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Only a small fraction of the vast body of publica-
tions on surfactant solutions concern the kinetic of
aggregation in micellar solutions, a fact that can be
explained by the enormous complexity of micellation
processes. The pioneering studies of micellation kinet-
ics were motivated by the desire to gain insights into the
experimentally observed stages of the slow and rapid
relaxation of micellar solutions. An explanation of the
nature of these times was given in [1–5]. The concept
of the stepwise growth of micelles proposed in [1], by
analogy with homogeneous nucleation, became wide-
spread and has been used to describe more complex
systems (see, e.g., [5–7]). Based on the concept of
aggregation as a process involving the overcoming of a
barrier, this approach stopped short of fully using the
methodology of the nucleation theory in establishing
relationships between the main characteristic of aggre-
gation, properties of molecular aggregates of various
sizes, and the parameters of the initial and final states of
the micellar solution. Since experimental information
on premicellar aggregates, especially critical nuclei of
micelles, was limited at that time, the development of
the kinetic theory of aggregation slowed down.

In recent years, however, a revival of interest in the
kinetics of micellation has been observed. In the studies
[8–10], the stepwise aggregation scheme [1] based on
the Becker–Döring [11] was examined to find out
whether this scheme described irreversible behavior
and provided stable solution. As a result, a simplified
calculation procedure was proposed, which made it
possible to optimize the algorithms for solving the sys-

tem of kinetic equations of aggregation. Advances in
the nucleation theory, in particular, in solving the prob-
lems of ion-induced nucleation [12] and heterogeneous
nucleation on wettable particles [13, 14] (processes
similar to micellation), have also been made.

To construct a kinetic theory of micellation in sur-
factant solutions, it is necessary to know the thermody-
namic characteristics of formation of a molecular sur-
factant aggregate (work of aggregation). Under condi-
tions important for practice, when the total surfactant
concentration exceeds the first critical micellation con-
centration (CMC) but is lower than the second CMC
(beginning with which a considerable fraction of the
surfactant forms cylindrical micelles [15–17]), the
work of aggregation as a function of the aggregation
number has not only a hump but also a well (to the right
of the hump) after which the work of aggregation tend
to infinity with increasing aggregation number [18–21].
The existence of the hump and well in the aggregation
work–aggregation number dependence make the
kinetic theory of micellation more complex than the
kinetic theory of homogeneous nucleation, in which the
work of formation of a nucleus as a function of the
number of constituent molecules has only a maximum,
monotonically decreasing to either side of it.

As in the kinetic theory of nucleation, an important
characteristic of the kinetic theory of micellation is the
fluctuation-driven flux of molecular aggregates through
the hump from the region located to the left from it.
However, since the aggregation work–aggregation
number dependence for micellar solution has a well
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Abstract

 

—Small parameters were introduced for describing the kinetics of aggregation of nonionic surfactants
in solutions in an analytical form. The direct and reverse transition of molecular aggregates over the activation
barrier of aggregation at a surfactant concentration between the first and second critical micellation concentra-
tions was described. The kinetics of the initial stages of micellation was considered. Expressions for the char-
acteristic times of attainment of the quasi-equilibrium concentrations of molecular aggregates in the micellar,
subcritical, and supercritical regions, as well as the time of attainment of the quasistationary concentration of
molecular aggregates in the near-critical size region were derived. The times of rapid and slow relaxation of the
solution were examined. The total time it takes to establish the state of complete equilibrium in the solution was
determined. It was demonstrated that this time decreases with increasing concentration of micelles. A probabi-
listic–statistical interpretation of the mean time interval between two consecutive emissions of a surfactant
monomer from a micelle, the mean life time of a surfactant monomer in the micelle, and the mean lifetime of
a micelle was proposed. The hierarchy of characteristics times of aggregation in micellar solutions, which char-
acterize a complex multistage character of the nucleation and decomposition of micelles and the establishment
of equilibrium in micellar solutions, was discussed. It was demonstrated that these hierarchy arise due to the
existence of small parameters in the kinetic theory of aggregation.
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after the hump, the reverse fluctuation-driven flux from
the well becomes important. The determination of the
direct and reverse fluxes of molecular aggregates
through hump (barrier to aggregation) plays a key role
in constructing kinetic models of aggregation in analyz-
ing the stages of micellation.

In the present review, the different stages of micel-
lation in surfactant solutions were considered from a
single point of view on the basis of the results obtained
in [22–26]. The problem of the relaxation of a micellar
solution at the final stage of micellation (near the state
of complete equilibrium) at concentrations between the
first and second CMCs was solved and an analytical
expression for the time of attainment of this stage was
derived. The overall time of attainment of the final equi-
librium state in micellar solutions was obtained.

An important aspect of the review is a discussion of
the hierarchy of characteristic times of micellation.
This hierarchy gives a graphic representation of the rel-
ative values of the characteristic times of formation and
decomposition of micelles and of the complex, multi-
stage process of approach of the micellar solution to the
state of equilibrium.

1. WORK OF AGGREGATION 
AND THE LAW OF MASS ACTION

Let us consider a solution of a single-component
nonionic surfactant capable of forming molecular
aggregates in a polar liquid not participating in the for-
mation of aggregates, for example, water. Let the solu-
tion be ideal (infinitely dilute). The aggregates were
postulated to be dense formations with the temperature
equal to that of the solution. The internal state of an
aggregate was characterized by the number of mole-
cules 

 

n

 

 it comprises (aggregation number). This dis-
crete characteristic is convenient, since it remains an
adequate parameter down to 

 

n

 

 = 1, when an aggregate
consists of a single surfactant molecule.

Let 

 

µ

 

n

 

 and 

 

c

 

n

 

 be the chemical potential and concen-
tration of aggregates composed of 

 

n

 

 molecules (the
number of aggregates per unit volume), with 

 

µ

 

1

 

 and 

 

c

 

1

 

being the chemical potential and concentration of
monomers, respectively. For the nonionic surfactant
under consideration, all the monomers are identical.

When considering the process of aggregation, it is
convenient to present the chemical potential 

 

µ

 

n

 

 of a
molecular aggregate as

 

(1)

 

where  is the Gibbs energy of an aggregate com-
posed of 

 

n

 

 surfactant molecules with its center of mass
at rest in a pure solvent (in the absence of other aggre-
gates), 

 

Λ

 

n

 

 

 

= 

 

h

 

(2

 

π

 

m

 

n

 

kT

 

)

 

–1/2

 

 is the contribution from the
averaged momentum of the molecular aggregate as a
whole (it has a dimensionality of length; 

 

h

 

 is Planck’s
constant, and 

 

m

 

n

 

 is the mass of the molecular aggre-

µn Gn° kT Λn
3cn f n( ),ln+=
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gate), and 

 

f

 

n

 

 is the activity coefficient of the aggregate.

The quantity  is the partition function of the trans-

lational motion of the aggregate, with 

 

kT

 

ln  being the
corresponding contribution to the Gibbs free energy.
The quantity 

 

kT

 

ln

 

f

 

n

 

 is the contribution from the inter-
action of the aggregates with one another.

Let us recast (1) as

 

(2)

 

where 

 

G

 

n

 

 is the chemical potential (Gibbs energy) of a
molecular aggregate at a fixed standard concentration

 

c

 

st

 

. Formula (2) is valid in the absence and presence of
the interaction between the aggregates in the standard
state. Since the solution was postulated to be ideal, we
assumed that the standard state at the concentration 

 

c

 

st

 

is ideal as well. In other words, we set 

 

f

 

n

 

 = 1 in formu-
las (1) and (2).

When the fluctuation-mode nucleation of aggre-
gates with 

 

n

 

 = 2, 3, … occurs in a solution that initially
contained only surfactant monomers, it is convenient to
set 

 

c

 

st

 

 = 

 

c

 

1

 

; thus, (2) yields

 

(3)

 

The 

 

c

 

st

 

 = 

 

c

 

1

 

 definition is convenient because a solution
containing monomers in a concentration of 

 

c

 

1

 

 is charac-
terized by

 

(4)

 

i.e., the Gibbs energy 

 

G

 

1

 

 coincides with the chemical
potential 

 

µ

 

1

 

, an equality that follows from (3).

Let us consider the most important case in practice,
i.e., aggregation at constant temperature and pressure.
In this case, the Gibbs energy is an appropriate thermo-
dynamic potential (its increment is the work done on
the system). If any of 

 

c

 

1

 

 monomers in a unit volume of
the solution can grow into a molecular aggregate, the
work of aggregation is given by

 

(5)

 

The work 

 

W

 

n

 

 is expressed in 

 

kT

 

 units. The term 

 

n

 

µ

 

1

 

 in
(5), the total Gibbs energy of 

 

n

 

 monomers, suggests that
the formation of aggregates occurs in a solution that ini-
tially contained only monomers. In this case, the work

 

W

 

n

 

 is independent of the concentrations 

 

c

 

n

 

 at 

 

n

 

 

 

≥

 

 

 

2

 

,
being dependent, however, on the concentration of
monomers 

 

c

 

1

 

. As follows from (4) and (5),

 

(6)

 

Indeed, no work is required to form monomers from
monomers.

Let the Gibbs energy per unit volume of solution be

 

G

 

, then, 

 

G

 

 = 

 

.
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At constant temperature and pressure, we have

(7)

If the system is materially isolated, the total concentra-
tion of the solution

(8)

is constant.
Differentiating either side of Eq. (8) yields

(9)

Substituting Eq. (9) into (7) results in

(10)

As can be seen, the aggregative equilibrium for a mate-
rially isolated solution at constant temperature and
pressure (characterized by dG = 0) is attained at

(11)

where the superscript e corresponds to the aggregates
are at equilibrium with one another.

From Eqs. (3) and (5), it follows that

(12)

Combining Eqs. (11) and (12) yields the expression for
the equilibrium concentration of aggregates:

(13)

The equation (13) corresponds to the Boltzmann fluc-
tuation principle. Note that (12) can be obtained
immediately from Eqs. (11) and (13), and the expres-

sion µn –  = kTln(cn/ ) for ideal solutions.

Let An be the chemical affinity defined as

(14)

In view of (14), Eq. (10) can be recast as

(15)

If the aggregates are at equilibrium with one another,
combining Eqs. (11) and (14) yields

(16)

Substituting Eq. (12) into Eq. (14), we obtained

(17)

Expression (17) shows how the affinity An depends on
the work of aggregation and the concentration of aggre-
gates. According to (17), the affinity An increased with
decreasing work Wn and ratio cn/c1.

dG µndcn.
n 1≥
∑=

c c1 ncn

n 2≥
∑+=

dc1 ndcn.
n 2≥
∑–=

dG µn nµ1–( )dcn.
n 2≥
∑=

µn
e( ) nµ1,=

µn nµ1– kT Wn cn/c1( )ln+[ ].=

cn
e( ) c1 Wn–( ).exp=

µn
e( ) cn

e( )

An µn nµ1–( ) n 1 2 …, ,=( ).–=

dG Andcn.
n 2≥
∑–=

An
e( ) 0 n 1 2 …, ,=( ).=

An kT Wn cn/c1( )ln+[ ] n 1 2 …, ,=( ).–=

Since the chemical potentials µn and µ1 for an ideal
solution depend on the concentrations cn and c1 through
the terms kTlncn and kTlnc1, the condition of aggrega-
tive equilibrium (11) yields the law of mass action:

(18)

where the coefficient Kn is independent of the concen-
trations c1 and cn (n ≥ 2), being dependent only on the
aggregation number n.

From Eqs. (13) and (18), it follows that

(19)

The term –(n – 1)lnc1 in Eq. (19) presents an explicit
dependence of the work Wn on the concentration of
monomers c1 (Wn is independent of the concentrations
cn with n ≥ 2). According to the physical meaning of Wn,
its value is independent of whether the concentration of
aggregates corresponds to the state of equilibrium;
therefore, Eq. (19) is valid at an arbitrary concentration
of aggregates in an ideal solution.

2. KINETIC EQUATION OF AGGREGATION
IN MICELLAR SOLUTIONS

According to the principles of the classical nucle-
ation theory [11, 27], the number of molecules in an
aggregates changes only via the addition or removal of
a monomer. Let us consider the corresponding pair of
forward and reverse transitions of aggregates:

{n} + {1}  {n + 1} (n = 1, 2, …), (20)

where {n} denotes aggregates containing n molecules.
An important parameter in the classical nucleation the-
ory is the flux Jn of aggregates for each pair (20), which
reads

(21)

Here,  is the number of monomers added to an aggre-

gate {n} from the solution per unit time and  is the
number of monomers removed into the solution over

the same period. Clearly,  > 0 and  > 0.

The rate of variation of the concentration cn (n ≥ 2)
is expressed through the flux as

(22)

For aggregative equilibrium, when (11) is valid, the
condition of detailed equilibrium between aggregates
should be fulfilled for each pair of transitions; i.e., 

(23)

where  is given by expression (21) at cn = .

Since the aggregates were postulated to be highly

dense,  and  are independent of whether the
solution is in the state of aggregative equilibrium at a

cn
e( ) Knc1

n,=

Wn Knln– n 1–( ) c1.ln–=

Jn jn
+cn jn 1+

– cn 1+ n 1 2 …, ,=( ).–=

jn
+

jn 1+
–

jn
+ jn 1+

–

∂cn/∂t Jn 1– Jn n 2 3 …, ,=( ).–=

Jn
e( ) 0 n 1 2 …, ,=( ),=

Jn
e( ) cn

e( )

jn
+ jn 1+

–
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given concentration c1, combining Eqs. (21) and (23)
yields

(24)

Substituting (13) into (24), we obtain

(25)

Substituting (25) in (21) results in

(26)

Combining Eq. (22) with (26) yields a kinetic equation
for the formation of molecular aggregates. This equa-
tion is also called the Becker–Döring equation of step-
wise evolution; it was first used to describe the kinetic
of homogeneous nucleation of vapor [11]. The mathe-
matical aspects of these equations were considered in
[28]. Using Eq. (17), it is possible to write (26) as

(27)

For aggregative equilibrium, when equality (16) is sat-
isfied, formula (27) confirms detailed equilibrium con-
dition (23).

When performing a detailed description of a non-
equilibrium process in a dispersed system within the
framework of the kinetic theory, it is natural to decide
whether aggregation or disaggregation occurs on the
basis of the ratio of the rates of the forward and reverse
transitions for each pair (20) as a function of the time.
Clearly, for a pair of transitions at a given moment of

jn 1+
– jn

+cn
e( )/cn 1+

e( ) n 1 2 …, ,=( ).=

jn 1+
– jn

+ Wn 1+ Wn–( )exp n 1 2 …, ,=( ).=

Jn jn
+ cn cn 1+ Wn 1+ Wn–( )exp–[ ]=

n 1 2 …, ,=( ).

Jn jn
+cn 1 An 1+ An–( )/kT–[ ]exp–{ }=

n 1 2 …, ,=( ).

time, aggregation or disaggregation occurs depending
on whether Jn > 0 or Jn < 0, respectively.

Since  > 0, formula (27) suggests that

(28)

Using Eq. (17), we obtained

(29)

which shows that the sign of the difference An + 1 – An
depends not only on Wn + 1 – Wn, but also on ln(cn + 1/cn),
i.e., on the random-fluctuation factor. Conditions (28)
and relationship (29) are valid when a dispersed system
evolves starting from an arbitrary initial state.

If a dispersed system contained only monomers at
the initial moment of time, the inequalities c1 � c2 �
c3 � c4… would be satisfied, at least shortly after this
moment, giving rise according to (29) to the inequali-
ties 0 < A2 – A1 < A3 – A2 < A4 – A3 … irrespective of
whether Wn increases with n from W1 = 0 at n = 1. Ine-
qualities (28) suggest that, within a short period after
the initial moment, aggregation is prevalent in the dis-
persed system at any step of the nonequilibrium pro-
cess. The driving force of this process is the random-
fluctuation factor, which, however, can be substantially
counterbalanced by the energetic factor.

To demonstrate that, irrespective of the initial state
of a materially isolated solution at constant temperature
and pressure, the kinetic theory predicts the monotonic
decrease in its Gibbs energy with time, we recast
Eq. (15) as

(30)

Using Eq. (22), we obtained (after changing the sum-
mation index and taking into account that A1 = 0)

(31)

According to (28), at n ≥ 1, the sign of the flux Jn
coincides with that of the difference An + 1 – An; then,
Eq. (31) yields

(32)

The equality in (32) is fulfilled only if Jn = 0 and, hence,
An + 1 – An = 0 at n ≥ 1, i.e., for the aggregative equilib-
rium state of the solution (according to Eqs. (23) and
(27)).

Thus, irrespective of the initial state of a materially
isolated solution at constant temperature and pressure,
the kinetic theory predicts that its Gibbs energy should
monotonically decrease with time (inequality (32))
until the Gibbs energy attains its minimum value at the

jn
+

Jn 0 aggregation( ), if An 1+ An 0>–>
Jn 0 disaggregation( ), if An 1+ An 0<–< 




n 1 2 …, ,=( ).

An 1+ An– kT Wn 1+ Wn– cn 1+ /cn( )ln+[ ]–=

n 1 2 …, ,=( ),

∂G/∂t An∂cn/∂t.
n 2≥
∑–=

∂G/∂t An 1+ An–( )Jn.
n 1≥
∑–=

∂G/∂t 0.≤

n0
0
1 nc ns n

Ws

Wc

Wn
1 2

3∆nc ∆nc ∆ns ∆ns

Dependence of the work Wn of formation of a molecular
surfactant aggregate on the aggregation number n at various
concentrations of surfactant monomers: (1) c < CMC1,
(2) c � CMC1, and (3) CMC1 < c < CMC2; c is the total
concentration of the surfactant, while CMC1 and CMC2 are
the first and second CMCs, respectively.
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final state of aggregative equilibrium of the solution.
Since the monotonic decrease of the Gibbs energy of a
system suggests, according to the principles of thermo-
dynamics, that the system tends irreversibly to the state
of complete thermodynamic equilibrium, inequality (32)
provides a kinetic substantiation of the irreversible evo-
lution of the solution to the state of aggregative equilib-
rium.

That a system tends irreversibly to thermodynamic
equilibrium is one of the main postulates of thermody-
namics. In particular, this postulate underlies the deri-
vation of the conditions of thermodynamic stability of
a system in the state of thermodynamic equilibrium.
The postulate of a system irreversibly tending to ther-
modynamic equilibrium can be substantiated only
within the framework of a kinetic approach, for exam-
ple, Boltzmann kinetic equation, irreversible thermody-
namics equations, Fokker–Planck equation, and Mark-
ovian process equations. The above analysis of the
aggregation in micellar solutions was based on the
Becker–Döring equations ((22) and (26)).

3. SUBCRITICAL, NEAR-CRITICAL, 
AND MICELLAR SIZE REGIONS 

OF AGGREGATES

According to Eq. (19), the work of aggregation Wn

depends on the concentration of monomers c1 through
the term –(n – 1)lnc1. A typical dependence of Wn on n
at various c1 is displayed in the figure. Curve 1 corre-
sponds to a total surfactant concentration substantially
below the first CMC, curve 2 corresponds to a concen-
tration immediately below the first CMC, and curve 3
was obtained at a concentration above the first CMC
but below the second CMC (the case under consider-
ation); the behavior of curve 3 will be considered in
detail. The aggregation numbers for the critical and
stable aggregates, nc and ns, are the positions of the
maximum and minimum in the dependence of Wn on n,
while Wc ≡  and Ws ≡  are, respec-

tively, the height the maximum and depth of the mini-
mum; n0 is the position of the inflection point in the
aggregation work–aggregation number dependence.
The hump in the aggregation work–aggregation num-
ber dependence acts as the barrier to micellation. The
halfwidths of the hump and well in this dependence
read

(33)

The physical meaning of ∆nc and ∆ns will be considered
below. The figure was plotted with consideration given
to equality (6), which means that the monomers ini-
tially present in the solution require no work to be
formed. For the sake of certainty, curve 3 in figure was
plotted for Ws > 0 and not too high c1.

Wn n nc=
Wn n ns=

∆nc 2/ ∂2Wn/∂n2
n nc=[ ]1/2

,=

∆ns 2/ ∂2Wn/∂n2( ) n ns=[ ]1/2
.=

The parameters nc, ns, Wc, Ws, ∆nc, and ∆ns, as the
work Wn itself, depend on the concentration c1 of sur-
factant monomers; these thermodynamic characteris-
tics are used in the kinetic model of micellation consid-
ered below. Let us assume that

(34)

(35)

The first inequalities in (34) and (35) make it possible
to consider n as a continuous parameter in the regions
of the hump and well in the aggregation work–aggrega-
tion number dependence. The rest of the inequalities in
(34) and (35) suggest that the hump and well in the
aggregation work–aggregation number dependence are
located at n values larger than 1 and do not overlap (fig-
ure). This can be expressed by the inequalities

(36)

which follow from (34) and (35). Conditions (34) and
(35) are satisfied if the total surfactant concentration
exceeds, at least slightly, the first CMC (the second of
inequalities (34) is probability satisfied with a small
margin). The conditions (34) and (35) mean that the
aggregation numbers nc and ns are much larger than
one.

Definitions (33) and inequalities (34) and (35)
allowed us to present the aggregation work–aggrega-
tion number dependence in the regions of the hump and
well in the form

(37)

(38)

According to (37) and (38), the work Wn, respectively,
decreases and increases by unity when n deviates from
nc by ∆nc and from ns by ∆ns. This illustrates the phys-
ical meaning of ∆nc and ∆ns. Inequalities (34) and (35)
and entailing inequalities (36) make it possible to
describe kinetics of micellation in macroscopic terms.
These inequalities generalize the conditions of macro-
scopic description suggested in the kinetic theory of
homogeneous and heterogeneous nucleation [14].

Let us call the regions n ≤ nc – ∆nc, nc – ∆nc ≤ n ≤
nc + ∆nc, and n ≥ nc + ∆nc, respectively, subcritical,
near-critical, and supercritical. Most of the micelles are
concentrated within ns – ∆ns ≤ n ≤ ns + ∆ns, the micellar
region; it is located inside the supercritical region. The
quantities ns and ∆ns can be considered the mean aggre-
gation number and the variance of the micelle size dis-
tribution with respect to this mean. The regions of
hump and well in the aggregation work–aggregation

∆nc � 1, ∆nc/nc � 1, ∆nc/ ns nc–( ) � 1,

∆ns � 1, ∆ns/ ns nc–( ) � 1.

Wc � 1, Wc � Ws,expexpexp

Wn Wc

n nc–
∆nc

------------- 
 

2

–=

at nc ∆nc– n nc ∆nc,+≤ ≤

Wn Ws

n ns–
∆ns

------------- 
 

2

+=

at ns ∆ns– n ns ∆ns.+≤ ≤
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number dependence correspond to the near-critical and
micellar regions.

The dependence of the concentrations of aggregates
on the aggregation number will be considered as the
size distribution of molecular aggregates. The majority
of the surfactant aggregates occupy size regions with a
small work of aggregation, i.e., to the left and right of
the hump in the aggregation work–aggregation number
dependence (the subcritical and supercritical regions.
The part of the supercritical region where n ≥ ns + ∆ns
is of no interest to us, since it contains only a tail of the
size distribution of molecular aggregates.

The concentrations of molecular aggregates in the
subcritical and supercritical regions can be assumed to
change so slowly (due to their transport through the
hump in the aggregation work–aggregation number
dependence) that the distribution of aggregates in each
of these regions exists in a quasi-equilibrium state. This
transport, however, precludes the establishment of
quasi-equilibrium between the molecular aggregates in
the subcritical and supercritical regions. The quasi-
equilibrium between these regions is attained as the
micellar solution as a whole attains the state of final
equilibrium, i.e., when the quasi-equilibrium concen-
trations of molecular aggregates in the subcritical and
supercritical regions become completely equilibrium,
as does the size distribution of aggregates in the entire
range of sizes.

Let the quasi-equilibrium and equilibrium concen-
trations of molecular aggregates with aggregation num-

ber n be ; then, for the subcritical and supercritical
regions, we can write

(39)

(40)

According to the Boltzmann principle, the quasi-
equilibrium concentrations read (by analogy with (13))

(41)

For the subcritical and supercritical regions, formula (41)
yields

(42)

(43)

where cs ≡  is the concentration of molecular

aggregates at the minimum in the aggregation work–
aggregation number dependence. That the preexponen-
tial factor in (42) equals c1 follows from the identity
c1 ≡ cn|n = 1 and equality (6). That the preexponential
factor in (43) equals cs follows from the definition of cs

and the obvious equality (Wn – Ws  = 0.

cn
e( )

cn cn
e( ) n nc ∆nc–≤( ),=

cn cn
e( ) n nc ∆nc+≥( ).=

cn
e( ) const Wn–( ).exp×=

cn
e( ) c1 Wn–( ) n nc ∆nc–≤( ),exp=

cn
e( ) cs Wn Ws–( )–[ ] n nc ∆nc+≥( ),exp=

cn n ns=

)
n ns=

Since micelles are accumulated in the micellar
region, their total concentration is given by

(44)

Substituting (40) and (43) in (44), taking to account
approximation (37), replacing (with high accuracy) the
integration limits in (44) by –∞ and ∞, and performing
integration, we obtained at the quasi-equlibrium in the
micellar region

(45)

Relationship (45) makes it possible to recast (43) as

(46)

4. KINETIC EQUATION FOR AGGREGATION
IN THE NEAR-CRITICAL 

AND MICELLAR REGIONS

According to the first of conditions (34) and (35),
the aggregation number n can be considered a continu-
ous variable in the near-critical and micellar regions of
aggregate sizes. Therefore, Eq. (22) can be written as
the equation of continuity,

(47)

where argument t indicates the dependence of cn and yn
on time. Since Wn + 1 – Wn = ∂Wn/∂n, (37) and (38) yield

(48)

(49)

The first of conditions (34) and (35) show that the mod-
uli of the quantities on the right-hand sides of (48) and
(49) are much smaller than unity in the near-critical and
micellar ranges of sizes of aggregates; therefore, with
high accuracy, Eqs. (48) and (49) for these regions can
be rewritten as

(50)

(51)

cM cn n.d

ns ∆ns–

ns ∆ns+

∫=

cM π1/2
cs∆ns.=

cn
e( ) cM/π1/2∆ns( ) Wn Ws–( )–[ ]exp=

n nc ∆nc+≥( ).

∂cn t( )/∂t ∂Jn t( )/∂n,–=

Wn 1+ Wn–
2 n nc–( )

∆nc( )2
----------------------–=

at nc ∆nc– n nc ∆nc,+≤ ≤

Wn 1+ Wn–
2 n ns–( )

∆ns( )2
---------------------=

at ns ∆ns– n ns ∆ns.+≤ ≤

Wn 1+ Wn–( )exp 1
2 n nc–( )

∆nc( )2
----------------------–=

at nc ∆nc– n nc ∆nc,+≤ ≤

Wn 1+ Wn–( )exp 1
2 n ns–( )

∆ns( )2
---------------------+=

at ns ∆ns– n ns ∆ns.+≤ ≤
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If n can be considered a continuous variable,

(52)

Using (26) and (50)–(52) and ignoring the products
of the small quantities ∂cn/∂n, 2(n – nc)/(∆nc)2, and
2(n – ns)/(∆ns)2, we then obtain

(53)

(54)

where  ≡  and  ≡  are the intensities

of the absorption of monomers by critical and stable
aggregates. Relationships (53) and (54) in conjunction
with equation of continuity (47) yield a kinetic equation
of formation of aggregates in the near-critical and
micellar regions of their sizes.

Consider another method of derivation of Eqs. (53)
and (54). Let  be the rate of change of the aggregation
number with time (the derivative of n with respect to the
time). Clearly,

(55)

Since n was assumed to be continuous, Eq. (25) yields

(56)

As discussed above, in the near-critical and micellar
aggregate size regions, the exponent in the exponential
function is small; then, with high accuracy, Eqs. (55)
and (56) for these regions yield

(57)

The flux Jn(t) of molecular aggregates can be pre-
sented as

(58)

The term containing  describes the regular evolution
of a single aggregate, while the term containing the dif-
ferentiation operator ∂/∂n describes the fluctuation-
mode evolution of an ensemble of molecular aggre-
gates, a process that smears aggregate size distribution
during the regular evolution. For the near-critical and
micellar regions, we used Eqs. (57) and (58). The
unknown coefficient β was then determined from the
condition of the molecular aggregate flux becoming
zero at the equilibrium concentrations of the aggregates
(given by (41)); as a result, we obtain

(59)

Rearranging the derivative ∂Wn/∂n in (59) for the near-
critical and micellar regions by using (48) and (49), we
obtain expressions identical to (53) and (54).

cn 1+ cn ∂cn/∂n.+=

Jn t( ) jc
+ 2 n nc–( )/ ∆nc( )2 ∂/∂n+[ ]cn t( )=

at nc ∆nc– n nc ∆nc,+≤ ≤

Jn t( ) js
+– 2 n ns–( )/ ∆ns( )2 ∂/∂n+[ ]cn t( )=

at ns ∆ns– n ns ∆ns,+≤ ≤

jc
+ jn

+

n nc=
js

+ jn
+

n ns=

ṅ

ṅ jn
+ jn

–.–=

jn
–
 � jn

+ ∂Wn/∂n( ).exp

ṅ jn
+∂Wn/∂n.–=

Jn t( ) ṅ β∂/∂n+( )cn t( ).=

ṅ

Jn t( ) jn
+ ∂Wn/∂n ∂/∂n+( )cn t( ).–=

5. DIRECT AND REVERSE FLUXES
OF AGGREGATES THROUGH THE BARRIER 

TO MICELLATION

As discussed above, during micellation, the aggre-
gates transferred through the barrier to micellation (the
hump in the aggregation work–aggregation number
dependence) from the subcritical region to the super-
critical region and back. Let the direct and reverse
fluxes of molecular aggregate near the hump in the
micellation work versus aggregate size dependence be

(t) and (t), respectively, and let the concentrations

of molecular aggregates providing these fluxes be (t)

and (t). The total flux Jn(t) of molecular aggregates
and the overall size distribution of aggregates in the
near-critical region can be written as

(60)

(61)

The considerations underlying the kinetic equation
for the near-critical region derived in the previous sec-
tion (formulas (47) and (53)) are also valid separately
for molecular aggregates migrating from the subcritical
to the supercritical region and those (due to fluctua-
tions) migrating back. Therefore, along with Eqs. (47)
and (53), we obtained the following expressions for the
near-critical region:

(62)

(63)

and

(64)

(65)

Naturally, formulas (60)–(65) are consistent with (47)
and (53).

Let us formulate boundary conditions for the above
equations. Based on the kinetic nucleation theory and
relationships (42), (43), we obtain the boundary condi-

Jn' Jn''

cn'

cn''

Jn t( ) Jn' t( ) Jn'' t( )+=

at   n c ∆ n c – n n c ∆ n c ,+ ≤ ≤

cn t( ) cn' t( ) cn'' t( )+=

at nc ∆nc– n nc ∆nc.+≤ ≤

∂cn' t( )/∂t ∂Jn' t( )/∂n–=

nc ∆nc– n nc ∆nc+≤ ≤( ),

Jn' t( ) jc
+ 2 n nc–( )/ ∆nc( )2 ∂/∂n–[ ]cn' t( )=

nc ∆nc– n nc ∆nc+≤ ≤( ),

∂cn'' t( )/∂t ∂Jn'' t( )/∂n–=

nc ∆nc– n nc ∆nc+≤ ≤( ),

Jn'' t( ) jc
+ 2 n nc–( )/ ∆nc( )2 ∂/∂n–[ ]cn'' t( )=

nc ∆nc– n nc ∆nc+≤ ≤( ).
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tions for Eqs (62), (63), which describe the (t) distri-
bution in the near-critical region, in the form:

(66)

The boundary conditions for Eqs. (64), (65), which
describe the (t) distribution in the near-critical
region, read

(67)

The quasi-equilibrium concentration  in boundary
conditions (66) and (67) is given by (42) at n ≈ nc – ∆nc

and (43) (or (46)) at n ≈ nc + ∆nc.

According to (61), (66), and (67), the boundary con-
ditions for Eqs. (47) and (53) (involving the total size
distribution cn(t) of molecular aggregates in the near-
critical region take the form

(68)

where the quasi-equilibrium concentration  is also
given by (42) at n ≈ nc – ∆nc and (43) (or (46)) at n ≈
nc + ∆nc. In view of the above conclusion that the con-
centrations of molecular aggregates in the subcritical
and supercritical regions are quasi-equilibrium, bound-
ary conditions (68) seem quite natural.

If the concentrations of molecular aggregates in the
subcritical and supercritical regions are quasi-equilib-
rium, the concentration of molecular aggregates in the
near-critical reaction should also be quasistationary.
The terms quasistationary and quasi-equilibrium,
introduced in Section 3, signify that the concentration
of the aggregates are time-independent over sufficiently
long time intervals, which, on the other hand, are too
short for the concentrations c1 and cM to change mark-
edly during the slow process of equilibration of the
micellar solution.

Consider the quasistationary state of molecular
aggregates in the near-critical region. In this state, the
concentrations (t), (t), and cn(t) of aggregates are

time-independent while the fluxes (t), (t), and Jn(t)
are, in addition, independent as follows from the conti-
nuity equations (62), (64), and (47) of n. Let the con-
centrations (t), (t), and cn(t) in the quasistationary

state be denoted as , , and  while the corre-

sponding fluxes as (t), (t), and Jn(t) as J ', J'', and J
(for simplicity, these notations in the case of quasista-

cn'

cn' t( )/cn
e( ) 1 n nc ∆nc–≈( )

0 n nc ∆nc+≈( ),



≈

cn''

cn'' t( )/cn
e( ) 0 n nc ∆nc–≈( )

1 n nc ∆nc+≈( ).



≈

cn
e( )

cn t( )/cn
e( ) 1 n nc ∆nc+−≈( ),≈

cn
e( )

cn' cn''

Jn' Jn''

cn' cn''

cn'
s( )

cn''
s( )

cn
s( )

Jn' Jn''

tionary fluxes do not include n and t). For the near-crit-
ical region nc – ∆nc ≤ n ≤ nc + ∆nc, we can write

(69)

and

(70)

Under quasistationary conditions, the right-hand
sides of equations of continuity (62) and (64) are equal
to zero; therefore, using expressions (63) and (65) for
the fluxes of molecular aggregates, boundary condi-
tions (66) and (67) for the concentrations of molecular
aggregates, and quadratic approximation (37), we
obtain the following relationship for the near-critical
region (nc – ∆nc ≤ n ≤ nc + ∆nc):

(71)

(72)

(73)

(74)

The total size distribution of molecular aggregates and
the total flux of aggregates under quasistationary condi-
tions in the near-critical region (nc – ∆nc ≤ n ≤ nc + ∆nc)
are given by (according to (61), (62))

(75)

(76)

The direct and reverse fluxes (J' and J'') given by for-
mulas (72) and (74) are positive and negative, respec-
tively. According to (72), the direct flux J' increases

with increasing c1 and  and decreasing Wc and ∆nc;
according to (74), the modulus of the reverse flux J'' cM

increases with increasing c1 and  and decreasing
Wc – Ws, ∆nc, and ∆ns. Clearly, J' and J'' are determined
by the numbers of molecular aggregates migrating
through the hump in the micellation work–aggregation
number dependence per unit time in unit volume of the
micellar solution from the subcritical to supercritical
region and back.

cn' t( ) cn'
s( )

, cn'' t( ) cn''
s( )

, cn t( ) cn
s( ),= = =

Jn' t( ) J', Jn'' t( ) J'', Jn t( ) J .= = =

cn'
s( ) c1 Wc–( )exp

π1/2∆nc

-----------------------------=

×
n nc–
∆nc

------------- 
 

2 n' nc–
∆nc

-------------- 
 

2

–exp n',d

n

∞

∫exp

J' c1 jc
+ Wc–( )/π1/2∆nc,exp=

cn''
s( ) cM Wc Ws–( )–[ ]exp

π∆nc∆ns

-------------------------------------------------=

×
n nc–
∆nc

------------- 
 

2 n' nc–
∆nc

-------------- 
 

2

–exp n',d

∞–

n

∫exp

J'' cM– jc
+ Wc Ws–( )–[ ]/π∆nc∆ns.exp=

cn
s( ) cn'

s( )
cn''

s( )
,+=

J J' J''.+=

jc
+
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6. ESTABLISHMENT OF QUASI-EQUILIBRIUM 
DISTRIBUTIONS OF MOLECULAR 

AGGREGATES IN THE SUBCRITICAL 
AND SUPERCRITICAL REGIONS

Let us now consider the initial stages of micellation.
During these stages, the quasi-equilibrium size distri-
butions of the molecular aggregates of surfactant mole-
cules in the subcritical and supercritical regions and the
quasistationary size distribution of surfactant aggre-
gates in the near-critical region are established. Let us
first consider how the quasi-equilibrium distribution of
aggregates in the micellar region (inside the supercriti-
cal region; ns – ∆ns � n � ns + ∆ns) is attained. The time
evolution of the concentrations cn of molecular aggre-
gates is described by the equation of continuity
(Eq. (47)). The flux in the micellar region is given by
formula (54). For the micellar region, the boundary
conditions for the kinetic equation (Eqs. (47) and
(54)) read

(77)

Approximate equality (77) suggests that the concentra-
tion of micelles at the boundaries of the micellar region,
n ≈ ns  ∆ns, is much smaller than at n = ns.

The quasi-equilibrium size distribution of aggre-
gates eventually attained in the micellar region is
described by formula (46), which was derived based on
the Boltzmann fluctuation principle. Substituting
approximation (38) for the work Wn into (46), it is easy
to show that the quasi-equilibrium distribution rapidly
decays as n tends to the boundaries of the micellar
region, n ≈ ns  ∆ns, i.e., satisfies boundary conditions
(77).

Changing from n to the variable

(78)

in the micellar region and assuming that

(79)

we obtained, from (47) and (54), the kinetic equation

(80)

(the differentiation operator acts upon the entire expres-
sion to the right from it). The boundary conditions for
(80) were obtained from (77):

. (81)

According to (46), (78), and (79),

(82)

Equation (80) was solved using Hermite polyno-
mials Hi(ξ) (i = 0, 1, …): H0(ξ) = 1, H1(ξ) = 2ξ,

cn t( ) 0 n ns ∆ns+−≈( ).≈

+−

+−

u n ns–( )/∆ns 1 � u � 1–( )≡

c u t,( ) cn t( ), c e( ) u( ) cn
e( ) 1 � u � 1–( ),≡ ≡

∂c u t,( )
∂t

------------------
js

+

∆ns( )2
--------------- ∂

∂u
------ 2u

∂
∂u
------+ 

  c u t,( )=

1 � u � 1–( )

c u t,( ) 0 u 1+−≈( )≈

c e( ) u( ) const u2–( ) 1 � u � 1–( ).exp×=

H2(ξ) = 4ξ2 – 2, …. The Hermite polynomials satisfy
the recurrence relationships

(83)

and the orthogonality and normalization conditions

(84)

where δii' is the Kronecker symbol and 0! ≡ 1.
By virtue of (83),

(85)

According to (82), the quasi-equilibrium distribution
c(e)(u) satisfies kinetic equation (80) and boundary con-
ditions (81); therefore, the solution to Eq. (80) takes the
form

(86)

The coefficients ki, which are independent of u and t, can
be expressed by (84) through the initial concentration
c(u, t)|t = 0 in the micellar region. The quasi-equilibrium
concentration c(e)(u) could be introduced under the sign
of summation by adding a term with i = 0. This means
that the solution (86) is indeed a general solution, an
expansion over a complete system of functions. As can
be seen from (44), (78), and (84), solution (86) provides
the conservation of the total concentration of micelles.

Solution (86) describes the establishment of a quasi-
equilibrium distribution of molecular aggregates in the
micellar region. As follows from (86), the set of quan-
tities

(87)

is the spectrum of times of establishment of this distri-
bution. The longest and, hence, characteristic time,
denoted as ts, is given by

(88)

According to (88), ts increases with increasing ∆ns and

decreasing .

Let us now examine the establishment of the quasi-
equilibrium distribution of molecular aggregates in the
subcritical region, at n � nc – ∆nc. Since the same sub-

∂
∂ξ
------Hi ξ( ) 2iHi 1– ξ( ),=

2ξ ∂
∂ξ
------– 

  Hi ξ( ) Hi 1+ ξ( )=

π 1/2– ξ2–( )Hi ξ( )Hi' ξ( )exp ξd
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∫ i!2iδii'=

i i', 0 1 …, ,=( ),

∂
∂ξ
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------+ 

  ξ2–( )Hiexp ξ( ) 2– i ξ2–( )Hiexp ξ( )=

i 0 1 …, ,=( ).

c u t,( ) c e( ) u( ) ki 2i js
+t/ ∆ns( )2–[ ]exp

i 1=

∞

∑+=

× u2–( )Hi u( ) 1 � u � 1–( ).exp

ts
i( ) ∆ns( )2/2i js
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critical region is considered in the theory of homoge-
neous nucleation [29, 30], we conclude that the charac-
ter of the establishment of the quasi-equilibrium distri-
bution of molecular aggregates in this region should be
similar to that predicted by this theory. This distribution
is established because of the tendency of molecular
aggregates (which initially have an aggregation number
of 1) to overcome the hump in the aggregation work–
aggregation number dependence. According to the
homogeneous nucleation theory [29, 30], the character-
istic time t' of establishment of the quasi-equilibrium
distribution of molecular aggregates in the subcritical
region (n � nc – ∆nc) is given by

(89)

where  (  > 0) as in Sections 4, 5 is the number of
surfactant monomers absorbed by a critical molecular
aggregate (n = nc) from the solution per unit time. As
can be seen from (89), t' increases with increasing nc

and ∆nc and decreasing .

It remains to understand how the quasi-equilibrium
distribution of molecular aggregates is established
within the nc + ∆nc � n � ns – ∆ns size range, which lies
in the supercritical region to the left from the micellar
region. Clearly, this process occurs due to the tendency
of molecular aggregates (initially located in the micel-
lar region) to overcome the hump in the aggregation
work–aggregation number dependence. Thus, there is
a complete analogy in the character of the establish-
ment of the quasi-equilibrium distribution of molecu-
lar aggregates over the nc + ∆nc � n � � ns – ∆ns and
n � nc – ∆nc ranges. The only difference is that, in the
former case, the quantity ns – nc plays the role of nc.
Thus, by analogy with (89), the characteristic time t'' of
establishment of the quasi-equilibrium distribution of
molecular aggregates over the nc + ∆nc � n � ns – ∆ns
range is given by

(90)

As can be seen from (90), t'' increases with increasing

ns and ∆nc and decreasing nc and .

7. ESTABLISHMENT OF QUASISTATIONARY 
DISTRIBUTIONS OF MOLECULAR 

AGGREGATES IN THE SUBCRITICAL 
AND SUPERCRITICAL REGIONS

The assumption that the distribution of molecular
aggregates in the near-critical size range is quasista-
tionary is important for developing a theory of micella-
tion. Let us consider how this distribution is estab-
lished. The time evolution of the concentrations cn of
molecular aggregates is described by the equation of
continuity (Eq. (47)), in which the flux Jn(t) of molecu-
lar aggregates in the near-critical region is given by
(53). The boundary conditions for the kinetic equation

t' nc∆nc/ jc
+,≈

jc
+ jc

+

jc
+

t'' ns nc–( )∆nc/ jc
+.≈

jc
+

(Eqs. (47) and (53)) in the near-critical region are given
by relationships (68). Expressing the quasi-equilibrium

concentration  of aggregates in (68) by using the
Boltzmann fluctuation principle, we obtained

(91)

Changing from n to the variable

(92)

in the near-critical region and assuming that

(93)

we obtain, from (47) and (53), the kinetic equation

(94)

(the differentiation operator ∂/∂v acts on the entire
expression to the right from it). The boundary condi-
tions for (94) were obtained from (68):

(95)

Combining approximation (37) with expressions (91)–
(93) yields

(96)

Note that the values of the constant in (96) may differ
to the left and right from the near-critical region.
Clearly, when solving Eq. (94) with boundary condi-
tions (95), it is impossible to use directly the results
obtained in Section 6, since expressions (94) and (95)
differ from (80) and (81).

Let c(s)(v) be the quasistationary size distribution of
molecular aggregates eventually established in the
near-critical region; it should satisfy Eq. (94) with
boundary conditions (95). Taking into account that (by
virtue of (83)),

(97)

and that the distribution c(e)(v) rapidly increases with
|v | (according to (96)), we present the general solution
to Eq. (94) with boundary conditions (95) as

(98)

Here, the coefficients pi (independent of v and t) can be
expressed through the initial distribution c(v, t)|t = 0 in
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the near-critical region. The solution obtained is indeed
general, being an expansion of c(v, t) – c(s)(v) in the
complete set of Hermite polynomials Hi(v) (i = 0, 1, …).
The rapid increase of c(e)(v) with |v | is required to make
the effect of the sum in (98) on boundary conditions
(95) small, so as to ensure their fulfillment.

Solution (98) describes the established of a quasis-
tationary distribution of molecular aggregates in the
near-critical region. As can be seen from (98), the set of

quantities , given by

(99)

is the spectrum of times of establishment of this distri-
bution. The longest and hence, characteristic time,
denoted as tc, is given by

(100)

According to (100), tc increases with increasing ∆nc and

decreasing .

8. STAGE OF THE RAPID RELAXATION 
OF THE MICELLAR SOLUTION

Let us now examine how the characteristic time ts is
related to the experimentally measured time of the
rapid relaxation of a micellar solution in order to refine
the concept of rapid relaxation of a micellar solution
(introduced by Aniansson [1–3] and used by many
authors; see, e.g., [4–6, 31]). According to this concept,
the relaxation of a micellar solution can be thought of
as a rapid local rearrangement of the size distribution of
micelles (without changes in the number of micelles in
the micellar region) that occurs after an initial perturba-
tion of the work of aggregation.

Let the superscript 0 denote the quantities after the
rapid relaxation of a micellar solution, then the relative
deviation of the current concentration cn of aggregates

from  is given by

. (101)

Assuming that the rapid relaxation involves the attach-
ment to and detachment of monomers from aggregates
only in the micellar region, we will consider that (101)
describes only aggregates belonging to the micellar
region and monomers (n = 1). Along with the aggrega-
tion number n, by analogy with (78) we will describe
aggregates in the micellar region by the variable

(102)

changing approximately in the region  Note
that the quantities ns and ∆ns in (78) describe the states
of the system at the current concentration of monomers,
which was postulated to be time-independent or only

tc
i( )

tc
i( ) ∆nc( )2/2 i 1+( ) jc

+ i 0 1 …, ,=( ),=

tc ∆nc( )2/2 jc
+.=
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+
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0( )

ξn cn cn
0( )–( )/cn

0( )=

ũ n ns
0( )–( )/∆ns

0( ),=

1– ũ 1< < .

slightly dependent on time, while  and ∆
describe the state after rapid relaxation.

Taking into account (46), (38), and (102), the size
distribution of micelles after rapid relaxation takes the
form

(103)

In Section 6, we considered the solution of the
kinetic equation of aggregation in the micellar region.
The kinetic equation (Eq. (80)) was written under the
assumption that the concentration of monomers in the
solution is constant. At sufficiently high concentration
of micelles in the micellar region (at a monomer con-
centration above the first CMC), the local rearrange-
ment of the size distribution of micelles may result in a
marked change in the concentration of monomers. This
means that, when describing the process of rapid relax-
ation, it is incorrect to consider the monomer concen-
tration constant; therefore, the form of the kinetic equa-
tion should be modified.

Using (101), monomers and aggregates in the micel-
lar region are described by

(104)

(105)

where  ≡ ( ). After rapid relaxation, the
micellar region is characterized by the equality

, (106)

where  is independent of the concentration of
monomers.

Combining definition (21) with Eqs. (104)–(106)
yields the expression for the flux Jn in the form

(107)

As the system approaches the state that arises after the
period of rapid relaxation, ξn becomes much smaller
than unity. Therefore, we can neglect the product ξ1ξn
in comparison with the rest of the terms in (107). For
the micellar region (where n � 1), formula (107) can be
rearranged as

(108)

Combining (47), (104), and (108) makes it possible
to present the kinetic equation for the rapid relaxation

ns
0( ) ns

0( )

cn
0( ) cM

0( )

π1/2∆ns
0( )---------------------e ũ

2– 1– ũ 1< <( ).=

cn t( ) cn
0( ) 1 ξn t( )+( ),=

jn
+ c1 t( )( ) jn

+ 0( ) 1 ξ1 t( )+( ),=

jn
+ 0( ) jn

+ c1
0( )

jn
+ 0( )cn

0( ) jn 1+
– cn 1+

0( )=

jn 1+
–

Jn jn
+ 0( )cn

0( ) ξn ξn 1+–( )=

+ jn
+ 0( )cn

0( )ξ1 jn
+ 0( )cn

0( )ξ1ξn.+

Jn � jn
+ 0( )cn

0( )∂ξn

∂n
-------- jn

+ 0( )cn
0( )ξ1.+–
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of the system in the micellar region as

(109)

As when deriving (54), we can set  �  on the
right-hand side of (109). One important feature of
Eq. (109) is the last term on the right-hand side; as a
result, Eq. (109) is nonuniform. At ξ1(t) = 0, Eq. (109)
can be transformed into Eq. (80).

To determine the current concentration of mono-
mers, it is necessary to use, in addition to Eq. (109),
Eq. (8) of material balance of surfactant for unit volume
of a materially isolated solution. Substituting (104) into
the right-hand side of (8) and taking into account that,
during rapid relaxation, the amount of surfactant in the
solution remains unchanged, we can write

(110)

where definition (101) is extended to be valid at n ≥ 1.

Let us search for the solutions to Eqs. (109), (110)
in the form of the expansion

(111)

over the complete set of Hermite polynomials Hi( ).
Here, qi(t) are -independent expansion coefficients.
Substituting (111) into (110), assuming the main con-
tribution to the sum on the right-hand side of (110)
comes from the micellar region, changing from sum-
mation over n to integration over  on the right-hand
side of (110), and taking into account (103), (102), and
the conditions of orthogonality and normalization of
the Hermite polynomials (relationship (84)), we obtain

(112)

Substituting (111) and (112) into Eq. (109), using (103)
and (102), making scalar products both sides of (109)
with Hi (i = 0, 1, 2, …), and taking into account (83) and
(84), we arrive at

(113)

(114)

cn
0( )∂ξn t( )

∂t
---------------  � 

∂
∂n
------ jn

+ 0( )cn
0( )∂ξn t( )

∂n
--------------- 

 

– ξ1 t( ) ∂
∂n
------ jn

+ 0( )cn
0( )( ).

jn
+ 0( ) js

+ 0( )

c1
0( )ξ1 t( ) ncn

0( )ξn t( ),
n 2=

∞

∑–=

ξn t( ) qi t( )Hi ũ( ) 1– ũ 1< <( )
i 0=

∞

∑=

ũ
ũ

ũ

c1
0( )ζ1 t( ) cM

0( )∆ns
0( )q1 t( )– cM

0( )ns
0( )q0.–=

∂q0 t( )/∂t 0, i.Â. q0 const,= =

∂q1 t( )
∂t

---------------
2 js

+ 0( )

∆ns
0( )( )2

-------------------q1 t( )–=

– js
+ 0( )cM

0( )

c1
0( )------- q1 t( )

ns
0( )

∆ns
0( )------------q0+ ,

(115)

Let

(116)

From (114) and (115) under condition (116), we have

(117)

(118)

Here, q1(0), q2(0), … are the coefficients q1(t), q2(t), …
at the beginning of the rapid relaxation of the system

(t = 0). The characteristic times t1 and  are given by

(119)

. (120)

Note that  is analogous to the characteristic time ts

given by expression (88). If condition (116) is satisfied,
combining (112) and (117) yields

(121)

As can be seen from (104) and (121), the concentration
of monomers c1(t) changes during the period of rapid
relaxation, increasing at q1(0) > 0 and decreasing at
q1(0) < 0. The higher the amplitude of the initial pertur-
bation of the solution, the larger the change in the con-
centration c1(t).

According to (119) and (120),

(122)

(123)

The strong inequality  � 2/(∆ )2 is satisfied
only near the first CMC. As the total concentration of

the solution increases still further, the ratio 
rises rapidly, and, therefore, the time t1 may become

markedly smaller than the time .

Relationships (104), (111), (116)–(118) and (122)
yield

(124)

By virtue of (121),

(125)

∂qi t( )
∂t

--------------
2 js

+ 0( )i

∆ns
0( )( )2

-------------------qi t( ) i 2 3 …, ,=( ).–=

q0 0.=

q1 t( ) q1 0( )e
t /t1–

,=

qi t( ) qi 0( )e
it /ts

0( )–
i 2 3 …, ,=( ).=

ts
0( )

t1
1

js
+ 0( ) 2/ ∆ns

0( )( )2
cM

0( )/c1
0( )+[ ]

----------------------------------------------------------------,=

ts
0( ) ∆ns

0( )( )2
/2 js

+ 0( )=

ts
0( )

ξ1 t( )
cM

0( )∆ns
0( )

c1
0( )--------------------q1 0( )e

t /t1–
.–=

t1 ts
0( ),<

t1 ts
0( ) cM

0( )/c1
0( )

 � 2/ ∆ns
0( )( )2( ).=

cM
0( )/c1

0( ) ns
0( )

cM
0( )/c1

0( )

ts
0( )

cn t( )
t  � ts

0( ) cn
0( ) micellar region( ),=

c1 t( )
t  � t1

c1
0( ).=
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Relationships (124) and (125) show that the time-inde-

pendent distribution  of aggregates in the micellar

region and the monomer concentration  are eventu-
ally attained. Truncating expansion (111) after i = 2, 3, …
makes it possible to replace the condition of validity of

(124), t � , by t � t1, a weaker condition by virtue
of (122). As a result, it becomes clear that the time t1
(given by (119)) is the characteristic time of rapid
relaxation of the micellar solution.

The rapid relaxation of micellar solutions at total
concentrations between the first and second CMCs was
described in [1–7], observed experimentally in [31–
34], and simulated in computer experiments in [35].
Such relaxation can be caused by an instantaneous per-
turbation of an equilibrium micellar solution (for exam-
ple, by a jump in its temperature or pressure). We did
not considered such an external perturbation in the pre-
vious sections, in which the evolution of a surfactant
solution was assumed to occur due to internal pro-
cesses, starting from the moment when only surfactant
monomers were present.

Using relationships (102)–(102), (111), and (116)
and the orthogonality and normalization conditions of
Hermite polynomials (84), we obtain from (44)

(126)

i.e., the total concentration of micelles during the rapid
relaxation of the micellar solution remains constant. At
longer times, however, the total concentration of
micelles will slowly change due to the direct and
reverse quasistationary migration of molecular aggre-
gates through the hump in the aggregation work–aggre-
gation number dependence until the overall equilibrium
between the aggregates in the micellar solution is estab-
lished.

9. SYSTEM OF KINETIC EQUATIONS
FOR DESCRIBING THE RELAXATION

OF A MICELLAR SOLUTION

The quasistationary direct J' and reverse J'' fluxes of
molecular aggregates introduced in Section 5 provide
the fluctuation migration of J' + J'' (J'' < 0) molecular
aggregates per unit time in unit volume from the sub-
critical to the micellar region. Therefore, the rate of
change of the total concentration cM of micelles is
given by

(127)

When the total concentration of surfactant exceeds
the first CMC, a case important for practice, strong ine-
qualities (35) are valid. According to the second of ine-
qualities (35), the deviation ∆ns of the aggregation
number from its mean value is small; therefore, with
high accuracy, the number of surfactant monomers
absorbed by micelles in unit volume of the solution is

cn
0( )

c1
0( )

ts
0( )

cM t( ) cM
0( ),=

∂cM/∂t J' J''.+=

given by nscM. By virtue of the first of conditions (36)
and the ensuing high (at not too high nc values) steep-
ness of the hump in the aggregation work–aggregation
number dependence, we have

As a result, the amount of surfactant in a materially iso-
lated solution at a total surfactant concentration above
the first but below the second CMC at an arbitrary
moment of time is given in accord with (8) by the equa-
tion of bimodal approximation:

(128)

In view of (45) and the definition cs ≡ , the term

nscM in (128) is important when expWs moderately
exceeds ns∆ns, which, according to (35), is large. The
stronger the inequality expWc � expWs in (36), the
more important the role of the term nscM.

Let us examine the evolution of a micellar solution
to its final state under the condition that, at the initial
moment of time (when the surfactant is introduced and
mixed to attain its uniform distribution over the volume
of the solution), the surfactant exists in the monomeric
form. Therefore, at the initial moment, c1 = c, cM = 0,
and J'' = 0 (of the two fluxes, only the direct one, J', dif-
fers from zero). With time, the concentration c1
decreases (at a given total concentration c), while the
concentration cM of micelles gradually increases. As a
result, the reverse flux J'' of aggregates arises, which
increasingly competes with the direct flux J'. After a
long period, when the equilibrium state of a materially
isolated solution is attained, J' = J''.

As follows from (128) and the expressions for J' and
J'' ((72) and (74)), when the dependence of the work of
aggregation Wn on n and the dependences of nc, ns, ∆nc,

∆ns, Wc, Ws, and  on the concentration c1 are known
and when the solution is materially isolated, Eq. (127)
can be reduced to a nonlinear first-order differential
equation with respect to the time for the function c1(t),
with the right-hand side of this equation independent
on t. The general solution to this equation at an arbi-
trary moment of time can be expressed through quadra-
tures. Note, however, that the explicit dependence of Wn

on n is known only for a few models of micelles [19–
21, 36–40]. Therefore, it is interesting to construct ana-
lytical solutions to the kinetic equation of aggregation
of a micellar solution at the final stage of micellation by
using not the entire aggregation work–aggregation
number dependence but only its most representative
features.

Let tilde denote the state of equilibrium of a materi-
ally isolated micellar solution; then,

(129)

ncn � c1.
n 2=

nc ∆nc+

∑

c1 nscM+ c.=

cn n ns=

jc
+

J'˜ J''˜+ 0.=
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Substituting (72) and (74) into (129) yields

(130)

As follows from (130) and formulas (42) and (46)

for the quasi-equilibrium distributions  of molecu-
lar aggregates in the subcritical and supercritical
regions of sizes, in the state of complete equilibrium,
the global equilibrium between all the molecular aggre-
gates present in the micellar solution is established, not
only the local quasi-equilibria between the molecular
aggregates in the subcritical and supercritical regions.
According to (130), (42), and (46), the distribution cor-
responding to the complete equilibrium reads

(131)

Substituting (130) into (128), we obtain

(132)

At a fixed total concentration c and the known depen-
dences of ns, ∆ns, and Ws on the concentration c1 of
monomers, relationship (132) yields an equation for
determining the equilibrium concentration . Once
the equilibrium concentration of surfactant monomers

 is determined, cM is calculated by

(133)

which follows from (128).
If the equilibrium concentration of surfactant mono-

mers  was measured, the concentration c and the

equilibrium concentration  can be determined from

(132) and (133). If the equilibrium concentration  is

measured, the equilibrium concentration  can be

determined by solving Eq. (130) with respect to ,
after which c is calculated using formula (133). Thus,
while a nonequilibrium micellar solution is character-
ized by two independent concentrations of the three
characteristic concentrations (c1, cM, c), an equilibrium
micellar solution is characterized only by one indepen-
dent concentration (due to additional relationship (129)).

Formula (19) yields

(134)

Using the definition of the minimum of the work Wn,
Ws ≡ , we obtain

(135)

Since the work Wn takes its minimum value at n = ns,
(∂Wn/∂n  = 0, and, therefore, a combination of
(135) and (134) yield

(136)

c̃M π1/2c̃1∆ñs W̃s–( ).exp=

cn
e( )

c̃n
e( ) c̃1 W̃n–( ).exp=

c̃1 π1/2c̃1ñs∆ñs W̃s–( )exp+ c.=

c̃1

c̃1

c̃M c c̃1–( )/ñs,=

c̃1

c̃M

c̃M

c̃1

c̃1

∂Wn/∂c1 n 1–( )/c1.–=

Wn n ns=

∂Ws

∂c1
----------

∂Wn

∂c1
----------

n ns=

∂Wn

∂n
----------

n ns=

∂ns

∂c1
--------.+=

)n ns=

∂Ws/∂c1 ns 1–( )/c1,–=

i.e.,

(137)

A similar consideration is applicable to the maximum
of the work Wn, Wc ≡ . In this case,

(138)

(139)

According to (137), the left-hand side of Eq. (132)
increases monotonically with , and, hence, Eq. (132)
has a unique solution at a given total concentration c.
On the strength of (137), there is also only one solution
to Eq. (130) with respect to  at a given concentration

. At  � 1, in view of relationship (136), the depen-
dence of the second term on the left-hand side of

Eq. (132) on  through the factor exp(– ) is rather

sharp; the influence of the factors  and ∆  as func-

tions of  on this dependence is much weaker. An
analysis of Eqs. (132), (136), and (137) led us to the fol-
lowing conclusion. As the total concentration c
increases above the first CMC, the monomer concentra-
tion  also begins to rise above the first CMC, but
more slowly, without exceeding it significantly. 

Let us compare two micellar solutions (marked by
the subscripts 1 and 2) with almost identical concentra-
tions of monomers in the equilibrium state; therefore,
the quantities , , and ∆ , which are slightly sen-
sitive to the monomer concentration [40], virtually

coincide. In this case,  ≈ 1 and, in addition, by
virtue of (136) and (138),

(140)

(141)

Relationships (130) and (140) yield

(142)

Since  � 1, relationship (142) suggests that, at nearly
identical concentrations of monomers in equilibrium
solutions, the concentrations of micelles in these solu-
tions may differ significantly. According to (141) and
(142),

(143)

10. FINAL STAGE OF MICELLATION

Let us solve system of equations (127), (128)
(which describes the kinetics of aggregation of a micel-
lar solution after introducing and mixing the surfactant
to attain its uniform distribution over the volume of the

∂Ws/∂c1 0.<

Wn n nc=

∂Wc/∂c1 nc 1–( )/c1,–=

∂Wc/∂c1 0.<

c̃1

c̃1

c̃M ñs

c̃1 W̃s

ñs ñs

c̃1

c̃1

ñs ñc ñs

c̃1
1( )/c̃1

2( )

W̃s
1( )

/ W̃s
2( )

expexp c̃1
2( )/c̃1

1( )( )
ñs 1–

,=

W̃c
1( )

/ W̃c
2( )

expexp c̃1
2( )/c̃1

1( )( )
ñc 1–

.=

c̃M
1( )/c̃M

2( ) c̃1
1( )/c̃1

2( )( )
ñs

.=

ñs

W̃c
1( )

/ W̃c
2( )

expexp c̃M
2( )/c̃M

1( )( )
ñc 1–( )/ñs

.=
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solution) beginning with a moment of time when the
concentrations c1 and cM are close to their values in the
state of complete equilibrium,  and , while the
reverse flux J'' almost completely counterbalances the
direct flux J', i.e., a moment of time corresponding to
the onset of the final stage of micellation.

Since the characteristics of the solution at its final
stage of evolution deviate only slightly from their equi-
librium value, the kinetic equation of aggregation can
be linearized and, thereby, simplified substantially. Let
the symbol δ in front of a parameter denote its deviation
from its equilibrium value; thus,

(144)

Linearizing Eqs. (127) and (128) and the expres-
sions for the fluxes J ' and J '' (Eqs. (72), (74)) with
respect to δc1 and δc2 and taking into account equality
(129) and the constancy of the total concentration c for
a materially isolated solution, we obtain

(145)

(146)

Here, γ, η, and λ are dimensionless parameters given by

(147)

These parameters describe the dependence of Ws, ∆ns,
and ns on the monomer concentration c1 near its equi-

librium value, . The analogous dependence of ,
Wc, and ∆nc on c1 in (72) and (74) disappeared in (145),

since the dependences of J' and J'' on , Wc, and ∆nc in
(72) and (74) are identical. Equation (136) and the first
relationship in (147) yield

(148)

Based on (72), the flux  in (145) can be presented as

(149)

According to (129), the reverse flux  differs from the

direct flux  only in sign. The solution of system of
equations (145), (146) is straightforward:

(150)

(151)

where the time tr is given by

(152)

c̃1 c̃M

c1 c̃1 δc1, cM+ c̃M δcM.+= =

∂δcM

∂t
------------ J'˜ 1 γ η+ +

c̃1
----------------------δc1

1
c̃M
------δcM– 

  ,=

1 λ+( )δc1 ñsδcM+ 0.=

γ  = c̃1 ∂Ws/∂c1( )–
c1 c̃1=

, η = c̃1 ∂ ∆ns/∂c1ln( )
c1 c̃1=

,

λ c̃M ∂ns/∂c1( )
c1 c̃1=

.=

c̃1 jc
+

jc
+

γ ñs 1.–=

J'˜

J'˜ c̃1 j̃c
+

W̃c–( )/π1/2∆ñc.exp=

J''˜

J'˜

δc1

ñs

1 λ+
------------δcM,–=

δcM const t/tr–( ),exp×=

1
tr

--- J'˜ ñs 1 γ η+ +( )
c̃1 1 λ+( )

-------------------------------- 1
c̃M
------+ .=

Let us examine the role of the parameters η and λ in
(152). From (148) and the second relationship in (147),
it follows that

(153)

The quantity ∆ns depends on c1 only slightly [40], with
the ln∆ns–c1 dependence as follows from (35) being
still weaker; in addition, according to (35), ns � 1.
Then, as can be seen from (153), |η/(1 + γ)| � 1, an
equality that allows one to drop η in (152).

Analogously, due to the weak dependence of the
mean aggregation number ns on the concentration c1
[40] and the third relationship in (147), |λ| � 1, an ine-
quality that makes it possible to disregard λ in (152).

Thus, omitting η and λ in (152) and taking into
account (148), we obtained

(154)

Substituting (149) into (154) yields

(155)

According to (155), the time tr is positive; thus,
solutions (150) and (151) describe the irreversible ten-
dency of a materially isolated micellar solution to the
state of complete equilibrium. As can be seen, the time
tr given by (155) is the characteristic time of relaxation
of the solution during the final stage of micellation. The
constant in (151) is negative, const < 0. This inequality
provides for the increase of the concentration cM of
micelles (according to (151)) and the decrease of the
monomer concentrations c1 (according to (150) at |λ| � 1)
with time. As follows from (155), the time of relaxation
of a micellar solution is independent of its volume.

As can be seen from (128), the quantity  is
the ratio of the amount of surfactant in the micelles in
the state of complete equilibrium of the solution to the
amount of surfactant in the form of monomers. In terms
of the degree of micellization α [18],

(156)

this ratio equals /(1 – ). Typically, the critical
degree of micellization corresponding to the first CMC
is ~0.1, being still higher between the first and second
CMCs. In this case, at  � 1,

(157)

Combining (157) and (155) yields

(158)

η
1 γ+
------------

c̃1

ñs

----
∂ ∆nsln

∂c1
----------------- 

 
c1 c̃1=

.=

1
tr

--- J'˜ ñs
2

c̃1
----- 1

c̃M
------+ 

  .=

tr

π1/2c̃M∆ñc W̃cexp

c̃1 j̃c
+

------------------------------------------ 1
ñs

2c̃M

c̃1
-----------+ 

 
1–

.=

ñsc̃M/c̃1

α nscM/c,≡

α̃ α̃

ñs

ñs
2c̃M/c̃1 � 1.

tr

π1/2∆ñc W̃cexp

ñs
2 j̃c

+
-----------------------------------.=
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Let us now consider how the time tr depends on the
concentration of micelles in the state of complete equi-
librium of the solution when the monomers concentra-
tion is slightly changed, so that , , ∆ , and ∆
(which are weakly sensitive to the monomer concentra-
tion [40]) remain virtually unchanged. Using (142),
(143) and (158) and taking into account that the inten-

sity  of absorption of monomers by a critical molec-
ular aggregate from the solution is proportional to the
concentration of monomers in the solution, we obtained

(159)

As previously, the superscripts 1 and 2 denote the char-
acteristics of two solutions with very similar monomer
concentrations but, possibly, markedly different in the
concentration of micelles in the state of complete equi-
librium of the solution. According to (159), the time of
relaxation of the solution decreases with increasing

total concentration of micelles  as . The higher
the concentration of micelles in the state of complete
equilibrium of the solution, the greater the total concen-
tration of surfactant molecules in it. Then, according to
(159), the time of relaxation of the solution decreases as
the total concentration of surfactant in it increases
above the first CMC.

The time tr was first introduced in [1], where it was
termed the time of slow relaxation of a micellar solu-
tion.

11. APPROACHING THE FINAL STAGE 
OF MICELLATION

Let us now solve the system of kinetic equations of
aggregation (Eqs. (127) and (128)) for the period pre-
ceding the final stage of micellation. Using the equali-
ties ns = , ∆ns = ∆ , nc = ∆ , and ∆nc = ∆ , the
validity of which will be proven at the end of this sec-
tion, we rearrange (127) and (128) at a fixed total con-
centration c of the solution to obtain

(160)

(161)

When deriving (145), we linearized the exponential
function expWs with respect to δc1. Expanding expWs
in the Taylor series in δc1 and taking into account (136),
it is easy to see that the linearization is valid at

(162)

Condition (162) specifies the region on the axis of con-
centrations c1 within which the final stage of micella-
tion occurs. Although this region is relatively narrow at

 � 1, in view of (136), the exponential function
expWs can change substantially within it.

ñs ñc ñs ñc

j̃c
+

tr
1( )/tr

2( ) c̃M
2( )/c̃M

1( )( )
ñc/ñs

.=

c̃M c̃M
ñc/ñs

ñs ñs ñc ñc

c1 ñscM+ c,=

∂c1/∂t ñs J' J''+( ).–=

δc1/c̃1 1/ñs.<

ñs

At ∆ns = ∆  and ∆nc = ∆ , substituting (129) into
(72) and (74) yields

(163)

(164)

Using (163) and (164), we obtained

(165)

At ns = , integration of Eq. (136) yields

(166)

Using (166) and the obvious inequality cM ≤  and
combining (165) with (144), we obtained

(167)

According to (167), at δc1/  > 1/ ,

(168)

Inequality (168) makes it possible to reduce Eq. (161)
to the form

(169)

Note that the ratio of the reverse flux J'' to the direct
one J' changes in passing from monomer concentra-
tions satisfying the inequality δc1/  > 1/  to concen-

trations satisfying δc1/  < 1/ . As can be seen from

(168), at δc1/  > 1/ , J'' is negligibly small, but it

becomes important at δc1/  < 1/ . It is the expression
for J'' (Eq. (74)) (which contains expWs) that leads to
condition (162).

At nc = , integration of (138) results in

(170)

Substituting (170) into (163) and taking into account

that  is proportional to c1 yields

(171)

Substituting (171) into (169), we obtain

(172)

For the region of concentrations with δc1/  > 1/
to exist, it is necessary that the monomer concentration
(1 + 1/ )  (which, according to (144) and (162), is
characteristic of the beginning of the final stage of
micellation) be lower than the monomer concentration

ñs ñc

J' J'˜ c1 jc
+

c̃1 j̃c
+

--------- Wc– W̃c+( ),exp=

J'' J'˜–
cM jc

+

c̃M j̃c
+

----------- Ws W̃s– Wc– W̃c+( ).exp=

J''
J'

--------
cM

c̃M
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c̃1

c1
---- Ws W̃s–( ).exp=

ñs

Ws W̃s–( )exp c̃1/c1( )
ñs 1–

.=

c̃M

J'' /J' ñs 1 δc1/c̃1+( )ln–[ ].exp≤

c̃1 ñs

J'' /J' � 1.

∂c1/∂t ñsJ' δc1/c̃1 � 1/ñs( ).–=

c̃1 ñs

c̃1 ñs

c̃1 ñs

c̃1 ñs

ñc

Wc W̃c–( )exp c̃1/c1( )
ñc 1–

.=
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+

J' J'˜ c1/c̃1( )
ñc 1+

.=

∂c1/∂t ñsJ'˜ c1/c̃1( )
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δc1/c̃1 � 1/ñs( ).–=

c̃1 ñs
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c1 = c corresponding to the beginning of the whole pro-
cess of micellation, i.e.,

(173)

Otherwise, over the entire range of micellation (c ≥ c1 ≥
), condition (162) would be valid, and, therefore, the

process immediately after beginning would enter its
final stage. In this case, the time tr would be identical to
the time required to establish the state of complete equi-
librium in the micellar solution.

The subsequent analysis is based on the assumption
that inequality (173) is valid. The relationship

(174)

which follows from (160), shows that this assumption

is valid only if  > 1. This inequality is consis-
tent with condition (157) and is always satisfied at sur-
factant concentrations above the first CMC.

Integration of Eq. (172) over c1 from c1 = (1 +
1/ )  to c1 = c gives the time required to reach the
final stage of micellation:

(175)

or, with consideration given to (149),

(176)

The period up to t0 corresponds to the stage of accumu-
lation of substance in the micelles (during the final
stage the amount accumulated is negligibly small).

Let us now consider how the time t0 depends on the
concentration of micelles in the state of complete equi-
librium of the solution when the monomers concentra-
tion is slightly changed, so that , , ∆ , and ∆ ,
which are weakly sensitive to the monomer concentra-
tion [40], remain virtually unchanged. Omitting in (176)

[(1 + 1/ ) /c  (in view of (173) and  � 1), using

(142) and (143), and taking into account that  is pro-

portional to the concentration , we obtained

(177)

which is exactly analogous to (159). According to
(177), t0 decreases with increasing micelle concentra-

1 1/ñs+( )c̃1/c 1.<

c̃1

1 1/ñs+( )c̃1

c
-----------------------------

ñs 1+

ñs ñs
2c̃M/c̃1+

-----------------------------,=

ñs
2c̃M/c̃1

ñs c̃1

t0

c̃1

ñsñcJ'˜ 1 1/ñs+( )
ñc
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1 1/ñs+( )c̃1

c
-----------------------------

ñc

–
 
 
 

=

1 1/ñs+( )c̃1/c 1<( ),

t0

π1/2∆ñc W̃c( )exp

ñsñc j̃c
+

1 1/ñs+( )
ñc

------------------------------------------- 1
1 1/ñs+( )c̃1

c
-----------------------------

ñc

–
 
 
 
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1 1/ñs+( )c̃1/c 1<( ).

ñs ñc ñs ñc

ñs c̃1 ]
ñc ñc

jc
+

c̃1

t0
1( )/t0

2( ) c̃M
2( )/c̃M

1( )( )
ñc/ñs

=

1 1/ñs+( )c̃1
1( )/c 1( ) 1 1 1/ñs+( )c̃1

2( )/c 2( ) 1<,<( ),

tion  in the final state inversely proportionally to

.

Equation (172) and the inequality  � 1 suggest
that the rate of the decrease of the monomer concentra-
tion with time is relatively high in a region in which c1

is at least only slightly higher than , i.e., where

(c1/  � 1. Therefore, this region virtually does not
affect the result of integration of Eq. (172). Indeed, in
(175) and (176), the total (initial) concentration of

monomers c (  > c1) enters only in the second term in
the braces, which is much less than unity and, hence,

only slightly affects t0, even if c1 is replaced by ,

which is at least somewhat higher than (1 + 1/ ) .

For example, at  ~ 102 and  ~ 30, it suffices to use

 � (1 + 7/ ) . The fact that the (1 + 7/ )  >

c1 > (1 + 1/ )  range, though extremely narrow,
largely determines the value of t0 substantiates setting
ns = , ∆ns = ∆ , nc = , and ∆nc = ∆  (see above).

12. HIERARCHY OF CHARACTERISTIC TIMES 
OF MICELLATION

Let us now consider a hierarchy of characteristic
times of micellation. The existence of such a hierarchy
is required that the quasi-equilibrium concentrations of
molecular aggregates in the subcritical and supercriti-
cal regions and the quasistationary concentration of
molecular aggregates in the near-critical region, quali-
tatively substantiated in preceeding sections, be estab-
lished. Such a hierarchy gives a visual representation of
the relative values of the characteristic times of forma-
tion and decomposition of micelles and of the complex,
multistage process of approach of the micellar solution
to the state of equilibrium.

Let the mean time interval between two consecutive
emissions of a surfactant monomer by a micelle be τ1.
According to probabilistic–statistical concepts, the
mean time between two consecutive emissions of a sur-
factant monomer by an aggregate comprised of n mol-

ecules is given by 1/ . Since the condition of macro-
scopic description of micellation kinetics is satisfied in
the micellar region, ∆ns � 1, (25) and (49) suggest that,

with a high accuracy,  =  at ns – ∆ns � n � ns + ∆ns.
Using this equality, we obtain

(178)

Since τ1 is the mean time it takes for ns-mer micelle
to emit an arbitrary surfactant molecule, the probability
of emitting a marked molecule (one of ns) is ns longer,
i.e., nsτ1. This quantity can be considered the mean time
of residence of a surfactant molecule in such a micelle.

c̃M

c̃M
ñc/ñs

ñc

c̃1

c̃1 )
ñc

c1
i( )

c1
i( )

ñs c̃1

ñs ñc

c1
i( ) ñs c̃1 ñs c̃1

ñs c̃1

ñs ñs ñc ñc

jn
–

jn
– js

+

τ1 1/ js
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The shorter the time τ1, the greater the ability of a
micelle to change the composition of the constituent
molecules.

Let us now determine the mean lifetime of a micelle.
In Section 5, we derived the expressions for the direct
quasistationary flux J' of molecular aggregates through
the hump in the aggregation work–aggregation number
dependence from the subcritical to the supercritical
region and for the reverse quasistationary flux J''. The
existence of the reverse flux means that J'' molecules
in unit volume per unit time migrate due to fluctua-
tions from the micellar into the subcritical region
(molecular aggregates virtually do not migrate into
the n � ns + ∆ns region due to the rapid growth of the
work of aggregation with increasing n).

The migration of molecular aggregates from the
micellar to the subcritical region means that micelles
decay. This decay is not a single event but occurs by the
multistep mechanism of exchange of surfactant mono-
mers between the molecular aggregates and the micel-
lar solution. This mechanism underlies the derivation of
the kinetic equation of aggregation in Section 2.

It would take time

(179)

for all the micelles to pass from the micellar into the
subcritical region. Here, cM is the total concentration of
micelles; the modulus of J'' is used because it is nega-
tive. Thus, τM is the mean lifetime of a micelle.

Substituting expression (74) for J'' into (179) yields

(180)

According to (180), τM is independent of the total con-
centration of micelles cM and the volume of the micellar
solution. The longer the time τM, the stabler the
micelles.

The emission of surfactant monomers by the molec-
ular aggregates into the micellar solutions and the fluc-
tuation-mode migration of aggregates from the micellar
to the subcritical region occur not only at the initial
stage of micellation but also when the micellar solution
approaches its equilibrium state and even afterwards.
Therefore, the characteristic times τ1 and τM character-
ize not only the initial stage of micellation but also the
subsequent evolution of the micellar solution. Note,
however, that, even at the initial stage of micellation,

when the quantities  and J'' just take nonzero values,
τ1 and τM become physically sensible parameters.

Consider the entire set of characteristic times gov-
erning the kinetics of micellation: τ1, τM, ts, t', t'', tc, t1,
tr, and t0. While the times ts and t' of attainment of quasi-
equilibrium concentrations of molecular aggregates in
the micellar and subcritical regions, the time t'' of
attainment of the quasi-equilibrium concentrations of
the molecular aggregates within the range of the super-
critical region to the left from the micellar region at the
n axis, and time tc of attainment of the quasistationary

τM cM/ J''=

τM π∆nc∆ns Wc Ws–( )/ jc
+.exp=

js
+

concentrations of the molecular aggregates within the
near-critical region characterize the evolution of an
ensemble of molecular aggregates within the character-
istic ranges of aggregation numbers, the mean time τ1
between two consecutive emissions of a surfactant
monomer by a micelle and the mean lifetime τM of a
micelle characterize individual micelles. On the other
hand, the times t1 and tr of rapid and slow relaxation and
the time t0 of attainment of the final stage of micellation
describe the relaxational behavior of the micellar solu-
tion as a whole.

According to (89), (90), and (100),

(181)

Taking into account conditions (34) and using the esti-
mate ns – nc � nc (which suggest that ns – nc and nc can
be comparable), we obtained from (181)

(182)

Combining (88) and (100) yields

(183)

The available analytical model for describing the work
of aggregation Wn for surfactant solutions predict that

∆nc and ∆ns are comparable [40]. Assuming that  and

 are similar, we obtained from (183)

(184)

According to (88) and (178),

(185)

Applying the first of conditions (35) to (185) results in

(186)

Comparing expression (176) for t0 with expression
(158) for tr, and taking into account that the conditions
of validity ((173) and (157)) of these expressions are
compatible, we obtain

(187)

Let  ~ 102 and  ~ 30, quite realistic estimates.

Above the first CMC, at  > 10, the ratio t0/tr

increases only slightly with the total concentration (in
view of (187)), remaining, nevertheless, below 2.5.
Clearly, the sum t0 + tr is the overall time of attainment
of the equilibrium state of the solution. Being accord-
ing to (176) and (158) proportional to the exponential

function exp , the times t0 and tr are highly sensitive,
as this function, to the monomer concentration . In
this case, it is difficult, if not impossible, to observe

t'/tc 2nc/∆nc, t''/tc 2 ns nc–( )/∆nc.≈ ≈

t''/tc � t'/tc � 1.

tc/ts ∆nc/∆ns( )2 js
+/ jc

+( ).=

jc
+
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+
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ts/τ1 ∆ns( )2/2.=

ts/τ1 � 1.
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–=

ñs
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experimentally a small difference between t0, or even
t0 + tr, from tr. Therefore, it is safe to claim that tr not
only determines the time of relaxation of the solution at
the final stage of micellation but also provides an esti-
mate of the time it takes to attain the equilibrium state
of the micellar solution:

(188)

According to (158) and (90)

(189)

(we applied estimate (90) to the final stage of micel-
lation). Since the first of equalities (36) is very strong
due to its exponential character, the condition

exp /[(  – ) ] � 1 is satisfied (according to
(130), this means that the second of inequalities (36) is
much stronger than inequality (157)), we have

(190)

Combining (180), (158), and (130),

(191)

(we applied expression (180) to the final stage of micel-
lation). By virtue of (191),

(192)

In the case when the surfactant in the solution ini-
tially exists in the form of monomers, and, hence, its
evolution to the equilibrium state is governed only by
the internal factors, the set of relationships (182), (184),
(186), (188), (190), and (192) gives the following hier-
archy of characteristic times:

(193)

The last four relationships in (193) are not associated
with restriction (157).

According to (193), the times ts, t', t", and tc are
much shorter than t0 and tr. This rigorously proves that
the quasi-equilibrium concentrations of the molecular
aggregates in the near-critical region are actually
attained. A consequence of strong inequalities (36)
(generally not associated with inequality (157)), the
claim that the times ts, t', t'', and tc are much shorter than
the times t0 and tr is valid, which follows from the t0 and

tr times being proportional to exp .
Consider the hierarchy of characteristic times when

a micellar solution experiences the action of an external
perturbation. In this case, an important characteristic of
the process is the time of rapid relaxation of the solu-
tion (discussed in Section 8). It is this time that charac-
terizes the establishment of the quasi-equilibrium dis-

tr/t0 1.∼

tr/t'' π1/2 W̃c/ ñs ñc–( )ñs
2[ ]exp≈

ñs
2c̃M/c̃1 � 1( )

W̃c ñs ñc ñs
2

tr/t'' � 1 ñs
2c̃M/c̃1 � 1( ).

τM/tr ñs
2c̃M/c̃1 ñs

2c̃M/c̃1 � 1( )=

τM/tr � 1 ñs
2c̃M/c̃1 � 1( ).

τM � t0 tr � t'' � t' � tc ts � τ1∼∼

ñs
2c̃M/c̃1 � 1( ).

W̃c
+

tributions in the subcritical and supercritical regions of
molecular aggregate sizes. According to

(194)

(which follows from (100) and (119) at  ~ ),
the time tc remains to be the time of establishment of the
quasistationary state in the near-critical region of
molecular aggregate sizes in the presence of an external
perturbation of the micellar solution. The concentra-
tions of monomers and micelles at the end of the rapid

relaxation of the solution,  and , are the basic
characteristics for the subsequent analysis. Clearly, the
expressions for the relaxation time of the solution at the
final stage of micellation obtained in Section 10 remain
valid in the presence of an external perturbation, irre-

spective of whether  >  or  < . In view of
(158) and (119),

(195)

(we applied expression (119) to the final stage of micel-
lation). The inequality

(196)

(which follows from (195), strong inequalities (36) (as
noted above, the second of inequalities (36) is much

stronger than (157)), and the estimates  ~  and

(∆ )2/  ~ 1) suggests that it is possible to separate
the overall process of relaxation of a micellar solution
into slow and rapid stages. It is obvious that the times
τ1 and τM retain their physical meaning in the absence
and presence of an external perturbation, with (192)
remaining valid. Note that, according to (184), (186),
and (194), we have

(197)

while, according to (192), inequality (196) yields

(198)

which was assumed to be valid when rapid relaxation
was discussed.

Let us now consider how to extend the expressions
for the time of attainment of the final stage of micella-
tion t0 (obtained in Section 11) to the case of a micel-
lar solution experiencing an external perturbation. To
formulate the main conclusions, we will consider not
the time t0 itself but its maximum value (max t0). If

 > , and, correspondingly, the concentration c1

t1 � tc
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decreases while cM decreases, maxt0 is achieved at

 > (1 + 7/ ) ; then,

(199)

with the main contribution to maxt0 coming from a nar-
row range (1 + 7/ )  > c1 > (1 + 1/ )  of integra-

tion over c1. Within this range, the equalities ns = ,

nc = , ∆ns = ∆ , and ∆nc = ∆ , which were used to
determine maxt0, are fulfilled with a high accuracy. If

 < , and, correspondingly, the concentration c1

increases while cM decreases, maxt0 is achieved at

 < (1 – 4/ ) ; then,

(200)

with the main contribution to maxt0 coming from a nar-
row range (1 – 4/ )  < c1 < (1 – 1/ )  of integra-

tion over c1. Within this range, the equalities ns = ,

nc = , ∆ns = ∆ , ∆nc = ∆ , and cM/  = 1, which
were used to determine maxt0, are fulfilled with a high
accuracy.

Note that, in the integration (over c1) ranges

 > c1 > (1 + 7/ )  and  < c1 < (1 – 4/ )
(unimportant for determining maxt0 but not t0 itself
over the entire range of its possible variation), changes
in c1 and even in cM after rapid relaxation completion

can be significant if  � (1 + 7/ )  and, corre-

spondingly,  � (1 – 4/ ) .

Thus, relationships (192), (194), (196)–(200) spec-
ify the following hierarchy in the characteristic times of
micellation in the presence of an external perturbation
of the micellar solution

(201)

As can be seen, chains of inequalities (201) and (193)
begin with τM and end with τ1. This suggests that
micelles are stable molecular formations and, at the
same time, capable of changing the composition of the
constituent molecules. As can be seen, the mean life-
time of the micelles considerably exceeds the time of
slow relaxation of the micellar solution, to which it is
sometimes attributed.

The above hierarchy of the characteristic times of
micellation between the first and second CMCs in non-
ionic surfactant solutions was recently supported [35]
by numerically solving system of equations (22), (26)
for the kinetics of aggregation within the framework of
a quasi-drop model of micelles. Results of a molecular
dynamics modeling of the kinetics of spontaneous
micellation between the first and second CMCs were

c1
0( ) ñs c̃1

maxt0/tr � 2.5 ñc/ñs � 1/3 c1
0( ) c̃1>,( ),

ñs c̃1 ñs c̃1
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ñc ñs ñc
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0( ) c̃1

c1
0( ) ñs c̃1

maxt0/tr � 0.77 ñc/ñs � 1/3 c1
0( ) c̃1<,( ),

ñs c̃1 ñs c̃1

ñs
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0( ) ñs c̃1 c1

0( ) ñs c̃1

c1
0( ) ñs c̃1

c1
0( ) ñs c̃1

τM � maxt0 tr � tc � t1 � τ1∼

ñs
2c̃M/c̃1 � 1( ).

reported in [41]. The development of experimental stud-
ies of the characteristic times of micellation and the val-
ues of these times for various technological processes in
surfactant solutions were discussed in [42, 43].

CONCLUSIONS

At present, there are comparatively reliable data on
the position of the well in the aggregation work–aggre-
gation number dependence for the formation of molec-
ular surfactant aggregates (the mean micelle size), the
halfwidth of this well (the variance of the micelle size)
and even the depth of the well, i.e., the minimum of the
work of aggregation (from data on the concentration of
micelles). Less reliable data have been obtained on the
position, halfwidth, and, especially, height of the hump
in the aggregation work–aggregation number depen-
dence. Note, however, that the rates of the slowest pro-
cesses of micellation exponentially depend on the
height of this hump (see (158), (176), and (180)), i.e. its
influence is extremely strong.

Formula (158) makes it possible to determine

exp , which is the extremely large and highly sensi-
tive to the concentrations of surfactant monomers, from
the measured time of slow relaxation of the micellar
solution. Although the information about the maximum
work is obtained from the rate of establishment of the
equilibrium state of the solution, it is valid for all of the
states of the micellar solution. Indeed the work of for-
mation of a molecular aggregate and, hence, its maxi-
mum value is independent of whether the micellar solu-
tion exist in the state of complete equilibrium.

Note that the above kinetic approach to describing
the process of micellation made it possible to relate the
maximum work of formation of a molecular surfactant
aggregate to experimental data. The equilibrium micel-
lation theory does not consider this maximum at all—
only the minimum of the work of formation of a molec-
ular aggregate enters into the formulas of this theory (as
in expression (130) for the total equilibrium concentra-
tion of micelles).

Any thermodynamic model of the work of aggrega-
tion in micellar solution relates the amplitudes of the
maximum and minimum of the work of aggregation
and their positions at the aggregation number axis [40].
In this case, experimental data on the characteristic
times of aggregation in a micellar solution can be
related (using the above formulas for describing the
kinetics of aggregation) with its equilibrium character-
istics. Thus, the above kinetic approach to the process
of micellation can be considered as the basis for sys-
tematic tests of the consistency of models of micelles.
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