Санкт-Петербургский государственный университет

ЯШУГИН Артём Сергеевич

Выпускная квалификационная работа

ОПИСАНИЕ ДИНАМИКИ СВЕРХПРОВОДЯЩЕГО ФАЗОВОГО ПЕРЕХОДА

Уровень образования: бакалавриат Направление: 03.03.02 «Физика» Основная образовательная программа: CB.5011.2019 «Физика»

> Научный руководитель: профессор, кафедра Статистической физики, д.ф.-м.н., профессор Налимов М.Ю.

Рецензент: профессор, кафедра Физики высоких энергий и элементарных частиц , д.ф.-м.н., профессор Антонов Н.В.

> Санкт-Петербург 2023

Содержание

1	Вве	едение	3				
2	Пос	строение теории сверхпроводимости	3				
	2.1	Открытие явления сверхпроводимости	3				
	2.2	Описание твёрдого тела	3				
		2.2.1 Фононный спектр	3				
		2.2.2 Переход к формализму функционального интеграла	5				
		2.2.3 Действие фермионного поля	6				
	2.3	Теория БКШ	6				
		2.3.1 Действие фононов	6				
		2.3.2 Взаимодействие фононов и электронов	7				
		2.3.3 Переход к электронным полям	7				
	2.4	Описание сверхпроводимости в терминах бозонных полей	8				
		2.4.1 Введение новых полей	8				
		2.4.2 Уравнения Швингера	9				
	2.5	Получение эффективного действия	10				
ર	Опт	исание линамики фазового перехода в сверупроволящее состояние	11				
J	Описание динамики фазового перехода в сверхпроводящее состояние 3.1 Ввеление в теорию критического повеления						
	3.2	Урарцения стоуастицеской лицамики	12				
	3.3	Стохастические уравнения пля параметра порядка	12				
	3.0 3.1	Стохастические уравнения в молеци с теплопрородностью	13				
	3.4 3.5	Стохастические уравнения в модели с теплопроводностью и марнитики полем	1/				
	0.0	3.5.1. Построение модели с теплопроводноство и магнитным полем	14				
		3.5.2 Индокси расходимости	14				
		$3.5.2$ VIII Patrophysics $3.5.3$ V. Φ polyphysics	14				
		2.5.4 Ocoformore dynamic Trunc (AAm)	10				
		3.5.4 Ocooenhociu функции Грина (AA m)	10				
		2.5.6 DГ функции	17				
		$2.5.0$ F1 ψ yhkuu	10				
		3.5.7 Фиксированные точки уравнения гг	$\frac{10}{20}$				
		5.5.6 CTORACTIV VECKUE y Pablienus	20				
4	Зак	слючение	20				
5	Прі	иложение	22				
	5.1	Вычисление интегралов	22				
	5.2	Диаграммы 1-неприводимых функций Грина в однопетлевом приближении .	22				
	5.3	Вычисление диаграммы в ряду $\langle \mathbf{A}\mathbf{A} \rangle$	23				

1 Введение

Данная работа посвящена исследованию критической стохастической динамики фазового перехода в сверхпроводящее состояние. Сверхпроводящее состояние представляет интерес в виду того, что окончательная теория сверхпроводимости до сих пор не построена. Главной проблемой является теоретическое описание высокотемпературной сверхпроводимости. Современная микроскопическая теория основывается на теории БКШ [1], основным результатом которой является утверждение о том, что при низких температурах электроны проводимости в твёрдом теле объединяются в куперовские пары за счёт существования потенциала притяжения. В результате можно рассматривать квантово– полевую модель с притягивающим потенциалом для электронов. Авторы статьи [2] развили квантово–полевой подход к описанию сверхпроводимости и ввели новые поля, в терминах которых корректно описывается сверхпроводящий фазовый переход.

Данная работа продолжает подход, изложенный в статье [2], и исследует стохастическую динамику фазового перехода в сверхпроводящее состояние (раздел 3). Основным результатом работы является получение уравнений динамики для параметра порядка и моделей с дополнительными мягкими модами. Ранее для этой цели (см., например, [3]) использовались уравнения Гросса–Питаевского, которые, по сути, являются нелинейными уравнениями Шрёдингера для волновой функции, описывающей конденсат составных бозонов [4]. Недостатком данных уравнений является то, что они написаны для биспинорного поля фермионов и не проявляют явно специфику, возникающую в окрестности точки фазового перехода, что обсуждается во втором разделе.

2 Построение теории сверхпроводимости

2.1 Открытие явления сверхпроводимости

Впервые явление сверхпроводимости было обнаружено в 1911г. в Лейденской лаборатории голландским физиком и химиком, лауреатом Нобелевской премии по физике 1913г. Хейке Камерлингом–Оннесе, который обнаружил, что при температуре около 4К электрическое сопротивление образца ртути резко исчезало и не было обнаружено при более низких температурах. Скачкообразное изменение сопротивления свидетельствовало о фазовом переходе в новое состояние, которое и было названо сверхпроводимостью. По современным представлениям сопротивление образцов в сверхпроводящем состоянии отсутствует по крайней мере на уровне 10^{-24} Ом · см [5]. Сверхпроводимость наблюдается у многих металлов, сплавов и интерметаллических соединений. Температура перехода в сверхпроводящее состояние называется критической температурой. Критическая температура у большинства чистых металлов крайне мала, порядка температуры кипения жидкого гелия – 4.2K. Однако в 1986–1993гг. был обнаружен ряд высокотемпературных сверхпроводников, чья температура перехода составляет порядка температуры кипения жидкого азота (77K). Текущий рекорд критической температуры составляет 287.7K или, примерно, 15 градусов Цельсия при давлении в 155 гигапаскалей [6].

2.2 Описание твёрдого тела

2.2.1 Фононный спектр

Классическое рассмотрение теории сверхпроводников начинается с квантово–полевого описания твёрдого тела. Для простоты построения теории рассмотрим твёрдое тело, образованное простой кубической кристаллической решёткой, в узлах которой расположены атомы (ионы), между которыми находится "море" электронов. Будем нумеровать узлы латинскими буквами (*i*). Атомы в узлах решётки представляют собой осцилляторы, которые колеблются в окрестности положения равновесия. Вводя поле деформации решётки $\vec{\varphi_i}(t)$ через вектор смещения *i* атома от положения равновесия, запишем в линейном приближении, считая колебания малыми, уравнения движения:

$$m\ddot{\vec{\varphi}}_i(t) = -V_{ij}\vec{\varphi}_j(t),\tag{1}$$

где m — масса атома в узле, V_{ij} — потенциальное поле, которое является матрицей размерности 3 × 3, свёртка по повторяющимся значкам здесь и далее подразумевается. Так же в дальнейшем будет опускаться зависимость от времени t. Матрица V_{ij} обладает следующими свойствами:

- 1. матрица симметрична в виду третьего закона Ньютона: $V_{ij} = V_{ji}$
- 2. система трансляционно инвариантна: $V_{ij} = V_{i-j}$

Так же, предполагая твёрдое тело однородной и изотропной системой, потребуем инвариантности относительно сдвига на произвольный постоянный вектор \vec{b} . Тогда при сдвиге $\vec{\varphi_i} \rightarrow \vec{\varphi_i} + \vec{b}$ уравнения движения (1) не меняются, откуда получаем ещё одно условие на матрицу V:

$$\sum_{j} V_{ij} = 0. \tag{2}$$

Так как система обладает периодическими свойствами, то естественным является переход в импульсное представление:

$$\vec{\varphi} = \sum_{k} e^{iR_k p} \varphi_k; \ V(p) = \sum_{k} e^{iR_k p} V_{ik}, \tag{3}$$

где $R_k = ak$, а – постоянная решётки, к – мультииндекс. Тогда свойства $V_{ij} = V_{ji}$ и $\sum_i V_{ij} = 0$ в импульсном представлении принимают вид:

$$V(p) = V(-p) ; V(p = 0) = 0.$$
 (4)

Уравнения движения в импульсном представлении:

$$m\omega^2 I = V(p), \tag{5}$$

где I — единичная матрица. Разрешимость уравнения (5) — это условие на равенство нулю определителя системы:

$$\det\left(m\omega^2 I - V(p)\right) = 0. \tag{6}$$

В первом приближении общим видом потенциала, удовлетворяющего указанным свойствам (4), (6), является квадратичная по импульсам функция:

$$V(p) = mu^2 p^2 + O(p^4), (7)$$

где $u = \omega/p$ — скорость звука. Такой спектр называется фононным по аналогии с законом дисперсии звуковых волн. Формула (7) справедлива при импульсах не превосхоящих импульс Дебая, то есть при низких температурах. При повышении температуры помимо фононного спектра в твердом теле появляется оптический спектр с законом дисперсии V(p) = cp. Однако, так как нас интересуют именно низкие температуры, то мы будем пренебрегать оптическим спектром.

2.2.2 Переход к формализму функционального интеграла

Дальнейшее описание рассматриваемой теории строится в терминах функционального интеграла. Опишем вкратце переход от квантовой механики к формализму функционального интеграла. Будем полагать $\hbar = 1$. Тогда гамильтониан рассматриваемой системы принимает вид:

$$H(\pi_i, \varphi_i) = \sum_i \frac{\pi_i^2}{2m} + \frac{1}{2} \varphi_i V_{ik} \varphi_k, \qquad (8)$$

где φ_i — оператор координаты, $\pi_i = m \partial_t \varphi_i$ — канонически сопряжённый оператор импульса. Перход к интегралу по траекториям осуществляется с помощью формулы Феймана– Каца [7]:

$$\langle \varphi' | e^{-iHt} | \varphi \rangle = \int \mathcal{D} \frac{\pi}{2\pi} \int \mathcal{D} \varphi e^{iS},$$
(9)

где *S* — действие:

$$S = \int_0^t d\tau' \left(\pi_i \dot{\varphi}_i - H(\pi_i, \varphi_i) \right).$$
(10)

Здесь явно указан интеграл по времени, а интегрирование по координатам здесь и далее подразумевается. Сделаем стандартный в статфизике переход к температурному действию с помощью "евклидового разворота": $it = \beta \equiv 1/k_{\rm B}T$, где $k_{\rm B}$ — постоянная Больцмана, T— температура, β играет роль "мнимого времени". Тогда действие (10) принимает вид:

$$S_{\beta} = \int_{0}^{\beta} d\tau \, \left(-i\pi_{i}\partial_{\tau}\varphi + \frac{1}{2m}\pi_{i}\pi_{i} + \frac{1}{2}\varphi_{i}V_{ik}\varphi_{k} \right). \tag{11}$$

В статфизике среднее значение оператора эволюции называется статсуммой:

$$\Sigma = \left\langle q'' \right| \, e^{-iHt} \, \left| q' \right\rangle = \int \mathcal{D} \frac{\pi}{2\pi} \int \mathcal{D} \varphi \, e^{-\beta S_{\beta}}. \tag{12}$$

В формуле (12) с учетом действия (11) берётся функциональный гауссов интеграл по импульсу π :

$$\Sigma = \int \mathcal{D}\frac{\pi}{2\pi} \int \mathcal{D}\varphi \ e^{-\beta S_{\beta}} = \int \mathcal{D}\varphi \ e^{-\beta S_{\beta}}, \tag{13}$$

где переопределено действие S_{β} :

$$S_{\beta} = \frac{m}{2} \partial_{\tau} \varphi_i \partial_{\tau} \varphi_i + \frac{1}{2} \varphi_i V_{ik} \varphi_k.$$
(14)

На поля в действии (14) накладываются периодические граничные условия по времени: $\varphi_i(0) = \varphi_i(\beta)$. В формуле (13) после взятия интеграла по импульсам была опущена константа, которая, в виду особенностей функционального интеграла (бесконечная мера), равна бесконечности. Эта стандартная ситуация при работе с функциональным интегралом, которая не вызывает опасений в виду того, что физически наблюдаемые объекты, такие как корреляционные функции, являются нормированными конструкциями, и бесконечная константа благополучно сокращается.

Для удобства перейдем в (14) в импульсное представление:

$$S_{\beta} = \frac{m}{2} \partial_{\tau} \varphi(p) \partial_{\tau} \varphi(-p) + \frac{1}{2} \varphi(p) V(p) \varphi(-p), \qquad (15)$$

где интегрирование по импульсам подразумевается. Таким образом, было получено действие для поля деформации решётки.

2.2.3 Действие фермионного поля

На этом этапе удобно ввести действие фермионов. Опишем вкратце его построение. Как известно, фермионы, в отличие от бозонов, подчиняются запрету Паули и, следовательно, волновая функция системы одинаковых фермионов является антисимметричной относительно перестановки любых частиц, поэтому в квантовомеханическом рассмотрении все коммутационные соотношения заменяются на антикоммутационные. Объекты, подчиняющиеся антикоммутационным соотношениям, являются элементами грассмановой (внешней) алгебры. В формализме грассмановых пременных можно построить аналогично бозонному случаю функциональный интеграл. Гауссов интеграл с источником по грассмановым полям равен:

$$\int D\psi e^{\frac{1}{2}\psi K\psi + A\psi} = e^{-\frac{1}{2}AK^{-1}A} \det^{1/2}\left(\frac{K}{2\pi}\right),$$
(16)

где K — комплексно–числовая матрица, A — вектор из грассмановой алгебры. Таким образом, статсумма фермионов принимает вид:

$$\Sigma = \int D\psi^+ \ D\psi e^{-\beta S_e}, \ S_e = \psi_l^+ \left(\partial_\tau - \frac{1}{2m}\Delta - \mu\right)\psi_l.$$
(17)

Здесь функциональный интеграл берётся по грассмановым переменным. Так же в формуле (17) введено действие фермионов. Фермионные поля ψ_l имеют значки, отвечающие спину: l = 1, ..., r, где r – число проекций спина (в случае электронов r = 2).

2.3 Теория БКШ

Основная идея предложенная Дж. Бардином, Л. Купером, Дж. Шриффером (теория БКШ) [1], позволившая теоретически описать сверхпроводимость, заключается в появлении во взаимодействии электронов вклада, отвечающего притяжению электронов и формировании связанного состояния — так называемых Куперовских пар. Опишем механизм возникновения притяжения между электронами.

2.3.1 Действие фононов

Как уже упоминалось, твёрдое тело представляет собой электронейтральную систему, состоящую в простом случае из положительно заряженных атомов в узлах и "моря" электронов, однородно распределённых по твердому телу. Атомы колеблются за счёт тепловых флуктуаций в окрестности узла решётки, при этом электроны не успевают сразу сдвинуться вместе с атомами, и, следовательно, возникает поляризация. Введём вектор поляризации:

$$\vec{P}_i(p) = \rho_l \vec{\varphi}_i(p), \tag{18}$$

где ρ_l – плотность заряда решётки (ионов). Введём фононное поле как плотность связанных зарядов:

$$\Phi_i = -\operatorname{div}(\vec{P_i}) = -\rho_l \operatorname{div}(\vec{\varphi_i}) \tag{19}$$

Переопределим его в импульсном представлении, сделав растяжение в \sqrt{m}/ρ_l раз:

$$\Phi(p) = -i(\vec{p})\varphi_i(\vec{p})\sqrt{m} \tag{20}$$

Формулу (20) можно считать определением фононного поля. Перепишем действие для поля деформации решётки (15) через введённые фононные поля:

$$S_{ph} = \frac{1}{p^2} \left(\frac{1}{2} \partial_\tau \Phi(p) \partial_\tau \Phi(-p) + \frac{1}{2m} \Phi(P) V(p) \Phi(-p) \right).$$
(21)

Таким образом, мы получили общий вид действия для фононов. Пропагатор действия (21) имеет вид:

$$G(p) = \langle \Phi(p)\Phi(-p) \rangle = \frac{p^2}{\omega^2 + V(P)/m} = \frac{p^2}{\omega^2 + u^2 p^2}.$$
(22)

2.3.2 Взаимодействие фононов и электронов

В 1953г. было открыт изотопический эффект — явление зависимости критической температуры фазового перехода в сверхпроводящее состояние от массы изотопов атомов в решётке. Это стало ключом к теоретическому описанию сверхпроводимости. Стало ясно, что основным взаимодействием, ответственным за сверхпроводимость, является взаимодействие электронов проводимости (электронов, находящихся вблизи уровня Ферми) и фононов, масса которых напрямую зависит от изотопного состава [8]. Опишем рассеяние электронов друг на друге, при котором электроны обмениваются одним фононом. Будем рассматривать взаимодействие типа "плотность-плотность":

$$S_{e-ph} = \int dx dy \ \rho(x) V(x-y) \Phi_l(y), \tag{23}$$

где $\rho_e = \psi_l^+ \psi_l$ — плотность электронов. Так как фононное поле было введено как плотность связанных зарядов (19), то их взаимодействие с полем электронов можно рассматривать как кулоновское:

$$V(x-y) = \frac{e^2}{4\pi |x-y|}.$$
(24)

Учёт диэлектрической проницаемости среды, как известно, приводит к экранировке кулоновского потенциала:

$$V(x-y) = e^2 \frac{e^{-|x-y|/r_D}}{4\pi |x-y|},$$
(25)

где r_D — радиус Дебая-Хюккеля (характерный масштаб экранировки кулоновского потенциала). В импульсном представлении экранированный потенциал имеет вид:

$$V(p) = e^2 \frac{1}{p^2 + 1/r_D^2}.$$
(26)

Для описания критического поведения (фазовый переход в сверхпроводящее состояние) существенны лишь мягкие моды (малые p), поэтому, раскладывая в ряд по p (26) и оставляя только константу, в координатном представлении получаем приближение локального потенциала взаимодействия:

$$V(p) \approx e^2 r_d^2 \rightarrow V(x-y) = e^2 r_D^2 \delta(x-y) = g \delta(x-y), \tag{27}$$

где введена константа $g = e^2 r_D^2$. Такое разложение, по сути, является гидродинамическим приближением, когда все функции считаются плавными, а волновые числа малыми. В итоге взаимодействие фононов с электронами принимает вид:

$$S_{e-ph} = g \int dx \ \rho_l(x) \Phi_l(x). \tag{28}$$

2.3.3 Переход к электронным полям

Для дальнейших вычислений рассмотрим статсумму с действием $S_{ph} + S_{e-ph}$:

$$\Sigma(\psi,\psi^+,\Phi) = \int \mathcal{D}\Phi \mathcal{D}\psi \mathcal{D}\psi^+ \exp(-S_{ph} - S_{e-ph}) = \int \mathcal{D}\Phi \mathcal{D}\psi \mathcal{D}\psi^+ \exp(-\frac{1}{2}\Phi_l K \Phi_l - g\psi_m \psi_m^+ \Phi_l),$$
(29)

где через $K = \frac{\omega^2 + u^2 p^2}{p^2}$ обозначено ядро квадратичной формы действия S_{ph} . В (29) множитель β опущен в виду его несущественности для вычислений. Выполним гауссово интегрирование по фононному полю Φ с источником $-g\psi_m\psi_m^+\Phi_l$:

$$\Sigma(\psi,\psi^+) = \int \mathcal{D}\psi \mathcal{D}\psi^+ \exp(\frac{g^2}{2}\psi_l^+\psi_l G\psi_{l'}^+\psi_{l'}), \qquad (30)$$

где G — полученный ранее пропагатор фононного поля (22). Сделаем ещё приближение: в температурной науке в виду периодических граничных условий частотам соответствуют $\omega \to \omega_n$ — так называемые Мацубаровские частоты. Наиболее сингулярный и, соответственно, наиболее существенный вклад даёт $\omega_n = 0$. Таким образом, мы пренебрежём вкладом ω^2 в (22):

$$G(p) \approx \frac{1}{u^2}.\tag{31}$$

В итоге получаем действие, которое содержит только электронные поля:

$$S = S_e + S_{e-ph} = \psi_i^+ \left(\partial_t - \frac{\Delta}{2m} - \mu\right) \psi_i - \frac{\lambda}{2} \left(\psi_i^+ \psi_i\right) \left(\psi_j^+ \psi_j\right), \tag{32}$$

где $\lambda = g^2/u^2 > 0$ – положительная константа. Таким образом, полученное действие содержит взаимодействие с отрицательным знаком, что и соответсвует притяжению между электронами вблизи уровня Ферми и созданию куперовских пар, которые состоят из пар электронов с разнонаправленными спинами ($i \neq j$ в (32) в силу запрета Паули). То есть электрон–фононное взаимодействие приводит к образованию связанного состояния электронов проводимости. Это является главным результатом теории БКШ.

2.4 Описание сверхпроводимости в терминах бозонных полей

Классическое рассмотрение действия (32) позволяет обнаружить точку фазового перехода системы в сверхпроводящее состояние. Фазовый переход проявляется в возникновении аномального решения уравнения Дайсона и появлении ненулевых средних $\langle \psi \psi \rangle$ и $\langle \psi^+ \psi^+ \rangle$, которые, таким образом, оказываются параметром порядка [8]. Однако, так как электронные поля являются массивными, то они не проявляют явно специфику, возникающую в окрестности критической точки, в которой пропагаторы являются ИК–сингулярными. Поэтому авторы работы [2] предложили ввести безмассовые поля напрямую связанные с параметром порядка. Ниже вкратце изложена идеология введения новых полей.

2.4.1 Введение новых полей

Рассмотрим статсумму с действием (32):

$$\Sigma = \mathcal{D}\psi^{+}\mathcal{D}\psi \exp\left(-\psi_{i}^{+}\left(\partial_{t} - \frac{\Delta}{2m} - \mu\right)\psi_{i} + \frac{\lambda}{2}\left(\psi_{i}^{+}\psi_{i}\right)\left(\psi_{j}^{+}\psi_{j}\right)\right).$$
(33)

Введем в действие новые поля χ_{ij}, χ_{ji}^+ с помощью преобразования Хаббарда–Стратоновича:

$$\Sigma = \int D\psi^+ D\psi D\Phi \,\,\mathrm{e}^{-1/2\Phi K\Phi + \mathbf{A}\Phi},\tag{34}$$

где $\Phi = \begin{pmatrix} \chi_{ji}^+ \\ \chi_{ij}^+ \end{pmatrix}$. Выберем в качестве К матрицу:

$$K = \begin{pmatrix} 0 & 1\\ 1 & 0 \end{pmatrix},\tag{35}$$

а в качестве источника

$$\mathbf{A} = -\sqrt{\frac{\lambda}{2}} \begin{pmatrix} \psi_i \psi_j \\ \psi_i^+ \psi_j^+ \end{pmatrix}.$$
(36)

Тогда гауссово интегрирование по полю Φ в (34) возвращает нас к исходной статсумме (33). Таким образом, приходим к действию с новыми полями:

$$S = \psi_i^+ \left(\partial_t - \frac{\Delta}{2m} - \mu\right) \psi_i + \chi_{ji}^+ \chi_{ij} + \sqrt{\frac{\lambda}{2}} \left(\psi_i^+ \psi_j^+\right) \chi_{ij} + \sqrt{\frac{\lambda}{2}} \left(\psi_i \psi_j\right) \chi_{ij}^+.$$
 (37)

Так как поля ψ , ψ^+ — грассмановы, то из вида действия (поле χ_{ij} всегда входит в действие вместе с произведением $\psi_i^+\psi_i^+$ и аналогично для сопряжённого поля) введённые бозонные поля χ_{ij} , χ_{ij}^+ можно рассматривать как комплексные антисимметричные матрицы ранга r, где i, j = 1, ..., r.

2.4.2 Уравнения Швингера

Уравнения Швингера являются следствием инвариантности меры функционального интеграла относительно сдвига на произвольную достаточно хорошую функцию ω :

$$\int \mathcal{D}(\varphi + \omega) F(\varphi + \omega) -$$
для любой функции *F* не зависит от ω . (38)

Откуда получаем следующее свойство:

$$\frac{\partial}{\partial\omega}\int \mathcal{D}\varphi \ F(\varphi+\omega) = \int \mathcal{D}\varphi \ \frac{\partial}{\partial\varphi}F(\varphi) = 0.$$
(39)

Рассмотрим производящий функционал G(A):

$$G(A) = \int \mathcal{D}\varphi \ e^{-S(\varphi) + \varphi A} \tag{40}$$

и воспользуемся для него свойством (39):

$$\int \mathcal{D}\varphi \, \frac{\partial}{\partial \varphi} e^{-S(\varphi) + \varphi A} = 0 \Rightarrow \left\langle \frac{\partial S}{\partial \varphi(x)} \right\rangle = \left\langle A \right\rangle. \tag{41}$$

Полученное уравнение и называют уравнением Швингера. Рассмотрим уравнения Швингера в теории с действием (37):

$$\left\langle \left(\partial_t - \frac{\Delta}{2m} - \mu\right)\psi_i + \sqrt{2\lambda}\chi_{ij}\psi_j^+ \right\rangle = \left\langle A_{\psi_i} \right\rangle,\tag{42}$$

$$\left\langle \left(-\partial_t - \frac{\Delta}{2m} - \mu \right) \psi_i^+ + \sqrt{2\lambda} \chi_{ji}^+ \psi_j \right\rangle = \left\langle A_{\psi_i^+} \right\rangle, \tag{43}$$

$$\left\langle \chi_{ij}^{+} - \sqrt{\frac{\lambda}{2}} \psi_{i}^{+} \psi_{j}^{+} \right\rangle = \left\langle A_{\chi_{ij}^{+}} \right\rangle, \tag{44}$$

$$\left\langle \chi_{ji} + \sqrt{\frac{\lambda}{2}} \psi_i \psi_j \right\rangle = \left\langle A_{\chi_{ij}} \right\rangle.$$
(45)

Полагая внешнее поле A = 0, из (44) и (45) получаем:

$$\langle \chi_{ij} \rangle = \sqrt{\frac{\lambda}{2}} \left\langle \psi_i^+ \psi_j^+ \right\rangle, \tag{46}$$

$$\langle \chi_{ij} \rangle = -\sqrt{\frac{\lambda}{2}} \langle \psi_j \psi_i \rangle = \sqrt{\frac{\lambda}{2}} \langle \psi_i \psi_j \rangle,$$
(47)

где в последнем равенстве воспользовались антикоммутационным соотношением для грассмановых полей фермионов.

Таким образом, мы получили, что среднее значение введённых полей оказывается параметром порядка и в их терминах можно описывать фазовый переход, так как они являются безмассовыми критическими модами в точке фазового перехода (этот факт обосновывается в [2]).

2.5 Получение эффективного действия

На следующем этапе получим эффективное действие для полей χ, χ^+ . Ядро действия (37) запишем следующим образом:

$$K = \begin{pmatrix} 2\sqrt{\lambda/2} \chi_{ij} & L \\ -L^* & 2\sqrt{\lambda/2} \chi^+_{ji} \end{pmatrix},$$
(48)

где введено обозначение $L = \partial_t - \frac{\Delta}{2m} - \mu$. L^* — комплексно–сопряжённый оператор в импульсном представлении. Введём так же вектор из спинорных полей ψ_i, ψ_i^+ :

$$\Phi = \begin{pmatrix} \psi_i^+ \\ \psi_i \end{pmatrix}. \tag{49}$$

Выделим в K свободную часть, зависящую только от L, а часть с χ будем рассматривать как возмущение:

$$K = K_0 + K'; K_0 = \begin{pmatrix} 0 & L \\ -L^* & 0 \end{pmatrix}, \quad K' = \begin{pmatrix} 2\sqrt{\lambda/2} \ \chi_{ij} & 0 \\ 0 & 2\sqrt{\lambda/2} \ \chi_{ji}^+ \end{pmatrix}.$$
 (50)

Тогда действие (37) можно переписать следующим образом:

$$S = \frac{1}{2}\Phi K\Phi.$$
(51)

Рассмотрим производящий функционал нормированных функций Грина:

$$G(A) = \int D\Phi \ e^{-1/2\Phi K\Phi + \mathbf{A}\Phi} \left(\int D\Phi \ e^{-1/2\Phi K_0\Phi}\right)^{-1},\tag{52}$$

где введено внешнее поле $A = \begin{pmatrix} A \\ A^+ \end{pmatrix}$. После взятия гауссова интеграла с помощью формулы (16) по фермионным полям получаем:

$$G(A) = e^{-1/2\mathbf{A}K\mathbf{A}} \det^{1/2}(KK_0^{-1}).$$
(53)

Так как нас интересует ситуация с нулевыми внешними полями, то в дальнейшем член $e^{-1/2\mathbf{A}K\mathbf{A}}$ учитывать не будем, а для $\det^{1/2}(KK_0^{-1})$ воспользуемся так называемым "bubble approximation": определитель произвольной матрицы удовлетворяет следующему тождеству:

$$\det\left(K\right) = e^{\operatorname{tr}(\ln(K))},\tag{54}$$

для любой матрицы К. Используя описанное свойство и расскладывая логарифм в ряд получаем для (52):

$$\det^{1/2}(K/K_0) = \exp\left(1/2 \operatorname{Tr}\left(\ln\left(KK_0^{-1}\right)\right)\right) = \exp\left(1/2 \operatorname{Tr}\left(\ln\left(1+K'K_0^{-1}\right)\right)\right) = (55)$$
$$\exp\left(1/2 \operatorname{Tr}\left(K'K_0^{-1} - 1/2 \left(K'K_0^{-1}\right)^2 + 1/3(K'K_0^{-1})^3 + \ldots\right)\right).$$

Такое разложение и называется bubble approximation. Найдём матрицу K_0^{-1} в импульсном представлении:

$$K_0^{-1} = \begin{pmatrix} 0 & -i\omega_n - \Gamma \\ -i\omega_n + \Gamma & 0 \end{pmatrix}^{-1} = \begin{pmatrix} 0 & (-i\omega_n + \Gamma)^{-1} \\ -(i\omega_n + \Gamma)^{-1} & 0 \end{pmatrix},$$
 (56)

где $\Gamma = \frac{p^2}{2m} - \mu, \, \omega_n$ — Мацубаровские частоты. Рассмотрим $K'K_0^{-1}$:

$$K'K_0^{-1} = \begin{pmatrix} 0 & 2(-i\omega_n + \Gamma)^{-1}\sqrt{\lambda/2}\chi_{ji}^+ \\ -2(i\omega_n + \Gamma)^{-1}\sqrt{\lambda/2}\chi_{ij} & 0 \end{pmatrix}.$$
 (57)

Отсюда видно, что в (55) отсуствует слагаемое $K'K_0^{-1}$ в виду его бесследовости. Так же члены с нечётным числом полей χ равны нулю, так как по ним берется операция взятия следа. Эффективное действие получается из разложения слагаемых в показателе экспоненты (55) по частотам ω и импульсам p, где оставляются только ИК–существенные члены. Данная процедура описана в [2], [9]. Поля χ, χ^+ могут считаться t-независимыми [2], поэтому слагаемые с ω пропадут. В итоге эффективное статическое действие, описывающее фазовый переход в сверхпроводящее состояние вблизи критической точки, принимает вид:

$$S(\chi,\chi^{+}) = \operatorname{Tr}\left(\nabla\chi^{+}\nabla\chi\right) + \tau\operatorname{Tr}\left(\chi^{+}\chi\right) + \frac{g_{1}}{4}(\operatorname{Tr}(\chi\chi^{+}))^{2} + \frac{g_{2}}{4}\operatorname{Tr}\left(\chi\chi^{+}\chi\chi^{+}\right),$$
(58)

где g_1 и g_2 — константы связи (заряды), $\tau = |T - T_c|$ — отклонение температуры от критического значения. Член с $g_1/4(\text{Tr}(\chi\chi^+))^2$ необходимо включить для мультипликативной ренормировки модели [9].

Дальнейшая работа будет посвященна исследованию сверхпроводимости в рамках полученной квантово–полевой модели с действием (58).

3 Описание динамики фазового перехода в сверхпроводящее состояние

3.1 Введение в теорию критического поведения

Центральным объектом, который исследуется в квантово–полевой статфизике является корреляционная функция:

$$\langle\langle\varphi_1\varphi_2...\varphi_n\rangle\rangle = \int D \ \varphi\varphi_1\varphi_2...\varphi_n e^{-\beta S} \left(\int D\varphi e^{-\beta S}\right)^{-1}.$$
(59)

Так как интересные модели содержат взаимодействие, то явно посчитать такой объект не представляется возможным. Поэтому используются методы теории возмущений, когда константа взаимодействия предполагается малой и член со взаимодействием в показателе экспоненты раскладывается в ряд. Получившиеся при этом объекты удобно представить в виде феймановских диаграмм. При исследовании оказывается, что диаграммы в ряду теории возмущений расходятся при $p \to \infty$ (УФ–расходимость). Для борьбы с такими расходимостями применяется мультипликативная ренормировка, которая заключается в том, что расходимости во всех функциях Грина можно устранить, сделав своеобразную "замену переменных" в виде масштабного преобразования всех констант связи и полей так называемыми константами ренормировки, которые содержат в себе все расходимости исходного ряда. Таким образом, не меняя действия можно бороться с расходимостями. Убежденность в том, что такая процедура возможна, строится на том, что корреляционные функции являются физически наблюдаемыми объектами и, следовательно, не могут

давать бесконечные значения. Ренормировка модели является первым этапом в описании критических явлений.

Анализ фазовых переходов основывается на теории критического поведения. Данная теория утверждает, что фазовые переходы можно разделить на два класса: фазовый переход первого рода, при котором параметр порядка испытывает конечный скачок, и второго рода, когда параметр порядка меняется непрерывно, а скачок претерпевает его производная. Точка на фазовой плоскости, в которой происходит переход называется критической точкой. Из экспериментов известно, что при подходе к критической точке восприимчивость системы неограниченно возрастает, при этом теплоёмкость так же проявляет неаналитическое поведение. Исследование этих критических явлений, а именно нахождение так называемых критических индексов (
 γ и α в формулах для восприимчивост
и $\chi \sim \frac{1}{|T-T_c|^{\gamma}}$ и теплоёмкости $C \sim \frac{1}{|T-T_c|^{\alpha}}$) и составляет предмет изучения теории критического поведения. Мощным инструментом в изучении критического поведения является техника ренормализационной группы (РГ). Техника РГ позволяет получить нетривиальные асимптотики функций Грина в области малых импульсов (ИК–асимптотика) и посчитать критические индексы. Такое исследование производится в рамках равновесной статфизики, в которой не фигурирует зависимость от времени, и называется критической статикой. Реальные же процессы происходят во времени, поэтому другой задачей является изучение динамики модели, а именно стохастической динамики, типичной для статфизики. Так как строгое математическое описание случайных процессов, таких как броуновское тепловое движение, невозможно, то случайность процессов обычно моделируется феноменологически, введением в уравнения динамики случайных величин — шума. Задачей критической динамики является расчёт времён релаксации и различных кинетических коэффициентов. Данная глава посвящена получению динамических уравнений в рамках построенной ранее модели (58), а так же исследованию модификаций модели, получаемых путём включения в действие температурного и магнитного полей.

3.2 Уравнения стохастической динамики

Стандартная задача динамики заключается в исследовании стохастического уравнения при заданной парной корреляционной функции:

$$\partial_t \varphi(x) = U(x;\varphi) + \eta(x), \quad \langle \eta(x)\eta(x') \rangle = D(x,x'), \tag{60}$$

где $\varphi(x)$ — набор полей в исследуемой модели, $x \equiv \{t, \mathbf{x}\}$ — набор пространственных координат и времени, $U(x; \varphi)$ — заданый функционал, $\eta(x)$ — случайная сила, для которой предполагается гауссово распределение с нулевым средним, D(x, x') — некоторая заданная функция, определяющая коррелятор. Случайная сила моделирует все быстроосциллирующие и мелкомасштабные вклады (жёсткие моды). Частным случаем (60) является стохастическое уравнение Ланжевена [10], которое описывает простые варианты динамики для систем с заданным статическим действием $S_{st}(\varphi)$:

$$\partial_t \varphi_a = \alpha_{ab} \frac{\delta S_{st}(\varphi)}{\delta \varphi_b} + \xi_a, \ \langle \hat{\xi}_a(x) \hat{\xi}_b(x') \rangle = 2\alpha_{ab} \delta(x - x'), \tag{61}$$

где $S_{st}(\varphi)$ — действие статической модели, $\varphi \equiv \varphi_a$ — любой набор полей, α_{ab} — кинетические коэффициенты Онзагера, которые в общем случае являются симметричной линейной операцией по x, ξ_a — случайная сила, для которой задана парная корреляционная функция. Здесь коррелятор задан в виде "белого шума", что означает отсутствие памяти у случайной силы. Выбор такой формы стохастических уравнений, по сути, означает написание уравнений в гидродинамическом приближении, пригодном для стадии релаксации,

когда в системе уже сформировались небольшие и плавные отклонения локального среднего значения параметра порядка от равновесного значения. Именно таким вариантом стохастических уравнений мы и будем пользоваться.

3.3 Стохастические уравнения для параметра порядка

Статическое действие (58), полученное во второй главе, справедливо для фермионов с любым числом спиновых проекций. Мы рассмотрим случай электронов с двумя спиновыми проекциями. В этом особом случае поля χ, χ^+ являются антисимметричными комплексными матрицами 2 × 2:

$$\chi = \begin{pmatrix} 0 & \eta(x) \\ -\eta(x) & 0 \end{pmatrix}, \ \chi^+ = \begin{pmatrix} 0 & -\eta^*(x) \\ \eta^*(x) & 0 \end{pmatrix}, \tag{62}$$

где $\eta(x)$, $\eta^*(x)$ — комплексные скалярные поля. Действие (58) в терминах полей η, η^* принимает вид:

$$S(\eta, \eta^*) = 2\nabla \eta \nabla \eta^* + 2\tau \eta^* \eta + g\eta^* \eta \eta^* \eta, \tag{63}$$

где введён новый заряд $g = g_1 + g_2/2$. Стоит отметить, что объединение зарядов g_1 и g_2 в единый заряд g является спецификой случая с двумя спиновыми проекциями. Для действия (63) стохастические уравнения (61) принимают вид:

$$\begin{cases} \partial_t \eta = -\alpha_\eta \left(-\Delta \eta^* + \tau \eta^* + 2g |\eta|^2 \eta^* \right) + \xi_\eta, \\ \partial_t \eta^* = -\alpha_{\eta^*} \left(-\Delta \eta + \tau \eta + 2g |\eta|^2 \eta \right) + \xi_{\eta^*}. \end{cases}$$
(64)

Согласно [10], это двухкомпонентная А-модель, свойства которой хорошо известны. Хотя полученные в (64) уравнения по виду напоминают уравнения Гросса–Питаевского, структура их кардинально отличается: здесь η и η^* – комплексные скалярные поля, а не биспинорные, как в случае с уравнениями Гросса–Питаевского. Так же, так как уравнения Гросса–Питаевского получаются из нелинейного уравнения Шрёдингера, зависящего от времени, в них входит такой параметр, как масса электрона, отсутствующий в полученных уравнениях. Совпадение же структуры уравнений является следствием того, что уравнения Гросса–Питаевского и стохастические уравнения записываются в гидродинамическом приближении.

Таким образом, динамические уравнения (64) описывают критическую динамику для фазового перехода второго рода в сверхпроводящее состояние. Динамический критический индекс z, который появляется в таком важном параметре, как время релаксации $(t(p) \sim 1/p^z)$, при этом вычислен в работе [11] и равен $z = 2.014^{+0.011}_{-0.0}$.

3.4 Стохастические уравнения в модели с теплопроводностью

Введем в нашу модель температуру, роль которой играет плотность энергии. Поскольку в нашей системе мы считаем энергию сохраняющейся величиной, то она является существенно мягкой модой, описывающей флуктуации температуры [10]. Таким образом, возникает сохраняющаяся величина m(x). Так как поле параметра порядка — комплексное поле, а поле плотности энергии вещественно, то в гидродинамическом приближении они связываются через член η^2 [12]. Следовательно, действие, учитывающее поле плотности энергии, имеет вид [10]:

$$\widetilde{S}(\eta, \eta^*, m) = S(\eta, \eta^*) + 2g_3 |\eta|^2 m + \frac{m^2}{2}.$$
(65)

Такая модель называется С–моделью или медленной теплопроводностью. Стохастические уравнения модели (65):

$$\begin{cases} \partial_t \eta = -\alpha_\eta \left(-\Delta \eta^* + \tau \eta^* + 2g |\eta|^2 \eta^* + 2g_3 m \eta^* \right) + \xi_\eta, \\ \partial_t \eta^* = -\alpha_{\eta^*} \left(-\Delta \eta + \tau \eta + g |\eta|^2 \eta + 2g_3 m \eta \right) + \xi_{\eta^*}, \\ \partial_t m = -\alpha_m \left(\Delta m + 2g_3 \Delta |\eta|^2 \right) + \xi_m. \end{cases}$$
(66)

Из [10] известно, что в С-модели с таким числом компонент взаимодействие полей m и η выключается в критическом режиме ($g_3 = 0 - \text{ИK}$ -устойчивая точка), и поэтому динамика поля χ будет такой же, как и в модели A, а динамика поля m — свободной. Таким образом, флуктуации температуры оказываются несущественными в данной модели.

3.5 Стохастические уравнения в модели с теплопроводностью и магнитным полем

3.5.1 Построение модели

Наличие спина у фермионов приводит к магнитному взаимодействию между частицами, которое может быть существенным для описания рассматриваемого фазового перехода. Включение магнитного поля в действие сделаем согласно работе [9]. Тогда действие модели с магнитным полем и теплопроводностью принимает вид:

$$S\left(\chi,\chi^{+},\mathbf{A},m\right) = \operatorname{Tr}\left(\left(\nabla + ie\mathbf{A}\right)\chi^{+}\left(\nabla - ie\mathbf{A}\right)\chi\right) + \tau \operatorname{Tr}\left(\chi^{+}\chi\right) + \frac{g_{1}}{4}\left(\operatorname{Tr}\left(\chi\chi^{+}\right)\right)^{2} + \frac{g_{2}}{4}\operatorname{Tr}\left(\chi\chi^{+}\chi\chi^{+}\right) + \frac{1}{2}\left(\nabla\times\mathbf{A}\right)^{2} + \frac{1}{2\alpha}\left(\nabla\mathbf{A}\right)^{2} + g_{3}\operatorname{Tr}\left(\chi\chi^{+}\right)m + \frac{m^{2}}{2},$$
(67)

где **A** — векторный потенциал, e — эффективный заряд, α — калибровочный параметр. Будем работать в калибровке Кулона ($\nabla \cdot \mathbf{A} = 0$). Для удобства построения диаграммной техники перепишем действие через комопненты поля χ (62):

$$S(\eta, \eta^*, \mathbf{A}, m) = 2\nabla\eta\nabla\eta^* + 2\tau\eta^*\eta + \frac{1}{2}(\nabla \times \mathbf{A})^2 + \frac{m^2}{2} + g\eta^*\eta\eta^*\eta + 2e^2\mathbf{A}^2\eta^*\eta + 4ie\mathbf{A}\eta^*\nabla\eta + 2g_3\eta^*\eta m.$$
(68)

Стабильность модели — это условие положительной определённости взаимодействия в действии (68) (в противном случае, функциональный интеграл разойдётся):

$$g > 0, \ e^2 > 0, \ g_3 > 0.$$
 (69)

Анализ данной модели требует проведения УФ–ренормировки и применение РГ–техники.

3.5.2 Индексы расходимости

В моделях с несколькими полями, имеющими разную природу, удобно ввести индексы расходимости. Индекс расходимости вершин:

$$\omega_{\nu} = \frac{1}{2} \sum_{i} (r_i + 2) + m_{\nu} - 4.$$
(70)

Данная формула требует пояснений. Пропагатор безмассового поля в импульсном представлении можно представить в виде $\sim p_i^r/p^2$, r_i — степень импульса в пропагаторе, сумма ведётся по всем линиям, которые приходят в вершину, m_{ν} — степень импульса в самой

вершине, который может возникать, например, если в координатном представлении в вершине присутствует производная. Вид пропагаторов и возможных вершин определяется видом действия модели.

Индекс расходимости диаграмм определяется следующим образом:

$$\omega(\text{Diagram}) = \sum_{\nu} \omega_{\nu} + 4 - \frac{1}{2} \sum_{p} (r_p + 2),$$
(71)

где в первой сумме суммирование ведётся по всем вершинам, а в последней сумме по внешним линиям. В рассматриваемом действии (68) имеется три поля: η, m, \mathbf{A} . Для пропагаторов каждого из них введём обозначения:

Таблица 1: Пропагаторы теории

где крестик на линии обозначает комплексное сопряжение. Так же в (1) указано импульсное представление каждого пропагатора. Ниже приведены вершины в модели:

Таблица 2: Вершины теории

Здесь палочка на линии обозначает импульс p_i .

3.5.3 УФ ренормировка

Индекс расходимости, рассчитанный по формуле (70) для всех вершин (2) равен $\omega_{\nu} = 0$. Это является критерием ренормируемости модели. При выборе размерной регуляризации ($d = 4 - \varepsilon$ — размерность пространства, где $\varepsilon \to 0$) расходимости всех диаграмм имеют вид полюсов по ε . Устранение расходимостей происходит за счет мультипликативной ренормировки полей и параметров модели. Константы ренормировки вводим следующим образом:

$$\tau_0 = \tau Z_{\tau}, \ \eta_0 = \eta Z_{\eta}, \ m_0 = m Z_m, \ g_0 = g \mu^{\varepsilon} Z_g, \ g_{30} = g_3 \mu^{\varepsilon/2} Z_{g_3}, \ \mathbf{A}_0 = \mathbf{A} Z_A, \ e_0 = e \mu^{\varepsilon/2} Z_e, \ (72)$$

где μ — ренормировочная масса, индекс «0» обозначает затравочные поля и заряды, Z_i — соответствующие константы ренормировки. Будем использовать схему минимальных вычитаний, в которой все константы ренормировки имеют вид

$$Z_{i} = 1 + \sum_{p=1}^{\infty} A_{ip} \left(g, g_{3}, e \right) \varepsilon^{-p},$$
(73)

где $A_{ip}(g, g_3, e)$ — некоторая функция зарядов модели. Константы ренормировки обеспечивают сокращение расходимостей в один-неприводимых функциях Грина:

$$\langle \eta \eta^* \rangle, \ \langle mm \rangle, \ \langle \mathbf{A}\mathbf{A} \rangle, \ \langle \eta \eta^* \eta \eta^* \rangle, \ \langle \eta \mathbf{A} \eta^* \rangle, \ \langle \eta \mathbf{A} \eta^* \mathbf{A} \rangle, \ \langle \eta \eta^* m \rangle, \ \langle \mathbf{A}\mathbf{A}m \rangle, \ \langle \mathbf{A}\mathbf{A}\mathbf{A} \rangle, \ \langle \mathbf{A}\mathbf{A}\mathbf{A} \rangle$$
(74)

После ренормировки в вершинах и пропагаторах появятся соответствующие константы Z. Ниже, в таблице (5.2) приведены все типы диаграмм в ряду для расходящихся функций Грина, указанных выше (диагрммы расходятся степенным образом при $\omega(Diagramm) > 0$, при $\omega(Diagramm) = 0$ расходятся логарифмически). По формуле (71) рассчитан их индекс расходимости. На месте кружочка может стоять любая возможная диаграмма.

Таблица 3: Расходящиеся диаграммы

3.5.4 Особенности функции Грина (AAm)

Диаграммы для функций Грина $\langle AAA \rangle$, $\langle AAAA \rangle$ не расходятся, что обосновывается в рамках квантовой электродинамики [7]. Обратим внимание на диагрмму $\langle AAm \rangle$. Соответствующей вершины (с двумя входящими полями A и с одним полем m) нет в (2). Однако такие диаграммы существуют. Поэтому возникает необходимость ввести в действие такую вершины. Этот метод называется наведением контрчленов. Рассмотрим подробнее соответствующие диаграммы. Все последующие вычисления будут проводиться в рамках однопетлевых разложений. В рассматриваемом отрезке ряда имеется две расходящиеся диаграммы. Ниже представлены сами диаграммы и импульсное представление расходящейся части в d-мерном пространстве. Отметим, что все коэффициенты опущены.

Таблица 4: Расходящиеся диаграммы в однопетлевом приближения для функции Грина $\langle AAm \rangle$

Здесь p, p_1, p_2 — внешние импульсы, k — импульс, по которому ведётся интегрирование. Вычисление таких интегралов удобнее делать в координатном представлении, а потом перейти обратно в импульсное. Подробнее вычисления описаны в 5.1. Ниже представлены результаты:

$$\int \frac{d^D k}{k^2 (p-k)^2} \approx \frac{1}{16\pi^2} \frac{2}{\varepsilon}$$
(75)

$$\int \frac{d^D k}{(2\pi)^D} \frac{i(p_1 - k)_i}{(p_1 - k)^2} \frac{i(p_1 + p_2 - k)_j}{(p_1 + p_2 - k)^2} \frac{1}{k^2} \approx -\frac{1}{32\pi^2} \frac{1}{\varepsilon}$$
(76)

Собирая вместе симметрийные коэффициенты, коэффициенты от пропагаторов, вершин и вычисленные расходимости, получаем, что диаграмма 1. равна $1/(4\pi^2)e^2g_3$, а диаграмма 2. равна тому же выражению, но с противоположенным знаком: $-1/(4\pi^2)e^2g_3$. Таким образом, обе диаграммы сокращают друг друга в однопетелевом приближении и новой вершины не возникает.

3.5.5 Константы ренормировки

Следующий шаг состоит в вычислении всех оставшихся однопетлевых диаграмм. Соответсвующие диаграммы для каждой функции Грина и их ε -разложения приведены в Приложении (5.2). Полагая каждый ряд диаграмм конечным, получаем выражения для констант ренормировки:

$$Z_{\eta}^{4}Z_{g} = 1 + \left(\frac{5}{2}g + 12\frac{e^{4}}{g} - 6g_{3}^{2} + 4\frac{g_{3}^{4}}{g}\right)\frac{1}{8\pi^{2}\varepsilon} \quad Z_{\eta} = 1 + \frac{3}{2}e^{2}\frac{1}{8\pi^{2}\varepsilon} \quad Z_{A} = 1 - \frac{1}{6}e^{2}\frac{1}{8\pi^{2}\varepsilon} \tag{77}$$

$$Z_{e}^{2}Z_{\eta}^{2}Z_{A}^{2} = 1 + \frac{3e^{2}}{8\pi^{2}\varepsilon} \quad Z_{e}Z_{A}Z_{\eta}^{2} = 1 + \frac{3e^{2}}{8\pi^{2}\varepsilon} \quad Z_{m} = 1 + \frac{g_{3}^{2}}{16\pi^{2}\varepsilon} \quad Z_{g_{3}}Z_{m}Z_{\eta}^{2} = 1 + \left(g - g_{3}^{2}\right)\frac{1}{8\pi^{2}\varepsilon}.$$

Откуда получаем интересующие нас константы ренормировки зарядов в однопетлевом приближении:

$$Z_{g} = 1 + \left(\frac{5}{2}g + 12\frac{e^{4}}{g} - 6g_{3}^{2} + 4\frac{g_{3}^{4}}{g} - 6e^{2}\right)\frac{1}{8\pi^{2}\varepsilon},$$

$$Z_{g_{3}} = 1 + \left(g - \frac{3}{2}g_{3}^{2} - 3e^{2}\right)\frac{1}{8\pi^{2}\varepsilon},$$

$$Z_{e} = 1 + \frac{e^{2}}{6}\frac{1}{8\pi^{2}\varepsilon}.$$
(78)

Эти константы устраняют УФ–расходимости всех функций Грина в однопетлевом приближении.

3.5.6 РГ функции

При приближении к критической точке флуктуации параметра порядка неограниченно возрастают, поэтому для критического поведения интересны ИК–асимптотики (малые импульсы ↔ большие расстояния) функций Грина. ИК–проблема значительно сложнее проблемы УФ–расходимостей, так как не существует аналогичной теории, позволяющей явно выделять и суммировать инфракрасные расходимости, как это делалось с ультрафиолетовыми [10]. Однако метод квантово–полевой ренормгруппы позволяет получать и исследовать необходимую ИК–асимптотику функций Грина и считать критические индексы. Из инвариантности 1-неприводимых функций Грина относительно преобразований ренормировки получаются дифференциальные уравнения в частных производных на функции Грина W [10]:

$$[\mathcal{D}_{\mathrm{P}\Gamma} + \gamma_W(g)]W = 0, \ \mathcal{D}_{\mathrm{P}\Gamma} = \mu \frac{\partial}{\partial \mu} + \beta(g)\frac{\partial}{\partial g} - \sum_i \gamma_i(g)e_i\frac{\partial}{\partial e_i},$$
(79)

где g – константа связи, μ – ренормировочная масса, e_i – набор остальных параметров модели. Коэффициент при $\frac{\partial}{\partial g}$ называют β – функцией, γ – аномальные размерности. Вместе β – функции и аномальные размерности называют РГ–функциями, которые вычисляются по диаграммам в виде ряда по *g*. Ниже представлены выражения для РГ–функций через константы ренормировки [10]:

$$\gamma_i \equiv \widetilde{\mathcal{D}}_\mu \ln Z_i, \ \beta_{g_i} \equiv \widetilde{\mathcal{D}}_\mu g_i, \tag{80}$$

где $\widetilde{\mathcal{D}}_{\mu} = \mu \partial_{\mu}$, g_i пробегает множество зарядов, в рассматриваемом случае: $g \in \{g, g_3, e\}$. Из определения (80) получаем β -функции нашей модели:

$$\beta_{g} = -g\varepsilon + g\left(\frac{5}{2}g + 12\frac{e^{4}}{g} - 6g_{3}^{2} + 4\frac{g_{3}^{4}}{g} - 6e^{2}\right)\right)\frac{1}{8\pi^{2}},$$

$$\beta_{g_{3}} = -g_{3}\frac{\varepsilon}{2} + g_{3}\left(g - \frac{3}{2}g_{3}^{2} - 3e^{2}\right)\frac{1}{8\pi^{2}},$$

$$\beta_{e} = -e\frac{\varepsilon}{2} + \frac{e^{3}}{6}\frac{1}{8\pi^{2}}.$$
(81)

Решение уравнения (79) является функцией набора независимых первых интегралов. Определим первые интегралы \bar{e}_i уравнения (79) следующим образом:

$$\mathcal{D}_{\mathrm{P}\Gamma} \ \overline{e}_i(\mu, e) = 0, \ \overline{e}_i(t, e)|_{t=1} = e_i.$$

$$(82)$$

Здесь $t \equiv \ln(\mu/p)$, где р – импульс. Такие интегралы называются инвариантными переменными. Нас будет интересовать поведение инвариантных зарядов, когда $e_i = g_i$. Задача нахождения интегралов движения не менее сложная, чем поиск решения исходного уравнения. Однако её можно свести к задаче решения системы обыкновенных дифференциальных характеристических уравнений [10]. Уравнения на инвариантные заряды тогда принимают вид:

$$\partial_t \overline{g}(t, g_i) = \beta(\overline{g}), \quad \overline{g}(t, g_i) = g_i.$$
(83)

Решения уравнений (83) называют фазовыми траекториями.

3.5.7 Фиксированные точки уравнения РГ

ИК–асимптотика ренормированных функций Грина определяется ИК–устойчивыми фиксированными (неподвижными) точками g_* уравнения (83). Ниже приведено определение фиксированных точек:

$$\beta\left(g_*\right) = 0. \tag{84}$$

Устойчивость точки определяется определяется собственными числами матрицы ω :

$$\omega = \partial \beta / \partial g|_{g=g_*}.$$
(85)

Точка называется ИК-притягивающей (устойчивой), если все собственные числа матрицы ω положительны. Найдем фиксированные точки нашей модели согласно (84). Анализ выражений (81) приводит к двум наборам фиксированных точек с $e_* = 0$ и с $e_* \neq 0$. Последний набор содержит только комплексные значения g_* и g_{3*} и, соответственно, не является физически определённым. Фиксированные точки первого набора принимают значения:

$$g_{*} = 0, \ g_{3*} = 0;$$

$$g_{*} = 16/5\pi^{2}\varepsilon, \ g_{3*} = 0;$$

$$g_{*} = 32/5\pi^{2}\varepsilon, \ g_{3*} = 2\sqrt{2\varepsilon/5}\pi;$$

$$g_{*} = 16\pi^{2}\varepsilon, \ g_{3*} = 2\sqrt{2\varepsilon}\pi.$$
(86)

g_*	g_{3*}	Собственные числа
0	0	$-\varepsilon, -\varepsilon/2, -\varepsilon/2$
$16/5\pi^2\varepsilon$	0	$\varepsilon, -\varepsilon/10, -\varepsilon/2$
$32/5\pi^2\varepsilon$	$2\sqrt{2\varepsilon/5}\pi$	$\varepsilon/5, \varepsilon, -\varepsilon/2$
$16\pi^2\varepsilon$	$2\sqrt{2\varepsilon}\pi$	$-\varepsilon, \varepsilon, -\varepsilon/2$

Таблица 5: Собственные числа, отвечающие фиксированным точкам.

Ниже в таблице (5) приведены собственные числа, отвечающие каждой фиксированной точке при $e_* = 0$.

Из таблицы видно, что ни одна точка не является ИК–притягивающей. Обратим внимание, что собственное число $-\varepsilon/2$ отвечает инвариантному заряду \overline{e} , который появляется при включении магнитного поля. В отсутствие же магнитного поля (обыкновенная С– модель) появляется устойчивая точка $g_* = 32/5\pi^2\varepsilon$, $g_{3*} = 2\sqrt{2\varepsilon/5\pi}$, что согласуется с [10]. Таким образом, присутствие магнитного поля переводит ИК–устойчивые точки в седловые. Определим поведение исследуемой системы с помощью численного решения системы (83). Результат представлен на рис. 1.

Рис. 1: Траектории инвариантных зарядов

Заряд g стремится к $-\infty$ в ИК-пределе $(t \to -\infty)$ и система покидает регион стабильности (69). Это свидетельствует о том, что система претерпевает фазовый переход I рода [13]. В статье [9] авторы рассматривают аналогичную модель (68) без учёта теплопроводности, что из полученных результатов в данной работе получается тривильно, полагая $m \equiv 0, g_3 \equiv 0$. Результатом [9] является то, что для $e_* \neq 0$ неподвижные точки вещественны при числе компонент r > 19, однако они все оказываются седловыми, и такие системы так же претепревают фазовый переход I рода. Для рассматриваемого же в этой работе случая r = 2, авторы, исследуя неподвижные точки, приходят к выводу, что точка $e_* = 0, g_* = 32/5\pi^2 \varepsilon$ является ИК-притягивающей. Однако анализ (3.5.7) показывает, что эта точка седловая. Таким образом, при r = 2 система с магнитным полем так же претерпевает фазовый переход I рода.

3.5.8 Стохастические уравнения

Несмотря на то, что, как было показано выше, в рассматриваемой модели (68) отсутсвует устойчивая точка, стохастические уравнения остаются корректно определенными:

$$\begin{cases} \partial_t \chi_{\alpha\beta} = -\alpha_{\chi} \left[-\Delta \chi^{+\alpha\beta} - ie \left(\nabla_i \chi^{+\alpha\beta} A_i + \nabla_i A_i \chi^{+\alpha\beta} + A_i \nabla_i \chi^{+\alpha\beta} \right) + \\ +e^2 A_i \chi^{+\alpha\beta} A_i + \tau \chi^{+\alpha\beta} + g_1 / 2 \mathrm{Tr}(\chi \chi^+) \chi^{+\alpha\beta} + g_3 m \chi^{+\alpha\beta} \right] + \xi_{\chi}, \\ \partial_t \chi^{+\alpha\beta} = -\alpha_{\chi^+} \left[-\Delta \chi_{\alpha\beta} + ie \left(\nabla_i \chi_{\alpha\beta} A_i + \nabla_i A_i \chi_{\alpha\beta} + A_i \nabla_i \chi_{\alpha\beta} \right) + \\ +e^2 A_i \chi_{\alpha\beta} A_i + \tau \chi_{\alpha\beta} + g_1 / 2 \mathrm{Tr}(\chi \chi^+) \chi_{\alpha\beta} + g_3 m \chi^{\alpha\beta} \right] + \xi_{\chi^+}, \\ \partial_t m = -\alpha_m \left(\Delta m + g_3 \Delta \mathrm{Tr}(\chi \chi^+) \right) + \xi_m, \\ \partial_t A_i = -\alpha_{A_i} \left(-ie \chi_{\beta\alpha} \nabla_i \chi^{+\alpha\beta} + ie \chi^{+\alpha\beta} \nabla_i \chi_{\beta\alpha} + e^2 \chi^{+\alpha\beta} A_i \chi_{\beta\alpha} + e^2 \chi_{\alpha\beta} A_i \chi^{+\beta\alpha} + \\ +\Delta A_i - \nabla_i \nabla_j A_j \right) + \eta_{A_i}. \end{cases}$$
(87)

Стоит отметить, что в работах [14], [15], где использовались модели с векторным параметром порядка, было показано, что присутствие калибровочного поля всегда приводит к так называемому слабому фазовому переходу I рода ($g \to +\infty$) в однопетлевом приближении.

4 Заключение

В данной работе был произведён обзор квантово-полевой теории твёрдого тела, теории БКШ, которые позволили построить микроскопическую теорию сверхпроводимости. Так же был произведён обзор статьи [2], авторы которой ввели безмассовые бозонные поля, на языке которых можно корректно описывать фазовый переход в сверхпроводящее состояние. Далее была рассмотрена стохастическая динамика моделей с параметром порядка и теплопроводностью. Эти модели свелись к модели А с хорошо изестными результатами. Включение в модель магнитного поля существенно меняет картину. Здесь потребовался общирный анализ модели с применением УФ-ренормировки и РГ-техники. Результатом стал тот факт, что при наличии магнитного поля стационарные точки, которые были ранее ИК-притягивающими, становятся седловыми, и система претерпевает фазовый переход I рода. Анализ был проделан в рамках однопетлевых вычислений. Работа [14] показывает, что ситуация может измениться при учёте старших порядков (многопетлевые вычисления), что требует дополнительного изучения.

Список литературы

- John Bardeen, Leon N. Cooper, J. R. Schrieffer, "Microscopic Theory of Superconductivity", *Physical Review*, 106: 1 (1957), 162–164.
- [2] Ю. Хонконен М.В. Комарова, М.Ю. Налимов, "Температурные функции Грина в ферми-системах: сверхпроводящий фазовый переход", *ТМФ*, **176**: 1 (2013), 89–97.
- [3] A.A. Shanenko, J. Tempere, F. Brosens, J.T. Devreese, "Mesoscopic samples: the superconducting condensate via the Gross-Pitaevskii scenario", *Solid State Communications*, **131**: 6 (2004), 409–414.
- [4] N.B. Kopnin, "Introduction to Ginzburg-Landau and Gross-Pitaevskii Theories for Superconductors and Superfluids", *Journal of Low Temperature Physics*, **129** (2002), 219–262.
- [5] В.В. Шмидт, "Введение в физику сверхпроводников", МЦНМО, 2000.
- [6] Elliot Snider, Nathan Dasenbrock-Gammon, Raymond McBride, et al., "RETRACTED ARTICLE: Room-temperature superconductivity in a carbonaceous sulfur hydride", *Nature*, 586: 7829 (2020), 373–377.
- [7] Michael E. Peskin, Daniel V. Schroeder, Emil Martinec, "<i>An Introduction to Quantum Field Theory</i>
 </i>
 Physics Today, 49: 8 (1996), 69–72.
- [8] Aleksei Alekseevich Abrikosov, L. P. Gorkov, I. E. Dzialoshinskiĭ, "Методы квантовой теории поля в статистической физике", 1962, URL http://ci.nii.ac.jp/ncid/ BA26958281.
- [9] N. V. Antonov, Mikhail V. Kompaniets, N. M. Lebedev, "Critical behavior of $U(n)-\chi^{4-}$ model with antisymmetric tensor order parameter coupled with magnetic field", *Epj Web* of *Conferences*, **125** (2016), 05021.
- [10] А.Н. Васильев, "Квантовополевая ренормгруппа в теории критического поведения и стохастической динамике", Издательство ПИЯФ, 1998.
- [11] M. Yu. Nalimov, V. A. Sergeev, L Sladkoff, "Borel resummation of the -expansion of the dynamical exponent z in model a of the 4(O(n)) theory", *Theoretical and Mathematical Physics*, **159**: 1 (2009), 499–508.
- [12] P. C. Hohenberg, Bertrand I. Halperin, "Theory of dynamic critical phenomena", *Reviews of Modern Physics*, 49: 3 (1977), 435–479.
- [13] G.A. Kalagov, M.V. Kompaniets, M.Yu. Nalimov, "Renormalization-group investigation of a superconducting U(r)-phase transition using five loops calculations", *Nuclear Physics B*, **905** (2016), 16–44.
- [14] M. Dudka, R. Folk, G. Moser, "Gauge Dependence of the Critical Dynamics at the Superconducting Transition", 2006, cond-mat/0612643.
- [15] B.I. Halperin, T.C. Lubensky, Shang-Keng Ma, "First-Order Phase Transitions in Superconductors and Smectic-A Liquid Crystals", *Phys. Rev. Lett.*, **32**: 6 (1974), 292–295.

5 Приложение

5.1 Вычисление интегралов

Вычисление $\int \frac{d^D k}{k^2 (p-k)^2}$ в виде ряда по ε . Считать такие интегралы удобнее в координатном представлении, а потом перейти обратно в импульсное:

$$\int \frac{d^{D}k}{k^{2}(p-k)^{2}} \xrightarrow{F^{-1}} \left(\frac{\pi^{2-\frac{\varepsilon}{2}}2^{2\left(1-\frac{\varepsilon}{2}\right)}\Gamma\left(1-\frac{\varepsilon}{2}\right)}{(2\pi)^{4-\varepsilon}\Gamma(1)} \right)^{2} \frac{1}{\left((x-x')^{2\left(\frac{d}{2}-1\right)}\right)^{2}} \xrightarrow{F} (88)$$

$$\xrightarrow{F} \left(\frac{\pi^{2-\frac{\varepsilon}{2}}2^{2\left(1-\frac{\varepsilon}{2}\right)}\Gamma\left(1-\frac{\varepsilon}{2}\right)}{(2\pi)^{4-\varepsilon}\Gamma(1)} \right)^{2} \frac{\pi^{2-\frac{\varepsilon}{2}}2^{2\frac{\varepsilon}{2}}\Gamma\left(\frac{\varepsilon}{2}\right)}{(2\pi)^{4-\varepsilon}\Gamma\left(2-\varepsilon\right)} (2\pi)^{4} \frac{1}{p^{2\left(2-\frac{d}{2}\right)}}$$

$$\stackrel{d=4-\varepsilon}{=} \left(\frac{\pi^{2-\frac{\varepsilon}{2}}2^{2\left(1-\frac{\varepsilon}{2}\right)}\Gamma\left(1-\frac{\varepsilon}{2}\right)}{(2\pi)^{4-\varepsilon}\Gamma(1)} \right)^{2} \frac{\pi^{2-\frac{\varepsilon}{2}}2^{2\frac{\varepsilon}{2}}\Gamma\left(\frac{\varepsilon}{2}\right)}{(2\pi)^{4-\varepsilon}\Gamma\left(2-\varepsilon\right)} (2\pi)^{4} \frac{1}{p^{\varepsilon}} = \left[\Gamma\left(\frac{\varepsilon}{2}\right)\approx\frac{2}{\varepsilon}\right] \xrightarrow{\varepsilon \to 0} \frac{1}{16\pi^{2}\frac{2}{\varepsilon}}. (89)$$

Для

$$\int \frac{d^D k}{(2\pi)^D} \frac{i(p_1 - k)_i}{(p_1 - k)^2} \frac{i(p_1 + p_2 - k)_j}{(p_1 + p_2 - k)^2} \frac{1}{k^2}$$
(90)

положим $p_2 = 0$ и заменим конструкцию типа $p_i p_j = \frac{1}{d} p^2$:

$$\int \frac{d^D k}{(2\pi)^D} \frac{i(p_1 - k)_i}{(p_1 - k)^2} \frac{i(p_1 + p_2 - k)_j}{(p_1 + p_2 - k)^2} \frac{1}{k^2} = -\int \frac{d^D k}{(2\pi)^D} \frac{1}{(p - k)^2} \frac{1}{k^2} \frac{1}{D} \approx -\frac{1}{32\pi^2} \frac{1}{\varepsilon}.$$
 (91)

5.2 Диаграммы 1-неприводимых функций Грина в однопетлевом приближении

Таблица 6: ε -разложение диаграмм для $\langle \eta \eta^* \eta \eta^* \rangle$

Диаграмма	×	
<i>є</i> -разложение	$\frac{1}{2p^2}Z_{\eta}^{-2}$	$\frac{6}{p^2}e^2\frac{1}{8\pi^2\varepsilon}$

Таблица 7: ε –разложение диаграмм для $\langle \eta \eta^* \rangle$

Диаграмма		
<i>є</i> -разложение	$\frac{1}{Z_A^2}$	$-\frac{1}{3}e^2\frac{1}{8\pi^2\varepsilon}$

Таблица 8: ε -разложение диаграмм для $\langle \mathbf{AA} \rangle$

Диаграмма	X		
<i>є</i> -разложение	$-4e^2Z_e^2Z_\eta^2Z_A^2$	$e^2grac{1}{2\pi^2arepsilon}$	$-e^2grac{1}{2\pi^2\varepsilon}$
Диаграмма	****	× ×	
<i>є</i> -разложение	$-2e^2g_3^2\frac{1}{2\pi^2\varepsilon}$	$2e^2g_3^2\frac{1}{2\pi^2\varepsilon}$	$3e^4 \frac{1}{2\pi^2 \varepsilon}$

Таблица 9: ε -разложение диаграмм для $\langle \mathbf{A}\mathbf{A}\eta\eta^* \rangle$

Диаграмма	······	*+*	*
<i>є</i> -разложение	$4eZ_eZ_AZ_\eta^2 p$	$\frac{3e^3}{4\pi^2\varepsilon}$	$\frac{3e^3}{4\pi^2\varepsilon}$

Таблица 10: ε -разложение диаграмм для $\langle \mathbf{A}\eta\eta^* \rangle$

Диаграмма	~~~~~~	**************************************
<i>є</i> -разложение	$\frac{1}{Z_m^2}$	$g_3^2 rac{1}{8\pi^2 arepsilon}$

Таблица 11: *є*-разложение диаграмм для $\langle mm \rangle$

Диаграмма	·····	vvvvvvvt	
<i>є</i> -разложение	$-2Z_m^2 Z_\eta^2 Z_m$	$-g_3^3rac{1}{4\pi^2arepsilon}rac{1}{Z_m^2}$	$gg_3rac{1}{4\pi^2arepsilon}rac{1}{Z_m^2}$

Таблица 12:
 ε –разложение диаграмм для $\langle m\eta\eta^*\rangle$

5.3 Вычисление диаграммы в ряду $\langle AA \rangle$

Ниже представлено вычисление единственной однопетлевой диаграммы в ряду (**AA**), которая представляла значительную техническую сложность, и, таким образом, является показательным примером вычисления диаграмм.

Рассмотрим ампутированную диаграмму (без внешних хвостов). В импульсном представ-

лении она имеет вид:

$$\int \frac{d^d k}{(2\pi)^d} \frac{ik_i(-i) (p-k)_j}{k^2 (p-k)^2}.$$
(92)

Разложим по малому параметру p/k:

$$\int \frac{d^d k}{(2\pi)^d} \frac{k_i p_j - k_i k_j}{k^4 \left(1 - \frac{2(p,k)}{k^2} + \frac{p^2}{k^2}\right)} = \int \frac{d^d k}{(2\pi)^d} \frac{k_i p_j - k_i k_j}{k^4} \left(1 + \frac{2(p,k)}{k^2} - \frac{p^2}{k^2} + \left(\frac{2(p,k)}{k^2} - \frac{p^2}{k^2}\right)^2 + \cdots\right) = \int \frac{d^d k}{(2\pi)^d} \frac{k_i p_j - k_i k_j}{k^4} \left(1 + \frac{2(p,k)}{k^2} - \frac{p^2}{k^2} + \frac{4(p,k)^2}{k^4} + \mathcal{O}\left(\left(\frac{p}{k}\right)^2\right)\right). \quad (93)$$

Рассмотрим каждое слагаемое по отдельности:

- 1. $\int \frac{d^d k}{(2\pi)^d} \frac{k_i p_j}{k^4} \left(1 \frac{p^2}{k^2} + \frac{4(p,k)^2}{k^4} \right) = 0$ по нечётности
- 2. $2p_l p_j \int \frac{d^d k}{(2\pi)^d} \frac{k_i k_j}{k^6} = 2p_l p_j \frac{\delta_{il}}{d} \frac{1}{8\pi^2 \varepsilon} = 2\frac{p_i p_j}{d} \frac{1}{8\pi^2 \varepsilon}.$
- 3. $\int \frac{d^d k}{(2\pi)^d} \frac{k_i k_j}{k^4} \left(1 \frac{p^2}{k^2}\right) = -\frac{\delta_{ij}}{d} \frac{p^2}{8\pi^2 \varepsilon}.$

4.
$$\int p_l \frac{d^d k}{(2\pi)^d} \frac{K_l k_i k_j}{k^6} = 0 \text{ по нечётности}$$

$$4 p_l p_m \int \frac{d^d k}{(2\pi)^d} \frac{k_i k_j k_l k_m}{k^8} = \frac{1}{(d+2)d} \frac{1}{8\pi^2 \varepsilon} \left(\delta_{ij} \delta_{lm} + \delta_{il} \delta_{jm} + \delta_{im} \delta_{jl} \right) = 4p^2 \frac{1}{(d+2)d} \frac{1}{8\pi^2 \varepsilon} \left(\delta_{ij} + \frac{2p_i p_j}{p^2} \right).$$

Рассмотрим отдельно следующий вклад:

$$\int \frac{d^d k}{(2\pi)^d} \frac{k_i k_j k_l k_m}{k^8} = C \cdot \left(\delta_{ij} \delta_{lm} + \delta_{il} \delta_{jm} + \delta_{im} \delta_{jl}\right).$$
(94)

Положим i = j:

$$\int \frac{d^d k}{(2\pi)^d} \frac{k_l k_m}{k^6} = C \cdot (d+2) \,\delta_{lm}.$$
(95)

Положим l = m:

$$\int \frac{d^d k}{(2\pi)^d} \frac{1}{k^4} = C \cdot (d+2) \, d. \tag{96}$$

Откуда:

$$C = \frac{1}{(d+2)d} \frac{1}{8\pi^2 \varepsilon}.$$
(97)

В итоге:

$$M_{ij} = \int \frac{d^d k}{(2\pi)^d} \frac{ik_i(-i) (p-k)_j}{k^2 (p-k)^2} = 4p^2 \frac{1}{d} \left(1 - \frac{4}{d+2}\right) \frac{1}{8\pi^2 \varepsilon} \left(\delta_{ij} + \frac{2p_i p_j}{p^2}\right), \tag{98}$$

где за M_{ij} обозначена расходящаяся часть диаграммы. Исходная диаграмма имеет вид:

$$P_{si}M_{ij}P_{jn}$$
, где $P_{si} = \frac{\delta_{si} - p_s p_i/p^2}{p^2}$. (99)

В итоге при d=4 расходящаяся часть имеет вид:

$$\frac{1}{12} \frac{1}{8\pi^2 \varepsilon} \frac{\delta_{sn} - p_s p_n / p^2}{p^2}.$$
 (100)