Кирквуда было получено следующее значение для избыточного химического потенциала:

$$\mu_{ex} = 1.69 \text{ кДж/моль}$$
 (30)

Методом Видома были подсчитаны химические потенциалы молекулы аргона в смеси аргона с ксеноном. В Таблице 1 указано процентное содержание аргона в смеси с ксеноном и рассчитанное значение химического потенциала.

Таблица 1. Значения химического потенциала, рассчитанные методом Видома для систем с разным составом

%	$\mu \pm \Delta \mu$, кДж/моль
0	3.1 ± 0.7
12.5	1.0 ± 0.7
25	1.0 ± 0.5
37.5	0.5 ± 0.7
50	-1.4 ± 0.7
62.5	-2.7 ± 0.6
75	-3.3 ± 0.4
87.5	-3.7 ± 0.7
100	-4.9 ± 0.8

Для проверки полученных значений химический потенциал для таких же смесей был посчитан пакетом MDynaMix. Полученные значения приведены в Таблице 2.

Таблица 2. Значения химического потенциала, рассчитанные для систем с разным составом методом расширенного ансамбля

%	$\mu \pm \Delta \mu$, кДж/моль
0	2.90 ± 0.02
12.5	1.84 ± 0.01
25	1.10 ± 0.01
37.5	-0.03 ± 0.02
50	-0.99 ± 0.02
62.5	-1.98 ± 0.02
75	-2.71 ± 0.01
87.5	-3.73 ± 0.01
100	-4.28 ± 0.02

Значения, рассчитанные двумя методами, также приведены на Рисунке 6.

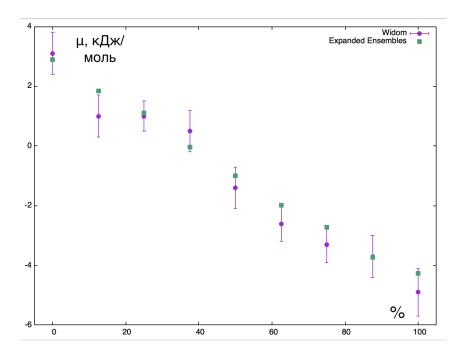


Рисунок 6. Зависимость химического потенциала, сосчитанного методами Видома и расширенного ансамбля, от состава смеси

Зависимости хорошо аппроксимируются прямой зависимостью, что согласуется с теорией [2] На Рисунке 7 изображена аппроксимация зависимости химического потенциала, рассчитанного методом Видома, от состава смеси.

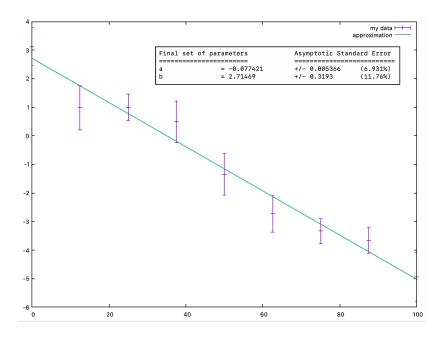


Рисунок 7. Аппроксимация зависимости химического потенциала, сосчитанного методом Видома, от состава смеси

Значения углового коэффициента и свободного члена для двух аппроксимаций представлены в Таблице 3.

Таблица 3. Значения углового коэффициента и свободного члена для аппроксимации зависимости химического потенциала молекулы аргона от состава смеси

Метод	k	b
Видома	-0.077 ± 0.005	2.72 ± 0.32
Расширенного ансамбля	-0.073 ± 0.002	2.79 ± 0.09

Как можно заметить, значения химического потенциал, полученные разными методами, хорошо согласуются в пределах погрешности.

5. Заключение

В работе были использованы три различных метода для вычисления химического потенциала: метод Кирквуда, метод Видома и метод расширенного ансамбля. Автором работы были написаны собственные программы на языке Python, моделирующие однокомпонентную и двухкомпонентную системы в каноническом статистическом ансамбле, а также реализующие методы Кирквуда и Видома для вычисления химического потенциала. Метод Кирквуда был применен для однокомпонентной системы, состоящей из молекул аргона, а метод Видома как для однокомпонентной, так и для двухкомпонентной системы, содержащей аргон и ксенон. Была получена зависимость химического потенциала от соотношения числа частиц аргона и ксенона в смеси. Для проверки полученных значений для такой же смеси газов был применен метод расширенного ансамбля, реализованный в пакете MDynaMix. Результаты, полученные разными методами, хорошо согласуются друг с другом в пределах погрешности. Зависимость химического потенциала молекулы аргона в смеси аргона и ксенона от соотношения числа частиц имеет вид линейной функции, что также хорошо согласуется с теорией [2]. Метод Кирквуда оказался наиболее затратным по времени, достаточно трудоёмким при проведении расчетов и дающим наибольшую погрешность. Метод Видома прост в реализации, работает быстрее других методов и дает хорошие результаты, согласующиеся с результатами, которые были получены более сложным и, по видимому, более универсальным методом расширенного ансамбля. По результатам работы можно сделать вывод, что для сравнительно простой системы, представляющей из себя смесь аргона и ксенона, метод Видома считается предпочтительным.

Список литературы

- [1] Л. Д. Ландау и Е. М. Лифшиц. Статистическая физика. Часть 1. Главная редакция физико-математической литературы издательства "Наука", 1976.
- [2] Прохоров А. М., ред. *Большая советская энциклопедия*. Советская энциклопедия, 1969. URL: https://www.booksite.ru/fulltext/1/001/008/119/069. htm.
- [3] Фистуль В. И. Введение в физику полупроводников. Высшая школа, 1984.
- [4] Куни Ф. М., Щекин Ф. М. и Гринин А. П. «Теория гетерогенной нуклеации в условиях постепенного создания метастабильного состояния пара». В: Успехи физических наук 171.4 (2001), с. 345—385.
- [5] Петров А. С. «Роль химической диффузии в биологических системах». В: Образование, наука и технологии: проблемы и перспективы. 2020.
- [6] Tawfik A. N., Wahab M. A., Yassin H., and H. M. Nasr El Din. "Almost-entirely empirical estimation for chemical potential". In: 157.4 (2020), pp. 604–616.
- [7] Python.org. URL: https://www.python.org.
- [8] Kirkwood J. G. and Boggs E. M. "The Radial Distribution Function in Liquids". In: *Journal of Chemical Physics* 10 (1942).
- [9] Widom B. J. "Some Topics in the Theory of Fluids". In: *Journal of Chemical Physics* 39 (1963), pp. 2808–2812.
- [10] Lyubartsev A. P. and Laaksonen A. "M.DynaMix a scalable portable parallel MD simulation package for arbitrary molecular mixtures". In: *Computer Physics Communications* 128.3 (2000), pp. 565–589.
- [11] Lyubartsev A. P., Martsinovski A. A., Shevkunov S. V., and Vorontsov-Velyaminov P. N. "New approach to Monte Carlo calculation of the free energy: Method of expanded ensembles". In: *The Journal of Chemical Physics* 96.3 (1992), pp. 1776– 1783.
- [12] Metropolis N., Rosenbluth A. W., Rosenbluth M. N., Teller A. H., and Teller E. "Equation of state calculations for fast computing machines". In: *The Journal of Chemical Phisics* 21.6 (1953).
- [13] Random Generate pseudo-random numbers. URL: https://docs.python.org/3/library/random.html.
- [14] Rahman A. "Correlations in the Motion of Atoms in Liquid Argon". In: *Physical Review* 136.2A (1964).
- [15] Jones J. E. "On the Determination of Molecular Fields. I. From the Variation of the Viscosity of a Gas with Temperature". In: *Proceedings of the Royal Society* 106.738 (1924), pp. 441–462.

- [16] Mirzoev A., Nordenskiöld L. и Lyubartsev A. P. Magic v.3: An integrated software package for systematic structure-based coarse-graining Computer Physics Communications. 2019. URL: http://www.fos.su.se/~sasha/magic/Magic_manual/node59.html.
- [17] Visual Molecular Dynamics. URL: https://www.ks.uiuc.edu/Research/vmd/.
- [18] Lorentz H. A. "Ueber die Anwendung des Satzes vom Virial in der kinetischen Theorie der Gase". In: Annalen der Physik 248.1 (1881), pp. 127–136.
- [19] Berthelot D. "Sur le mélange des gaz". In: Des séances de l'académie des sciénces 126 (1898), pp. 1703–1855.
- [20] Фишер И. З. Статистическая теория жидкостей. Гос. изд-во физико-математической лит-ры, 1961.
- [21] Хилл Т. Статистическая механика. Принципы и избранные приложения. Издательство иностранной литературы, 1960.
- [22] Волков Н. А., Гоноровская Е. В., Щёкин А. К. и Воронцов-Вельяминов П. Н. «Вычисление химического потенциала молекулы на основе радиальных функций распределения». В: Коллоидный эсурнал 82.6 (2020), с. 661—667.
- [23] Frenkel D. and Smit B. *Understanding Molecular Simulation. From Algorithms to Applications*. Academic Press, 2002.
- [24] Wang F. and Landau D. P. "Efficient, Multiple-Range Random Walk Algorithm to Calculate the Density of States". In: *Physical Review Letters* 86.2050 (2001).