Санкт–Петербургский государственный университет

СМИРНОВ Кирилл Андреевич

Выпускная квалификационна работа

Современные методы численного расчета диаграмм Фейнмана

Уровень образования: бакалавриат Направление: 03.03.02 «Физика» Основная образовательная программа: CB.5011.2015 «Физика»

Научный руководитель: профессор, кафедра Статистической физики, д.ф.-м.н. Аджемян Л.Ц.

Рецензент: профессор, кафедра Физики высоких энергий и элементарных частиц, д.ф.-м.н. Компаниец М.В.

> Санкт-Петербург 2019

Содержание

1	Введение	3
2	Фейнмановское представление	4
3	Meтод Sector Decomposition	5
4	Расчет верхней оценки $\mathcal{H}(\gamma)$ безподграфных диаграмм	7
5	Заключение	11
Cı	писок литературы	12

1 Введение

Метод ренормгруппы (РГ) является эффективным методом изучения фазовых переходов второго рода и критических явлений [1]. Он позволяет не только обосновать критический скейлинг, но и дает рецепт расчета критических индексов в виде ε -разложений, где $\varepsilon = 4-d$ — отклонение размерности пространства d от критического значения $d_c = 4$. Основной технической задачей является расчет так называемых ренормгрупповых функций, которая решается посредством расчета констант ренормировок. Ряды теории возмущений являются асимптотическими и для получения высокоточных значений критических показателей необходимо вычислить по возможности большее число членов ряда с последующим суммированием по Борелю. В последнее время в наиболее известной теории φ^4 были проведены рекордные аналитические расчеты ренормгрупповых функций до шестого порядка теории возмущений (6-петлевое приближение) [2]¹. В этой же работе был предложен оригинальный способ приближенной оценки старших членов разложения. Он основан на том, что наибольший вклад в ответ дают безподграфные диаграммы, часть из которых в старших порядках удалось рассчитать аналитически [3]. Для определения оставшихся диаграмм авторы работы [2] предложили процедуру, основанную на использовании фейнмановского представления диаграмм в сочетании с методом Sector Decomposition (SD) [6].

В последнее время этот метод широко используется для численных расчетов диаграмм, в работе [2] использовали другое известное его свойство. Сами по себе расчеты методом SD весьма трудоемки, однако он позволяет достаточно просто получить верхние оценки $\mathcal{H}(\gamma)$ (Hepp bound) для безподграфных диаграмм. В работе [2] было показано, что присутствует достаточно простая корреляция между упомянутыми верхними оценками $\mathcal{H}(\gamma)$ и фактическими значеними диаграмм $\mathcal{P}(\gamma)^2$. Это позволяет, вычислив $\mathcal{H}(\gamma)$ для неизвестных диаграмм, восстановить с достаточно высокой точностью их фактическое значение $\mathcal{P}(\gamma)$.

Целью работы является освоение вычисления диаграмм в фейнмановском представлении методом SD и проведение уточненных расчетов $\mathcal{H}(\gamma)$ в пятипетлевом приближении с целью выяснения, как такое уточнение изменяет результат.

¹Совсем недавно были получены семи-петлевые результаты [4]

²в обозначениях статьи [2]

2 Фейнмановское представление

Использование метода Sector Decomposition предполагает работу с фейнмановским представлением диаграмм. В этом разделе будет кратко описано мнемоническое правило его написания, а также проиллюстрировано на примерах 4-х петлевых диаграмм.

Рассмотрим модель φ^4 с нулевым внешним полем. Тогда исходное действие определяется соотношением :

$$S(\varphi) = -\int \left[(\partial \varphi)^2 / 2 + \tau \varphi^2 / 2 + g \varphi^4 / 24 \right] dx, \tag{1}$$

где g – константа связи.

Пропагатор теории с действием (1) в импульсном представлении равен

$$\left< \varphi \varphi \right> = \frac{1}{q^2 + \tau} \ .$$

Диаграммы теории возмущений имеют вид:

$$J_n = \frac{1}{(2\pi)^{nd}} \int d\mathbf{k}_1 \dots \int d\mathbf{k}_n A_1^{-\lambda_1} \dots A_n^{-\lambda_l}, \qquad A_j = q_j^2 + 1,$$
(2)

где \mathbf{q}_j – линейная комбинация импульсов интегрирования \mathbf{k}_s , измеренных в единицах $\sqrt{\tau}$, и внешних импульсов (у нас будет один внешний импульс \mathbf{p}), число λ_j показывает, сколько раз встречается в диаграмме линия с импульсом \mathbf{q}_j .

Формула Фейнмана основана на том, что интеграл от произвольной степени квадратичной формы

$$B(\mathbf{k}_1,\ldots,\mathbf{k}_n) \equiv v_{is}(\mathbf{k}_i,\mathbf{k}_s) + 2(\mathbf{a}_i,\mathbf{k}_i) + c$$
(3)

вычисляется в явном виде:

$$\frac{1}{(2\pi)^{nd}} \int \cdots \int \frac{d\mathbf{k}_1 \dots \int d\mathbf{k}_n}{B^{\alpha}} = \frac{(4\pi)^{-dn/2} \Gamma(\alpha - dn/2) (\det v)^{-d/2}}{\Gamma(\alpha) \left[c - (v^{-1})_{is}(\mathbf{a}_i, \mathbf{a}_s)\right]^{\alpha - dn/2}},\tag{4}$$

а произведение квадратичных форм в (2) сводится к степени квадратичной формы с помощью интегрирования по вспомогательным параметрам Фейнмана u_i :

$$A_{1}^{-\lambda_{1}} \dots A_{n}^{-\lambda_{l}} = \frac{\Gamma(\sum_{i=1}^{l} \lambda_{i})}{\prod_{i=1}^{l} \Gamma(\lambda_{i})} \int_{0}^{1} \dots \int_{0}^{1} du_{1} \dots du_{l} \frac{\delta\left(\sum_{i=1}^{l} u_{i} - 1\right) \prod_{i=1}^{l} u_{i}^{\lambda_{i}-1}}{\left[\sum_{i=1}^{l} A_{i} u_{i}\right]^{\sum_{i=1}^{l} \lambda_{i}}}$$
(5)

Соответствующая (5) квадратичная форма (3) находится из выражения

$$B = u_1(q_1^2 + 1) + u_2(q_2^2 + 1) + \dots + u_l(q_l^2 + 1),$$
(6)

в котором вектора \mathbf{q}_i надо заменить заданными линейными комбинациями векторов \mathbf{k}_i и внешнего импульса и найти таким образом матрицу v_{is} , вектора \mathbf{a}_i и константу c в (3), параметр α в (4) равен числу линий диаграммы (2)

$$\alpha = \sum_{i=1}^{l} \lambda_i. \tag{7}$$

Нас будут интересовать диаграммы теории (1) для 1-неприводимой четыреххвостки на нулевых внешних импульсах. Число линий *n*-петлевой четыреххвостки равно $\alpha = 2n$, на

нулевом импульсе $\mathbf{a_i} = \mathbf{0}$, а коэффициент *c* в (5) равен единице с учетом $\sum_i u_i = 1$. Вместо исходного заряда *g* мы будем использовать заряд

$$u = \frac{S_d}{(2\pi)^d} g, \qquad S_d \equiv \frac{2\pi^{d/2}}{\Gamma(d/2)},\tag{8}$$

где S_d – площадь d-мерной сферы единичного радиуса. Вводя в связи с этим в (2) дополнительный множитель $\frac{(2\pi)^{nd}}{S_d^n}$, получаем для коэффициента при u^n

$$J_n^{(4)} = \frac{\Gamma(n\varepsilon/2)\Gamma^n(2-\varepsilon/2)}{2^n \prod_i \Gamma(\lambda_i)} \int_0^1 du_1 \cdots \int_0^1 du_l \frac{\prod_i u_i^{\lambda_i-1} \delta(1-\sum_{i=1}^l u_i)}{(\det v)^{2-\varepsilon/2}}.$$
(9)

Выражение для det v может быть получено непосредственно по виду диаграммы, минуя импульсное представление: det v равен сумме всевозможных произведений параметров фейнмана с числом сомножителей, равным числу петель, исключая "запреты" (комбинации фейнмановских параметров, определяемые законами сохранения импульсов в вершине).

Проиллюстрируем это правило на примере следующей 3-х петлевой диаграммы

Рис. 1: диаграмма *e*123|*e*23|*e*3|*e*| (номенклатура Никеля)

Красными цифрами на диаграмме обозначены номера фейнмановских параметров u_i соответствующих линий. Детерминант det v этой трехпетлевой диаграммы представляет собой сумму произведений трех различных параметров Фейнмана. Из 6 параметров можно образовать $C_6^3 = 20$ таких произведений, из них произведения $u_1u_2u_3$, $u_1u_4u_5$, $u_2u_4u_6$, $u_3u_5u_6$ запрещены законами сохранения в вершинах. Таким образом,

$$\det v = u_4 u_1 u_2 + u_5 u_1 u_2 + u_6 u_1 u_2 + u_4 u_1 u_3 + u_5 u_1 u_3 + u_6 u_1 u_3 + u_4 u_6 u_1 + u_5 u_6 u_1 + u_4 u_3 u_2 + u_5 u_3 u_2 + u_6 u_3 u_2 + u_5 u_4 u_2 + u_5 u_6 u_2 + u_5 u_4 u_3 + u_4 u_6 u_3 + u_5 u_4 u_6 .$$
(10)

3 Metog Sector Decomposition

Интересующие нас безподграфные диаграммы имеют только полюс первого порядка по ε . В представлении (9) этот полюс выделен в явном виде в множителе $\Gamma(n\varepsilon/2) \sim \frac{1}{n\varepsilon}$, поэтому в оставшемся выражении можно положить $\varepsilon = 0$. Интеграл в (9) будет при этом сходящимся, несмотря на то, что det v в знаменателе подынтегрального выражения обращается в ноль в некоторой области интегрирования. Метод SD позволяет путем разбиения области интегрирования на сектора и определенной замены переменных интегрирования привести интеграл к сумме собственных интегралов с плавно меняющимися подынтегральными выражениями.

Вся процедура делится на два шага. Во-первых, область интегрирования делится на сектора, где одна из переменных Фейнмана является "основной", т.е. больше всех оставшихся. После этого в каждом секторе необходимо заменой переменных вернуть область интегрирования к единичному кубу. Эти два шага необходимо повторять, пока не исчезнут нули знаменателя в подынтегральном выражении. Можно показать, что количество повторений в каждом секторе соответствует количеству петель в графе.

Существует ряд стратегий разделения на сектора, мы будем пользоваться следующей:

Обозначим подынтегральное выражение в (9) через J и $f(\{u_i\})$. Разделим области интегрирования на части так, чтобы в каждой из них одна из фейнмановских переменных u_i была больше остальных ("главная переменная" сектора $u_i > \{u_1 \dots u_{i-1}, u_{i+1} \dots u_N\}$):

$$J = \left[\prod_{i=1}^{l} \int_{0}^{1} du_{i}\right] f(\{u_{i}\}) =$$

$$= \int_{0}^{1} du_{1} \int_{0}^{u_{1}} du_{2} \cdots \int_{0}^{u_{1}} du_{l} f(\{u_{i}\}) + \int_{0}^{1} du_{2} \int_{0}^{u_{2}} du_{1} \cdots \int_{0}^{u_{2}} du_{l} f(\{u_{i}\}) + \dots +$$

$$+ \int_{0}^{1} du_{l} \int_{0}^{u_{l}} du_{1} \cdots \int_{0}^{u_{l}} du_{l-1} f(\{u_{i}\})$$
(11)

В секторе с главной переменной u_k делаем замены $u_i \to u_i \cdot u_k$, i = 1..l, $i \neq k$, после чего область интегрирования возвращается к *l*-мерному кубу:

$$J = \int_{0}^{1} du_{1} \left(\prod_{i=2..l} \int_{0}^{1} du_{i} \right) u_{1}^{l-1} f(u_{1}, u_{2}u_{1}, .., u_{l}u_{1}) + \cdots$$
$$+ \int_{0}^{1} du_{l} \left(\prod_{i=1..l-1} \int_{0}^{1} du_{i} \right) u_{l}^{l-1} f(u_{1}u_{l}, .., u_{l-1}u_{l}) .$$
(12)

В каждом секторе из детерминанта вынесется множитель u_k^n и, таким образом, степень минимального монома в сумме уменьшится на единицу. Процедура повторяется, пока эта степень не станет равной нулю.

На каждом шаге декомпозиции важно правильно выбирать "пространство декомпозиции" – совокупность переменных, которые последовательно объявляются главными. На первом шаге в пространство декомпозиции включают все переменные, на следующих шагах его сужают – не вкчючают в него переменные, которые были главными на предыдущих шагах, а также те, что в совокупности с использованными главными "запрещены" законами сохранения.

Рассмотрим вышесказанное на примере 3-х петлевой диаграммы рис.1. Соответствую-

щий ей интеграл имеет вид:

$$J = \int_{0}^{1} du_1 \, du_2 \, du_3 \, du_4 \, du_5 \, du_6 \frac{\delta(1 - (u_1 + u_2 + u_3 + u_4 + u_5 + u_6))}{(\det v)^{d/2}},\tag{13}$$

где d = 4, а det v задан формулой (10). Введем обозначения для результатов декомпозиции по шагам: например, J_4 будет означать вклад в интеграл после первого шага декомпозиции, в котором главной переменной являлась u_4 , J_{41} – вклад, в котором на втором шаге главной была переменная u_1 , а J_{412} – вклад, в котором на третьем шаге главной была переменная u_2 . Совокупность таких трехзначковых вкладов представляет собой окончальный набор секторов декомпозиции. Их число равно, очевидно, числу членов в детерминанте, умноженному на 3!, т.е. 96.

Приведем результаты вычисления указанных шагов декомпозиции, полученные с использовании δ -функции в (13):

$$J_{4} = \prod_{i=1,2,3,5,6} \int du_{i} \qquad (u_{1}u_{2} + u_{1}u_{3} + u_{2}u_{3} + u_{2}u_{5} + u_{1}u_{2}u_{5} + u_{3}u_{5} + u_{1}u_{3}u_{5} + u_{2}u_{3}u_{5} + u_{1}u_{6} + u_{1}u_{2}u_{6} + u_{3}u_{6} + u_{2}u_{3}u_{6} + u_{2}u_{3}u_{6} + u_{2}u_{5}u_{6} + u_{1}u_{5}u_{6} + u_{2}u_{5}u_{6})^{-2}$$
(14)

$$J_{412} = \prod_{i=1,2,3,5,6} \int du_i \qquad (1 + u_3 + u_2 u_3 + u_5 + u_1 u_5 + u_1 u_3 u_5 + u_1 u_2 u_3 u_5 + u_1 u_2 u_3 u_5 + u_6 + u_1 u_2 u_6 + u_1 u_2 u_6 + u_1 u_2 u_3 u_5 + u_6 + u_1 u_2 u_6 + u_$$

$$+u_2u_3u_6 + u_1u_2u_3u_6 + u_1u_2^2u_3u_6 + u_5u_6 + u_1u_5u_6 + u_1u_2u_5u_6)^{-2}$$
(16)

Отметим, что в окончательном выражении J_{412} отсутствие нулей в знаменателе обеспечивается единицей, которая стоит на месте произведения $u_1u_2u_4$ в детерминанте (10). Укажем также, что на первом шаге пространство декомпозиции включало переменные с номерами (1,2,3,4,5,6), на втором – с номерами (1,2,3,5,6), на третьем, с учетом запрета (415), – (2,3,6).

Недостатком метода SD является сильный рост числа секторов с увеличением порядка теории возмущений. Число вычисляемых интегралов можно сильно сократить, приведя подобные члены, которые находятся путем максимального использования свойств симметрии диаграмм [5]. Так, для диаграммы 1 имеется лишь 4 нетривиальных сектора.

4 Расчет верхней оценки $\mathcal{H}(\gamma)$ безподграфных диаграмм

Получающиеся в результате декомпозиции вклады в безподграфные диаграммы описываются интегралами вида (16), в которых в числителях возможны полиномы по фейнмановским параметрам. Для таких интегралов простейшая оценка сверху состоит в отбрасывании в знаменателе всех u_i (оставляем только единицу). Так и производился расчет верхней границы $\mathcal{H}(\gamma)$ в работе [2]. Получающийся интеграл легко берется, дополнительным упрощающим обстоятельством является появление дополнительных подобных членов. Не представляет затруднений вычисление уточненного значения $\mathcal{H}(\gamma)$ путем учета линейных по параметрам Фенмана вкладам в знаменателе.

Для 3-х петлевой диаграммы рис.1 независимыми при вычислении верхних границ $\mathcal{H}(\gamma)$ и $\tilde{\mathcal{H}}(\gamma)$ оказываются вклады двух секторов, в качестве которых выберем сектора

- $S_{412} u_4(u_1, u_2, u_3, u_5, u_6), u_1(u_3, u_2, u_5, u_6), u_2(u_3, u_6)$
- $S_{543} u_5(u_1, u_2, u_3, u_4, u_6), u_4(u_1, u_3, u_4, u_6), u_3(u_3, u_4, u_6),$

где мы указали главные переменные и соответствующие пространства декомпозиции. Для рассматриваемых далее диаграмм оказывается возможным более удобная запись, в которой секторам сопоставляется не полное поле декомпозиций, как написано выше, а набор чисел, показывающий только количество растяжений (размерность пространства декомпозиции) на каждом шаге декомпозиции, $S_{412} - (5, 4, 2), S_{543} - (5, 4, 3)$. Секторов, идентичных первому типу, оказывается 72, второму типу – 24.

Для каждого сектора по одельности посчитаем $\mathcal{H}(\gamma)$ и $\tilde{\mathcal{H}}(\gamma)$. Сектор S_{412} :

- $\mathcal{H}(\gamma) \Rightarrow \int_0^1 du_1 du_2 du_3 du_5 du_6 \frac{1}{1} = 1$
- $\tilde{\mathcal{H}}(\gamma) \Rightarrow \int_0^1 du_1 \, du_2 \, du_3 \, du_5 \, du_6 \frac{1}{(1+u_3+u_5+u_6)^2} = 0.18345$

Аналогично для сектора S_{543} :

- $\mathcal{H}(\gamma) \Rightarrow \int_0^1 du_1 \, du_2 \, du_3 \, du_5 \, du_6 \, \frac{u_1}{1} = 1/2$
- $\tilde{\mathcal{H}}(\gamma) \Rightarrow \int_0^1 du_1 \, du_2 \, du_3 \, du_5 \, du_6 \frac{u_1}{(1+u_3+u_4+u_6)^2} = 0.09173$

В итоге, учитывая количество секторов каждого вида, напишем верхнюю оценку диаграммы и ее уточненное значение для всей диаграммы e123|e23|e3|e| в целом:

$$\begin{aligned} \mathcal{H}(\gamma) &\Rightarrow 72 \cdot 1 + 24 \cdot 1/2 = 84 \\ \tilde{\mathcal{H}}(\gamma) &\Rightarrow 72 \cdot 0.18345 + 24 \cdot 0.0917 = 15.4 \end{aligned}$$
(17)

В таблице ниже приведены результаты вычислений:

номенклатура тип сектора		количество секторов одного вида	$\mathcal{H}(\gamma)$	$ ilde{\mathcal{H}}(\gamma)$		
3 loop						
e123 e23 e3 e	(5, 4, 3)	24	1/2	0.09173		
	(5, 4, 2)	72	1	0.18345		
			84	15.4098		

В 4-х петлевом приближении имеется одна безподграфная диаграмма e123|e24|34|e4|e|, в пятипетлевом приближении таких диаграмм 3: e123|e24|35|45|e5|e|, e123|e23|45|45|e5|e| и e123|e45|e45|e45|e45|5||. Их вычисление – значительно более трудоемкая задача (суммарное число секторов составляет 1080 в 4-х петлевом приближении и (15600, 15360, 16200) – в пятипетлевом). Это потребовало автоматизации вычислений. Результаты приведены в соответствующих таблицах:

номенклатура тип сектора		количество секторов одного вида	$\mathcal{H}(\gamma)$	$ ilde{\mathcal{H}}(\gamma)$		
4 loop						
e123 e24 34 e4 e	(7, 6, 5, 4)	120	1/6	0.0210152		
	(7, 6, 4, 2)	288	1	0.1260912		
	(7, 6, 4, 3)	96	1/2	0.0630456		
	(7, 6, 5, 3)	288	1/4	0.0315228		
	(7, 6, 5, 2)	288	1/2	0.0630456		
				72.1242		

номенклатура	тип сектора	количество секторов одного вида	$\mathcal{H}(\gamma)$	$ ilde{\mathcal{H}}(\gamma)$
	5 loc	p		1
e123 e24 35 45 e5 e	(9, 8, 7, 4, 2)	864	1/2	0.0458075
	(9, 8, 7, 4, 3)	288	1/4	0.0229037
	(9, 8, 7, 5, 3)	2112	1/8	0.0114519
	(9, 8, 7, 6, 4)	1800	1/12	0.0076347
	(9, 8, 7, 5, 4)	960	1/12	0.0076346
	(9, 8, 7, 5, 2)	2592	1/12	0.0076346
	(9, 8, 7, 6, 5)	720	1/24	0.0078807
	(9, 8, 7, 6, 2)	1296	1/6	0.0152692
	(9, 8, 6, 5, 4)	360	1/6	0.0152692
	(9, 8, 6, 5, 3)	864	1/4	0.0229037
	(9, 8, 6, 4, 3)	288	1/2	0.0458075
	(9, 8, 6, 4, 2)	864	1	0.0916149
	(9, 8, 7, 6, 3)	1728	1/4	0.0229037
	(9, 8, 6, 5, 2)	864	1/2	0.0458075
			3702	339.2

номенклатура	тип сектора	количество секторов одного вида	$\mathcal{H}(\gamma)$	$ ilde{\mathcal{H}}(\gamma)$
	5 loc	p		
e123 e23 45 45 e5 e	(9, 8, 7, 4, 2)	576	1/2	0.0458075
	(9,8,7,6,3)	576	1/12	0.0076346
	(9,8,7,5,3)	2688	1/8	0.0114519
	(9, 8, 7, 6, 4)	1440	1/18	0.0050897
	(9, 8, 7, 5, 4)	960	1/12	0.0076346
	(9, 8, 6, 5, 4)	480	1/6	0.0152692
	(9, 8, 7, 4, 3)	192	1/4	0.0229037
	(9, 8, 7, 6, 5)	576	1/12	0.0038173
	(9, 8, 7, 6, 2)	1440	1/6	0.0152692
	(9,8,6,5,3)	1344	1/4	0.0229037
	(9, 8, 6, 4, 3)	192	1/2	0.0458075
	(9, 8, 6, 4, 2)	576	1	0.0916149
	(9, 8, 7, 5, 2)	3456	1/4	0.0229037
	(9,8,6,5,2)	864	1/2	0.0458075
			3528	323.2

номенклатура	тип сектора	количество секторов одного вида	$\mathcal{H}(\gamma)$	$ ilde{\mathcal{H}}(\gamma)$
	5 loc	p		
e123 e45 e45 e45 5	(9, 8, 7, 4, 2)	864	1/2	0.0458075
	(9, 8, 7, 4, 3)	288	1/4	0.0229037
	(9, 8, 7, 5, 3)	3456	1/8	0.0114519
	(9, 8, 7, 6, 4)	1080	1/18	0.0050898
	(9, 8, 7, 5, 4)	720	1/12	0.0076347
	(9, 8, 7, 5, 2)	1296	1/4	0.0229037
	(9, 8, 7, 6, 5)	864	1/24	0.0038173
	(9, 8, 7, 6, 2)	864	1/6	0.0152692
	(9, 8, 6, 5, 4)	360	1/6	0.0152694
	(9, 8, 6, 5, 3)	1152	1/4	0.0229037
	(9, 8, 6, 4, 3)	288	1/2	0.0458076
	(9, 8, 6, 4, 2)	864	1	0.0916149
	(9, 8, 7, 6, 3)	3456	1/12	0.0076346
	(9, 8, 6, 5, 2)	648	1/2	0.0458075
			3528	323.2

Как видно из приведеных выше таблиц, значения 2-х пятипетлевых диаграмм совпадают. Поэтому в точности проверить предложенный в работе [2] метод восстановления диаграмм, используя верхнюю оценку, не представляется возможным. Но приведем ниже отношение верхней оценки к точному значению диаграмм, взятому из работы [2]:

	$\mathcal{H}(\gamma)/\mathcal{P}(\gamma)$	$ ilde{\mathcal{H}}(\gamma)/\mathcal{P}(\gamma)$
e123 e24 35 45 e5 e	333.0	30.5
e123 e23 45 45 e5 e e123 e23 45 45 e5 e	339.1	31.1

5 Заключение

В настоящей работе был проведен расчет верхней границы $\mathcal{H}(\gamma)$ и ее уточненного значения $\tilde{\mathcal{H}}(\gamma)$ для безподграфных диаграмм теории φ^4 в фейнмановском представлении методом Sector Decomposition вплоть до пяти петель. Стоит отметить, что количество "уникальных" секторов, необходимых для расчета $\tilde{\mathcal{H}}(\gamma)$, в разы меньше, чем для нахождения точного значения $\mathcal{P}(\gamma)$, не говоря уже о сложности соответствующих подынтегральных выражений. Этот факт значительно упрощает вычисления и позволит в будущем продвинуться в старшие порядки теории возмущений. К сожалению, пятипетлевой счет не позволяет проверить методику восстановления фактического значения безподграфных диаграмм, предложенную в статье [2]. Однако, поиск необходимых секторов и численный счет были автоматизированы, что позволит в дальнейшем проанализировать и старшие порядки теории возмущений.

Список литературы

- [1] Васильев А.Н. Квантовополевая ренормгруппа в теории критического поведения и стохастической динамике. Издательство ПИЯФ, Санкт-Петербург, 1998.
- [2] Kompaniets, M.V. and Panzer, E., Minimally subtracted six-loop renormalization of O(n)-symmetric ϕ^4 theory and critical exponents, Physical Review D,2017
- [3] E.Panzer, O.Schnetz, Communications in Number Theory and Physics, Vol. 11, 3:657-705 (2017)
- [4] Schnetz, O., Numbers and functions in quantum field theory, Physical Review D, 2018
- [5] L.Ts. Adzhemyan, M.V. Kompaniets, S.V. Novikov, and V.K. Sazonov. "Representation of the β -function and anomalous dimensions by nonsingular integrals: proof of the main relation". Theoretical and Mathematical Physics, 175(3): 719–728 (2013).
- [6] Gudrun Heindrich, Sector Decomposition Int.J.Mod.Phys.A23:1457-1486,2008