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On the mechanical equilibrium condition for incompletely developed interfaces
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The general mechanical equilibrium condition for an element of an arbitrarily curved incompletely developed interface is derived
and applied to free and wetting films of distinct and variable local thickness with overlapping surface layers.

The interface is a transitional zone between two bulk phases
with inhomogeneous local properties. A set of density (concen-
tration) gradient lines determines the interface shape and creates
the interface metrics whose knowledge is important for the choice
of a dividing surface in Gibbs’ interfacial thermodynamics. The
most compact description is attained when using a (generally,
curvilinear) co-ordinate system that diagonalises the metric
tensor (which links the curvilinear and Cartesian co-ordinates),
so that the normal co-ordinate corresponds to the gradient lines.
Earlier,1 we derived the local mechanical equilibrium condition
for an interface between phases α and β in the vector form

from the condition that the total force acting on an elementary
fragment of the interface is zero (we reproduce Figure 1 from
the earlier publication1). Here, P3

α and P3
β are the vector com-

ponents of the pressure tensor in phases α and β, respectively,
extrapolated to a dividing surface, and 1 and 2 are the vector
components of the surface tension tensor (at its mechanical
definition) for the principal directions on the interface, l1 and l2
are the lengths of the coordinate lines 1 and 2 (the additional
subscript 0 refers to a dividing surface). Numbers 1, 2 and 3
correspond to an orthogonal curvilinear co-ordinate system (u1,
u2, u3) diagonalising the metric tensor of the interface, so that
any co-ordinate surface (u1, u2) inside the interface can play the
role of a Gibbs dividing surface, the u3 co-ordinate correspond-
ing to the direction perpendicular to the interface. If we now
consider Figure 1 as an inner interface element (whose upper
and lower boundaries do not attain the bulk phases) and repeat
the derivation, equation (1) is replaced by the more general
mechanical equilibrium condition

where 1 and 2 are the element tension vectors, hi(u3) are the
Lame coefficients [hi0 º hi(u30)], and the co-ordinates u3

α and
u3

β correspond to the lower and upper boundaries of the element,
respectively. Since all the quantities are written for a certain
pair of co-ordinates u1 and u2, only the dependence on u3 is
explicitly shown in equation (2). In the case when the element
lower und upper boundaries approach the bulk phases, we have

i ® i, P3(u3
α) ® P3

α(u3
α), P3(u3

β) ® P3
β(u3

β),  and equation (2)
changes to equation (1).

Vector equation (2) comprises three scalar equations, which
can be obtained by the subsequent scalar multiplying of equa-

tion (2) by the unit vectors e1, e2, and n along the co-ordinate
line directions. Using the standard Serret–Frenet formulas of
differential geometry, as was demonstrated earlier,1 the three
resulting equations are

where R10 and R20 are the principal curvature radii at a given
point on the dividing surface; s11, s21 and s31 are the com-
ponents of vector 1; and s12, s22 and s32 are the components of
vector 2. According to the curvature sign in a given co-ordinate
system, the curvature radii can take both positive (as in Figure 1)
and negative values.

Equations (2)–(5) are of practical importance for frequent
cases with incompletely developed (truncated) surface layers as
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Figure 1 The element of a non-spherical interface.
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it happens in thin films, thin capillaries and many other one-,
two-, or three-dimensionally small systems with interfaces. Let
us consider a thin liquid film as an example and apply equations
(3)–(5) to one of the sides of the film. Although a thin film
contains no inside bulk phase because of overlapping its surface
layers, there always exists a mother phase from which the film
originates. Let it be phase α, and phase β be the surrounding
medium adjacent to the film side under consideration. If β is a
fluid phase, and the surface layer develops freely on the side of
phase β, the last term disappears from equations (3)–(5). The
same can be in the case of a solid phase β if considering only
the liquid part of the interface as an element and the liquid
contribution to the element tension. In the absence of external
fields, the metrics of pressure and tension tensors is typically
coherent with the film space metrics formed under the influence
of the shapes of both of the film sides. Since the co-ordinate
system chosen diagonalyses the metric tensor, we assume the
pressure and tension tensors also to be in a diagonal form. With
all these simplifications, equations (3)–(5) are reduced to

For a flat film, the co-ordinate system chosen changes to the
Cartesian one, so that the Lame coefficient ratio becomes unity.
In addition, the curvature terms disappear. Designating the pres-
sure tensor component P33(u3

α) as the normal component PN,
equation (7) is transformed to

where P is the film disjoining pressure. Equation (8) expresses
the well-known equilibrium condition that the normal pressure
PN is equal to the external pressure Pβ and is independent of
spatial co-ordinates.

A film in a wedge-shaped slit with flat walls is the simplest
example of a film with a distinct local thickness. The film
element between the middle plane and the slit wall can be taken
in this case as shown in Figure 2. The cylindrical co-ordinates
corresponding to this case are u1 = r, u2 = z and u3 = j with the
Lame coefficients h1 = 1, h2 = 1 and h3 = r. Equation (7) then
takes the form

from which it is seen that P33 again becomes a constant along
the normal co-ordinate j (but, certainly, P33, as well as Pα – Pβ,
is dependent on r and on the local wedge width corresponding
to the degree of overlapping surface layers). Designating P33
again as PN, we can introduce the local disjoining pressure P in
the film by using definition (8), as for a flat film. We see that
introducing the disjoining pressure meets no difficulties in the
case of a wedge-shaped film.

The situation is different in another cylindrical configuration
when a film itself is of the shape of a circular cylindrical surface.
Then, u1 = j, u2 = z, u3 = r, h1 = r, h2 = 1, h3 = 1, and equation (7)
changes to the relationship

If one chooses rα at the inner shell of the film (rα = R10 – H),
equation (10) can be rewritten as

where H is the distance between the dividing surfaces of the
film (the film thickness) and Pi

N º P33(R10 – H) is the normal
component of the pressure tensor on the inner shell.

Similarly, for a spherical film (u1 = q, u2 = j, u3 = r, h1 = r,
h2 = rsin q and h3 = 1) we have

or taking rα at the inner spherical shell

Formulas (11) and (13) are important when one considers an
initial stage of heterogeneous condensation on cylindrical or,
correspondingly, spherical solid particles.

One more example is the transitional zone of a wetting film
with non-uniform thickness on a flat (rigid) solid surface. Since
the co-ordinate u3

α is chosen arbitrarily, we can refer it to the
solid surface and define the surface element under consideration
as is shown in Figure 3. In this approach, the tension contribution
of the whole film thickness is attributed to the surface tension
of the liquid/fluid boundary of the film. Then, P33(u3

α )  acquires
the meaning of the normal pressure Ps

N on the solid surface. In
accordance with (7), we have

The metrics of the transitional zone is characterised by the fact
that the film/fluid interface is non-uniformly curved whereas
the film/solid interface is flat. This means that the u1–u2 co-
ordinate surface becomes more and more curved when ascending
along the u3 co-ordinate line from the solid surface. Corre-
spondingly, the capillary gradient of the normal pressure is effec-
tively concentrated in the upper part of the film (Figure 3) and
is practically absent in the vicinity of the solid surface. The
only reason for the difference between Ps

N and Pα is the over-
lapping of the opposite film surface layers. We now can define
the local disjoining pressure of the transitional zone as

where the disjoining pressure is shown to be location dependent
similarly to all other quantities on the right-hand side of equa-
tion (14).

Using (15), equation (14) becomes

For the particular case of an optional cylindrical surface (R20 = ¥,
h2 = 1), equation (16) is reduced to

Comparing Figures 1 and 3, it can be seen that the surface
curvature in Figure 3 is negative. It is then convenient to rewrite
(16) or (17) in the general form

where Pc is the capillary pressure and L is the Lame coefficient
ratio. With L = 1, equation (18) was first introduced by Derjaguin
as the condition of constancy of the chemical potential in a
film of variable thickness (see ref. 2). The above derivation is
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Figure 2 The element of a wedge-shaped thin film.
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Figure 3 The element of the transitional zone of a wetting film.
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more general since we considered a pure mechanical equilibrium.
Equations of a similar form, but with cos j in place of L (j is
the local slope angle at the film/fluid interface, not to be confused
with the above co-ordinate j) were also suggested previously3,4

when dealing with Cartesian co-ordinates. In our derivation,
however, such a quantity does not appear. We demonstrated
above that L = 1 not only for a flat, but also for a wedge-shaped
film. If the transitional zone profile differs not very much from
the wedge shape, the condition L » 1 can be a not bad approxi-
mation for calculations. More rigorously, the coefficient L can
be shown to be dependent exponentially on the integral along
the normal coordinate with the local median curvature as an
integrand.

Equation (18), with L = 1 and P as the disjoining pressure
of a flat film, was used for the calculation of the transitional
zone profile under the condition that the profile slope is small.2
Equation (18) is valid for an arbitrary profile slope. However,
the local disjoining pressure introduced is not equivalent to the
disjoining pressure of a corresponding flat film and should be
calculated separately with the use of the profile shape. Since the

profile itself is to be found from the known local disjoining
pressure, the problem can be solved by the method of succes-
sive approximations by using, for example, the wedge-shaped
profile as a zero approximation. The solution of such a problem
is beyond the scope of this communication.
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