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As for our intensive use of calculus . . . , we believe it is
unnecessary in the present age to make any apology . . .

For any presentation of this subject which is to be both concise
and comprehensive, calculus is indispensible . . .

Gilbert Newton Lewis, Merle Randall (1923)

Abstract

Even though the micelles themselves are not nuclei of a new phase, premicellar
molecular aggregates evolve in the course of micellization processes and play the
role of critical nuclei (germs) for micelles. This means that nucleation does occur
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290 7 Nucleation in Micellization Processes

in micellization and the methods of nucleation theory can be, in fact, success-
fully applied in micellization kinetics. The present review gives an overview on
the kinetics and thermodynamics of formation of spherical micelles on the basis
of modern kinetic theory of nucleation. We start with thermodynamic aspects,
formulate the kinetic equation of micellization on its basis, consider the char-
acteristic times of aggregation and relaxation processes in surfactant solutions
with spherical micelles, and then return back to the thermodynamic modelling of
micelles themselves (for the case of non-ionic spherical micelles). This approach
allows us to find the relaxation times and other kinetic characteristics of the
micellar solutions in an explicit form.

7.1 Introduction

Nucleation (the formation of a new phase within a metastable ambient phase)
and micellization (formation of micelles in surfactant solutions) have the common
feature to proceed through spontaneous aggregation of molecules or ions. Nev-
ertheless, their kinetic theories have been developed in different pathways. The
kinetic theory of nucleation, founded by Volmer, Becker, Döring, Frenkel and
Zeldovich, is based on the phase approach going back to Gibbs’ thermodynamics
and considering self-forming molecular aggregates as nuclei of a new stable phase
[1, 2].

The phase terminology, used in the theory of micellization, has got initially a
different meaning. First, the population of micelles as a whole was considered
as a macroscopic ”pseudo-phase” participating in a first-order phase transition
[3]. Second, the entire micellar solution was considered as a macroscopic phase
resulting from a second-order phase transition [4]. Third, a single micelle was
considered as a specific microscopic phase not having a macroscopic analogue
[5]. The two first approaches do not have a sound basis [5] although can be
used for some approximate estimations. The third concept is rigorous and related
to the fact that a micelle has a complicated structure resembling a convolute
surfactant monolayer [6 - 12], and cannot be viewed as a nucleus of a real phase.
The final state of a surfactant solution at micellization is the state of aggregative
equilibrium of micelles and monomers, i.e. the equilibrium state of a disperse
system. Increasing the brutto-concentration of a surfactant in a solution above the
critical micelle concentration (until other polymorphic forms of micelles become
favorable) mostly gives only rise to the equilibrium number of spherical micelles.
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7.1 Introduction 291

Even though micelles are not nuclei of a new phase, premicellar molecular aggre-
gates arise in the course of the micellization process and play the role of critical
nuclei (or germs) for micelles themselves. As an indication of this mechanism, one
can consider a maximum in the work of formation of such molecular aggregates
(aggregation work) which corresponds to a minimum in the curve of the equilib-
rium distribution of the aggregates in size [5, 13 - 19]. This maximum precedes
the minimum of the work, along the aggregate size axis, associated with micelles.
This peculiarity has the consequence that nucleation does occur in micellization,
and that the methods of nucleation theory can be in fact successfully applied
in micellization kinetics. At the same time, the application of the theory of nu-
cleation to the micellization process, which has features strikingly different from
common phase transitions, is of interest for the theory of nucleation itself.

Till recent times, the development of the kinetic theory of micellization was re-
tarded by the fact that, in contrast to the situation with micelles, there is a lack
of experimental data on critical premicellar nuclei of micelles. According to nu-
cleation theory [20, 21], the main parameters of the maximum of the aggregation
work are its height and half-width. These parameters enter the equations for the
transition rates and specific times and thus allow one to calculate all kinetic char-
acteristics. Even if direct experimental data are not available, these parameters
can be found, relying on the analytic properties of the aggregation work, with the
aid of data on the aggregation work in other regions of size of the aggregates [22].
Particularly, in the micellization process, the values of these two parameters have
to be consistent with the parameters describing the minimum of the aggregation
work that corresponds to the micelles. Therefore, existing experimental data on
the equilibrium average micelle size and dispersion of micelle sizes give an es-
sential additional information about the whole behavior of the aggregation work
including the region of premicellar sizes. This information is needed for solving
direct and reverse problems of the micellization kinetics.

The review presents the kinetic and thermodynamic theory of formation of spher-
ical micelles based on the modern kinetic theory of nucleation [18, 19, 22 - 29].
Just as the theory of nucleation is based to a significant extent on thermody-
namics, so the kinetic theory of micellization requires data on equilibrium and
non-equilibrium states given by the thermodynamics of micellization. This ne-
cessity explains the organization of the present review where kinetics and ther-
modynamics are analyzed hand-in-hand: we will start with questions of ther-
modynamics of aggregation, formulate the kinetic equation of micellization on
this ground, consider the characteristic times of aggregation and relaxation pro-
cesses in surfactant solutions with spherical micelles, and then return back to
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292 7 Nucleation in Micellization Processes

the thermodynamic modelling of micelles themselves (for the case of non-ionic
spherical micelles) that allows us to find the relaxation times and other kinetic
characteristics of the micellar solutions in an explicit form.

7.2 General Aspects of Micellization: the Law of
Mass Action and the Work of Aggregation

Let us consider a solution of a single nonionic surfactant capable of forming
molecular aggregates. In this case, the role of the solvent is played by a liquid
(for example, water) that is passive with respect to aggregation. The solution
is assumed to be ideal (infinitely dilute). Considering aggregates to be compact
and their temperature equal to that of the solution, the aggregation number,
n (the number of monomers in an aggregate), is assumed to be a characteristic
parameter of the internal state of the aggregate. The choice of such a discrete char-
acteristic parameter is convenient because it is also applicable to the description
of the smallest aggregates beginning from the value n = 1 for single surfactant
molecules. Let us denote further the chemical potential and concentration (i.e.
the number of aggregates per unit volume) of aggregates containing n monomers
by µn and cn, respectively. Employing such notation, µ1 and c1 represent the
chemical potential and concentration of single monomers. In the considered case
of nonionic surfactants, all monomers are identical.

In the analysis of the aggregation processes, it is convenient to introduce the
chemical potential, µn, of a molecular aggregate in the solution by the relation
[18, 23]

µn = G0
n + kBT ln(Λ3

ncnfn) , (7.1)

where G0
n is the Gibbs energy of a single aggregate (consisting of n surfactant

molecules) with fixed center of mass in a pure medium (in the absence of oth-
er aggregates), kB is the Boltzmann constant, T is the absolute temperature of
the solution, Λn = h (2πmnkBT )−1/2 is the average de Broglie wavelength of a
molecular aggregate (h is the Planck constant, mn is the mass of the molecular
aggregate), and fn is the activity coefficient of the aggregate. Λ−3

n is the parti-
tion function for the translational motion of the aggregates, and kBT lnΛ3

n is its
contribution to the free energy. Similarly, kBT ln fn is the contribution from the
interaction of all aggregates with each other.
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We may rewrite Eq. (7.1) as

µn = Gn + kBT ln
(

cn

cst

)
, (7.2)

where Gn is the chemical potential (the Gibbs energy) of the molecular aggre-
gate corresponding to a certain arbitrarily chosen standard concentration cst.
In the thermodynamics of solutions, cst is usually assumed to be unity (in the
corresponding units of measurement) so that only concentration (in fact, a di-
mensionless number which numerically equals concentration) is retained in the
logarithm in Eq. (7.2). Eq. (7.2) is valid both in the absence or presence of any
interactions between aggregates in the standard state. However, since we assume
to consider an ideal system, we suggest that the standard state, corresponding to
the concentration cst, is also an ideal one. In other words, we assume that, both
in Eqs. (7.1) and (7.2), the relation fn = 1 holds.

We are considering here the situation of fluctuational formation of aggregates con-
sisting of n = 2, 3, . . . particles in a solution containing originally single surfactant
monomers only. By this reason, it is convenient to select a standard concentration
cst as cst = c1. In this case, Eq. (7.2) is reduced to

µn = Gn + kBT ln
(

cn

c1

)
. (7.3)

The convenience of such definition cst = c1 follows from the following considera-
tions: in a solution, where monomers are already present with the concentration
c1, the Gibbs energy of a monomer G1 should coincide with the monomer chemical
potential µ1, i.e., the relation

G1 = µ1 (7.4)

should be valid. This identity is ensured in fact by Eq. (7.3).

Addressing the practically most important case, we consider an aggregating sys-
tem at constant temperature and pressure and, correspondingly, we shall use the
Gibbs energy as the thermodynamic potential (its increase equals the minimal
work done on a system to create the same change of its state). If the molecular ag-
gregate is formed at the selected standard concentration, c1 (both for monomers
and aggregates formed), the standard work of molecular aggregate formation (or

vch 24 Jun 2004 23:11



294 7 Nucleation in Micellization Processes

shortly aggregation work), expressed in thermal energy units kBT , is given by
the formula [23]

Wn =
(Gn − nµ1)

kBT
. (7.5)

The term nµ1 in Eq. (7.5), which represents the Gibbs energy of the ensemble of
n non-interacting monomers, enters this relation due to the fact that aggregation
takes place in a solution originally containing single monomers, only. In this case,
the work Wn is independent of the concentrations cn of aggregates with particle
numbers n ≥ 2. However, it depends on monomer concentration c1. At the same
time, the relation

W1 = 0 , (7.6)

which follows from Eqs. (7.4) and (7.5), seems to be natural as well. Indeed,
monomers are already present in a solution, and, hence, no work is required for
their formation.

The Gibbs energy per unit volume of a solution, G, can be written as G =∑
n≥1

µncn. At constant temperature and pressure in the solution, we have

dG =
∑
n≥1

µndcn . (7.7)

Since the solution is considered as a closed system with respect to particle ex-
change, the total surfactant concentration, c, in the solution is constant and
determined as

c = c1 +
∑
n≥2

ncn . (7.8)

Eq. (7.8) yields

dc1 = −
∑
n≥2

ndcn . (7.9)

Substituting Eq. (7.9) into the right-hand side of Eq. (7.7) results in

dG = −
∑
n≥2

(µn − nµ1)dcn . (7.10)
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It follows that the condition dG = 0 of aggregation equilibrium in a solution
(with constant total concentration c and at constant temperature and pressure)
can be written as

µ(e)
n = nµ1 , (7.11)

where the superscript (e) specifies aggregation equilibrium.

With Eqs. (7.3) and (7.5), one can write

µn − nµ1 = kBT

[
Wn + ln

(
cn

c1

)]
. (7.12)

Eqs. (7.11) and (7.12) yield for the equilibrium aggregate concentration c
(e)
n

c(e)
n = c1 exp (−Wn) . (7.13)

Eq. (7.13) corresponds to the Boltzmann fluctuation principle.

Let us introduce the affinity An via

An ≡ − (µn − nµ1) , n = 1, 2, . . . . (7.14)

Eqs. (7.14) and (7.11) show that, at aggregation equilibrium, the relation

A(e)
n = 0 n = 1, 2, . . . (7.15)

holds. With Eq. (7.12), we can express the affinity (defined via Eq. (7.14)) as

An = −kBT

[
Wn + ln

(
cn

c1

)]
. (7.16)

According to Eq. (7.16), the lower the work Wn and the cn/c1 ratio are, the larger
is the affinity An. With Eq. (7.14), Eq. (7.10) can be rewritten as

dG = −
∑
n≥2

Andcn . (7.17)

Taking into account that the chemical potentials µn and µ1 depend (for the
considered ideal solutions) on the concentrations cn and c1 via the terms kBT ln cn
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and kBT ln c1, the condition of aggregation equilibrium, Eq. (7.11), is transformed
into the law of mass action

c(e)
n = Kncn

1 . (7.18)

Here the coefficient Kn does not depend neither on the concentration c1 nor on
the concentrations cn with n ≥ 2, but depends on the aggregation number n.
According to Eqs. (7.13) and (7.18), we have

Wn = − lnKn − (n − 1) ln c1 . (7.19)

The term −(n − 1) ln c1 in Eq. (7.19) explicitly determines the dependence of
the work Wn on monomer concentration c1 (the work Wn is independent of the
concentrations cn with n ≥ 2). Since the work Wn is, by its meaning, not affected
by the condition whether the aggregate concentration is in equilibrium or not,
Eq. (7.19) is valid at arbitrary aggregate concentrations in an ideal solution.

The value of the parameter − ln Kn is known as the work of micellization, W M
n , for

the case when the standard concentration is expressed by the molarity (1 mol/l).
While comparing this work with Wn (then the concentration c1 should also be
expressed in moles), we can see from Eq. (7.19) a significant difference between
W M

n and Wn: if, in an ideal system, the former work is independent of monomer
concentration, the latter, on the contrary, is dependent on this concentration. This
dependence is especially pronounced for micelles with large aggregation numbers.

7.3 General Kinetic Equation of Molecular
Aggregation: Irreversible Behavior in Micellar
Solutions

According to the basic assumptions of the classical kinetic theory of nucleation [1,
2], the number of molecules in an aggregate varies only as a result of absorption
or emission of monomers by the aggregate. This way the kinetics is determined
by the sequences

{n} + {1} � {n + 1} , n = 1, 2, . . . (7.20)

of direct and reverse transitions of the aggregates occurring during this process.
Aggregates containing n monomers are denoted here by {n}, (n = 1, 2, . . .).
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The most important quantity in the classical kinetic theory is the flux of aggre-
gates in the space of cluster sizes according to the mechanism as illustrated in
Eq. (7.20), i.e., occurring due to direct and reverse transitions of the aggregates.
Denoting this flux by Jn, we have

Jn = j+
n cn − j−n+1cn+1 , n = 1, 2, . . . , (7.21)

where j+
n is the number of monomers absorbed by the aggregate {n} from the

solution per unit time; and j−n+1 is the number of monomers emitted from the
aggregate {n + 1} to the solution per unit time. Evidently, the inequalities j+

n > 0
and j−n+1 > 0 hold.

The importance of the flux of aggregates Jn in the aggregate size space is due to
the fact that, according to equation

∂cn

∂t
= Jn−1 − Jn , n = 2, 3, . . . , (7.22)

it determines the variation of aggregate concentration cn with n ≥ 2 in time t.

Let us find the relationship between the rates of emission, j−n+1, and absorption,
j+
n , of monomers by the molecular aggregate. At aggregation equilibrium, i.e.,

under the condition expressed in Eq. (7.11), a detailed balance of direct and re-
verse transitions of aggregates on each sequence Eq. (7.20) should be established,
i.e., the relationship

J (e)
n = 0 , n = 1, 2, . . . (7.23)

should be fulfilled. Here, J
(e)
n is given by Eq. (7.21), where cn has to be replaced

by cn = c
(e)
n . Taking into account that, at the suggested high density of mat-

ter in the aggregates, the rates j−n+1 are independent of whether the solution is
at aggregation equilibrium at a given concentration c1 or not, we obtain from
Eqs. (7.21) and (7.23)

j−n+1 = j+
n

(
c
(e)
n

c
(e)
n+1

)
, n = 1, 2, . . . . (7.24)

Substituting Eq. (7.13) into Eq. (7.24), we arrive at

j−n+1 = j+
n exp (Wn+1 − Wn) , n = 1, 2, . . . . (7.25)
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298 7 Nucleation in Micellization Processes

Then, substituting Eqs. (7.25) into (7.21), we obtain

Jn = j+
n [cn − cn+1 exp (Wn+1 − Wn)] , n = 1, 2, . . . . (7.26)

Finally, a substitution of Eq. (7.26) into Eq. (7.22) leads to the general kinetic
equation of formation of molecular aggregates. It is also called the Becker-Döring
step-by-step equation.

Using Eq. (7.16), let us represent Eq. (7.26) in the following form

Jn = j+
n cn

{
1 − exp

[
−(An+1 − An)

kBT

]}
, n = 1, 2, . . . . (7.27)

In the case of aggregation equilibrium, when Eq. (7.15) is valid, Eq. (7.27) con-
firms the relation of detailed balance, Eq. (7.23).

Applying the kinetic theory to the description of a non-equilibrium process in a
disperse system, it seems natural to generally refer the problem of the occurrence
of aggregation or disaggregation to a single link in the sequence Eq. (7.20) of
direct and reverse transitions performed by the aggregates, and, moreover, to
refer this problem to each current moment of process development. Evidently,
the occurrence of aggregation or disaggregation on this particular link of the
transition sequence depends on the fact whether the inequality Jn > 0 or the
inequality Jn < 0 holds at each moment. In view of inequality j+

n > 0, Eq. (7.27)
allows us to state that

Jn > 0 (aggregation) if An+1 > 0
for n = 1, 2, . . . . (7.28)

Jn < 0 (dissolution) if An+1 < 0

Rewriting Eq. (7.16) as

An+1 − An = −kBT

[
Wn+1 − Wn + ln

(
cn+1

cn

)]
, n = 1, 2, . . . , (7.29)

we can see that the sign of the difference An+1 −An (important in the conditions
given by Eqs. (7.28) for the occurrence of aggregation or disaggregation) depends
not only on the value of Wn+1 − Wn, i.e., on the energy factor, but also on the
value ln (cn+1/cn), i.e., on the fluctuation-probability factor. The conditions, as
given by Eqs. (7.28) and (7.29), are valid for the whole course of the evolution of
the disperse system from arbitrary initial states.
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In particular, if only monomers are present in the systems at the initial moment,
then, at least at the consecutive moments, the inequalities c1 � c2 � c3 �
c4 . . ., are fulfilled with increasing strength. At the same time (cf. Eq. (7.29)),
the inequalities 0 < A2 − A1 < A3 − A2 < A4 − A3 . . ., hold. This result is valid
despite a possible increase in the work Wn with an increase in n beginning with
n = 1 where, according to Eq. (7.6), the work Wn is equal to zero. Then, as it
is seen from Eq. (7.28), at the consecutive moments close to the initial one, the
aggregation occurs at all levels n of the non-equilibrium process in a disperse
system. The aggregation is caused by the probability-fluctuation factor, which
can be counteracted (and even noticeably) by the energy factor.

Let us demonstrate that, irrespective of the initial state of a solution, the ki-
netic theory shows a monotonic decrease in the Gibbs energy of a solution with
time (total concentration, temperature and pressure are assumed to be constant,
again). Rewriting Eq. (7.17) as

∂G

∂t
= −

∑
n≥2

An
∂cn

∂t
(7.30)

and using Eq. (7.22), we obtain (after changing the summation index and taking
into account A1 = 0)

∂G

∂t
= −

∑
n≥1

(An+1 − An) Jn . (7.31)

According to Eq. (7.28), the sign of the flux Jn coincides with that of the difference
An+1 − An at all n ≥ 1. Then it follows from Eq. (7.31) that

∂G

∂t
≤ 0 . (7.32)

The equality sign in Eq. (7.32) holds only when Jn = 0, and, correspondingly,
An+1−An = 0 at all n ≥ 1, i.e., when (in agreement with Eqs. (7.23) and (7.27))
the aggregation equilibrium of the solution is established.

Thus, irrespective of the initial state of a solution, the kinetic theory indeed
shows (according to Eq. (7.32)) a monotonic decrease in the Gibbs energy of a
solution with time up to the moment when the Gibbs energy reaches its minimum
value at the final state of the aggregation equilibrium of the solution. Since, at
the assumed conditions of constant total concentration, constant temperature
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and pressure, a monotonic decrease in the Gibbs energy implies, according to
thermodynamic principles, the irreversible tendency of evolution of the system to
the state of thermodynamic equilibrium, the inequality Eq. (7.32) obtained is the
kinetic substantiation of the irreversible tendency of a solution to its aggregation
equilibrium. As it is well-known, the statement of the irreversible tendency of a
system to thermodynamic equilibrium is one of the most important postulates of
thermodynamics. In particular, the derivation of the conditions of thermodynamic
stability of a system under thermodynamic equilibrium is based on this postulate.

The substantiation of the thermodynamic postulate of the irreversible tendency
of a system to thermodynamic equilibrium may be done only by kinetic theory,
for example, by the kinetic Boltzmann equation, the Fokker-Planck equations,
and the equations of Markovian processes. In our treatment of disperse systems,
Eqs. (7.22) and (7.26) constitute precisely such an equation.

In the outline of the results in the present section, we followed widely Ref. 23.
Other aspects of applying the Becker-Döring step-by-step equation to micelliza-
tion processes as well as the analysis of general properties of this equation can
be found in Refs. 30 - 33.

7.4 Thermodynamic Characteristics of Micellization

Kinetics in the Near-critical and Micellar
Regions of Aggregate Sizes

According to Eq. (7.19) the aggregation work Wn depends on the monomer con-
centration c1 via the term − (n − 1) ln c1. The behavior of the work Wn as a
function of n at variable concentration c1 is shown in Fig. 7.1. Curve (1) cor-
responds to the case when the surfactant concentration has values below the
critical micelle concentration (CMC), i.e. the concentration at which the micelles
accumulate the noticeable part of the surfactants in the solution. Curve (2) cor-
responds to the case when the surfactant concentration is near to the CMC, but
from below. Curve (3) corresponds to the practically important case when the
surfactant concentration exceeds the CMC, but is lower than the concentration
that gives rise to the micelle non-spherical polymorphic transformations in sur-
factant solutions [5, 9, 12, 34]. It is this curve that will be used in our further
analysis.

The positions of the maximum and minimum of the work Wn along the n-axis, i.e.,
the aggregation numbers of critical and stable molecular aggregates, are denoted
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Fig. 7.1 Behavior of the work, Wn, of formation of a surfactant molecular aggregate as a function
of the aggregation number, n, at a variation of concentration, c1, of surfactant monomers
(see text).

by nc and ns, respectively. The values of the barrier height and the well depth of
the work, Wn, are denoted by Wc ≡ Wn|n=nc

and Ws ≡ Wn|n=ns
. The potential

barrier gives rise to the activation barrier of micellization. The half-widths of the
potential barrier and potential well of the aggregation work are denoted by ∆nc

and ∆ns. They are determined by

∆nc =
[
2
/∣∣∂2Wn

/
∂n2

∣∣
n=nc

]1/2
, ∆ns =

[
2
/∣∣∂2Wn

/
∂n2

∣∣
n=ns

]1/2
. (7.33)

The physical meaning of the half-widths ∆nc and ∆ns, introduced by Eq. (7.33),
will be disclosed below. Fig. 7.1 takes into account Eq. (7.6) which implies that
the formation of surfactant monomers, present initially in a micellar solution,
does not require any work. For definiteness, curve (3) in Fig. 7.1 refers to the
case when Ws > 0 (when the concentration c1 is not too high).

The quantities nc, ns, Wc, Ws, ∆nc and ∆ns (as well as the work Wn itself)
depend on the monomer concentration, c1. They represent thermodynamic char-
acteristics of the micellization kinetics. Further, we assume the conditions

∆nc � 1 ,
∆nc

nc
� 1 ,

∆nc

(ns − nc)
� 1 , (7.34)

∆ns � 1 ,
∆ns

(ns − nc)
� 1 (7.35)
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302 7 Nucleation in Micellization Processes

to be fulfilled. The first conditions in Eqs. (7.34) and (7.35) allow us to consider
the aggregation number n as a continuous variable in the regions of potential
barrier and potential well of the work Wn. The remaining conditions in Eqs. (7.34)
and (7.35) imply that the potential barrier and potential well of the work Wn

are fully exhibited. As it is qualitatively shown in Fig. 7.1, they are separated
from the initial point n = 1 at the n-axis and from each other. This property can
also be expressed by the inequalities

exp (Wc) � 1 , exp (Wc) � exp (Ws) , (7.36)

which result from the conditions given in Eqs. (7.34) and (7.35).

Eqs. (7.34) and (7.35) are fulfilled when the total surfactant concentration suffi-
ciently exceeds the CMC (at this, possibly, the second condition in Eq. (7.34) is
valid at its breaking point). In particular, the conditions in Eq. (7.34) and (7.35)
imply that the aggregation numbers nc and ns are much larger than unity.

Eqs. (7.34) and (7.35) make it possible (employing Eqs. (7.33)) to derive the
following quadratic approximations for the work Wn in the regions of its potential
barrier and well

Wn = Wc −
(

n − nc

∆nc

)2

for nc − ∆nc � n � nc + ∆nc , (7.37)

Wn = Ws +
(

n − ns

∆ns

)2

for ns − ∆ns � n � ns + ∆ns . (7.38)

According to Eq. (7.37), the work Wn decreases by a thermal unit when the
variable n deviates from nc by ∆nc. In accordance with Eq. (7.38), the work Wn

increases by a thermal unit when the variable n deviates from ns by ∆ns. These
facts clarify the physical meaning of ∆nc and ∆ns.

The conditions expressed in Eqs. (7.34)-(7.36) allow us to employ a macroscop-
ic description of the micellization kinetics. They generalize the conditions for a
macroscopic description revealed previously [20] in the kinetic theory of nucle-
ation. The regions in aggregate size space n � nc−∆nc, nc−∆nc � n � nc+∆nc

and n � nc + ∆nc are called pre-critical, near-critical, and super-critical regions,
respectively. Micelles are accumulated mainly in the region ns − ∆ns � n �
ns + ∆ns. This region is called the micellar one. It is located within the super-
critical region. The quantities ns and ∆ns have the meaning of the average aggre-
gation number of micelles and the variance of the aggregation number of micelles
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around this average value, respectively. As for the regions of potential barrier and
potential well of the work Wn, we imply that these regions are the near-critical
and micellar regions, respectively.

Molecular aggregates gather mostly in the regions of their sizes, where the work
of aggregate formation is minimal. These regions are located to the left- and
right-hand sides of the potential barrier of work, i.e., they are the pre-critical and
super-critical regions. We are not concerned about the part of the super-critical
region where n > ns + ∆ns, because the concentrations of molecular aggregates
in this region are rather low.

The large amount of molecular aggregates in the pre-critical and super-critical
regions may be assumed to be varied in its relative proportions so slowly that the
aggregate concentrations in each of these separate regions are maintained as quasi-
equilibrium concentrations irrespective of a permanent decrease or increase in the
number of aggregates by their fluxes over the potential barrier of the aggregation
work. However, the mutual quasi-equilibrium between molecular aggregates in the
pre-critical and super-critical regions is absent due to these fluxes. Mutual quasi-
equilibrium is only reached as soon as the final equilibrium of micellar solution is
established when quasi-equilibrium concentrations of molecular aggregates in the
pre-critical and super-critical regions as well as the concentrations of molecular
aggregates within the entire range of their sizes come to complete equilibrium.

Denoting the quasi-equilibrium concentration of molecular aggregates with the
aggregation number n by c

(e)
n (similar to the equilibrium concentration), we have

in the pre-critical and super-critical regions

cn = c(e)
n for n � nc − ∆nc , cn = c(e)

n for n � nc + ∆nc . (7.39)

In accordance with Boltzmann’s fluctuation principle, similar to Eq. (7.13), we
can write

c(e)
n = const · exp (−Wn) . (7.40)

Thus we have in the pre-critical and super-critical regions:

c(e)
n = c1 exp (−Wn) for n � nc − ∆nc , (7.41)

c(e)
n = cs exp [− (Wn − Ws)] for n � nc + ∆nc , (7.42)
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where cs ≡ cn|n=ns
is the concentration of molecular aggregates at the point

of minimal work of their formation. The fact that the pre-exponential factor in
Eq. (7.41) is equal to c1 results from c1 ≡ cn|n=1 and equality Wn|n=1 = 0. The
fact that the pre-exponential factor in Eq. (7.42) is equal to cs results from the
definition of the concentration cs and the evident equality (Wn − Ws)|n=ns

= 0.

Because micelles are accumulated in the micellar region, their total concentration
cM is

cM =

ns+∆ns∫
ns−∆ns

cndn . (7.43)

Employing Eq. (7.42), the quadratic approximation Eq. (7.38) and replacing,
with a high degree of precision, the integration limits by −∞ and ∞, we get from
Eq. (7.43)

cM = π1/2cs∆ns . (7.44)

Using Eq. (7.44), we may rewrite Eq. (7.42) as [19]

c(e)
n =

(
cM

π1/2∆ns

)
exp [− (Wn − Ws)] for n � nc + ∆nc . (7.45)

7.5 Kinetic Equation of Aggregation in the

Near-critical and Micellar Regions of Aggregate
Sizes

Employing the first conditions in Eqs. (7.34) and (7.35), the aggregation number
n may be considered as a continuous variable in the near-critical and micellar
regions of the sizes of molecular aggregates. Thus in these regions, Eq. (7.22)
may be written as a continuity equation

∂cn (t)
∂t

= −∂Jn (t)
∂n

. (7.46)

Taking into account Eqs. (7.37), (7.38) and Wn+1 − Wn = ∂Wn/∂n, we obtain

Wn+1 − Wn = −2
(n − nc)
(∆nc)2

for nc − ∆nc � n � nc + ∆nc , (7.47)
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Wn+1 − Wn = 2
(n − ns)
(∆ns)2

for ns − ∆ns � n � ns + ∆ns . (7.48)

Due to the first conditions in Eqs. (7.34) and (7.35), the absolute values of the
terms in the right-hand sides of Eqs. (7.47) and (7.48) are much smaller than
unity in the near-critical and micellar regions of aggregate sizes. Then, with a
high degree of accuracy, we have from Eqs. (7.47) and (7.48) in these regions

exp (Wn+1 − Wn) = 1 − 2
(n − nc)
(∆nc)2

for nc − ∆nc � n � nc + ∆nc , (7.49)

exp (Wn+1 − Wn) = 1 + 2
(n − ns)
(∆ns)2

for ns − ∆ns � n � ns + ∆ns . (7.50)

Using the approximation cn+1 = cn + ∂cn/∂n and Eqs. (7.49)-(7.50), ig-
noring the products of the small quantities ∂cn/∂n, 2 (n − nc)

/
(∆nc)

2 and

2 (n − ns)
/

(∆ns)
2, we obtain from Eq. (7.26)

Jn (t) = j+
c

[
2
(n − nc)
(∆nc)

2 − ∂

∂n

]
cn (t) for nc − ∆nc � n � nc + ∆nc , (7.51)

Jn (t) = −j+
s

[
2
(n − ns)
(∆ns)

2 +
∂

∂n

]
cn (t) for ns − ∆ns � n � ns + ∆ns , (7.52)

where j+
c ≡ j+

n |n=nc
and j+

s ≡ j+
n |n=ns

are the rates of monomer absorption by
critical and stable aggregates, respectively. Eqs. (7.51), (7.52) and (7.46) result in
the differential kinetic equation describing the formation of molecular aggregates
in the near-critical and micellar regions of their sizes.

Let us briefly sketch also another way of deriving Eqs. (7.51) and (7.52). The
variation of the aggregation number n with respect to time, ṅ, is given by

ṅ = j+
n − j−n . (7.53)

Assuming n to be a continuous variable, Eq. (7.25) yields approximately

j−n = j+
n exp

(
∂Wn

∂n

)
. (7.54)
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As was already mentioned, the derivative ∂Wn/∂n is small in the near-critical
and micellar regions of aggregate sizes. Then, from Eqs. (7.53) and (7.54) we
have in these regions with a high degree of accuracy

ṅ = −j+
n

∂Wn

∂n
. (7.55)

One can also write the flux of molecular aggregates, Jn (t), as

Jn (t) =
(

ṅ + β
∂

∂n

)
cn (t) . (7.56)

The term containing ṅ describes the regular evolution of a single molecular aggre-
gate. The term including the differential operator ∂/∂n describes the fluctuation
evolution of the ensemble of molecular aggregates. This fluctuational contribution
on the evolution is superimposed on the regular one and broadens the regular evo-
lution. Further, we substitute Eq. (7.55) into Eq. (7.56) in the near-critical and
micellar regions. Then, determining the unknown coefficient β from the condition
of vanishing of the flux of molecular aggregates at their equilibrium concentra-
tions given by Eq. (7.40), we obtain

Jn (t) = −j+
n

(
∂Wn

∂n
+

∂

∂n

)
cn (t) . (7.57)

Expressing the derivative ∂Wn/∂n in Eq. (7.57) in the near-critical and micellar
regions by means of Eqs. (7.37) and (7.38), we arrive at the previously obtained
Eqs. (7.51) and (7.52), again.

7.6 Direct and Reverse Fluxes of Molecular
Aggregates over the Activation Barrier of

Micellization

As was already mentioned above, in contrast to nucleation at micellization we
observe, in addition to the direct flux of molecular aggregates overcoming (by
fluctuation) the activation barrier of micellization from the side of the pre-critical
region, the reverse flux of molecular aggregates overcoming (by fluctuation) the
activation barrier of micellization from the side of the super-critical region. Let
us denote the direct and reverse fluxes of molecular aggregates in the region
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of the potential barrier of the work of their formation, i.e., in the near-critical
region, by J ′

n (t) and J ′′
n (t), respectively. Similarly, the concentrations of molecular

aggregates participating in these fluxes in the near-critical region are c′n (t) and
c′′n (t). We have in this case for the total flux Jn (t) of molecular aggregates and
their total concentrations cn (t) in the near-critical region nc−∆nc � n � nc+∆nc

Jn (t) = J ′
n (t) + J ′′

n (t) , (7.58)

cn (t) = c′n (t) + c′′n (t) . (7.59)

The approach employed in the previous sections to derive the kinetic equation of
micellization can be applied separately for the molecular aggregates transferred
(by fluctuations) from the pre-critical to super-critical regions and for molecular
aggregates transferred (by fluctuations) from the super-critical to pre-critical re-
gions. Therefore, similarly to Eqs. (7.46) and (7.51), we have in the near-critical
region nc − ∆nc � n � nc + ∆nc

∂c′n (t)
∂t

= −∂J ′
n (t)
∂n

, (7.60)

J ′
n (t) = j+

c

[
2
(n − nc)
(∆nc)

2 − ∂

∂n

]
c′n (t) (7.61)

as well as

∂c′′n (t)
∂t

= −∂J ′′
n (t)
∂n

, (7.62)

J ′′
n (t) = j+

c

[
2
(n − nc)
(∆nc)

2 − ∂

∂n

]
c′′n (t) . (7.63)

Let us formulate the boundary conditions to Eqs. (7.60)-(7.63). Based on the
ideas of the kinetic theory of nucleation [21] and taking into account the boundary
conditions Eq. (7.39), we conclude that the boundary conditions to Eqs. (7.60)
and (7.61) for the concentrations c′n (t) in the near-critical region are [19]

c′n (t)

c
(e)
n

∼=
{

1 for n � nc − ∆nc ,
0 for n � nc + ∆nc ,

(7.64)
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and the boundary conditions to Eqs. (7.62) and (7.63) for the concentrations
c′′n (t) in the near-critical region are [19]

c′′n (t)

c
(e)
n

∼=
{

0 for n � nc − ∆nc ,
1 for n � nc + ∆nc .

(7.65)

The quasi-equilibrium concentrations c
(e)
n in the boundary conditions Eqs. (7.64)

and (7.65) are determined by Eqs. (7.41) (at n � nc − ∆nc) and (7.45) (at
n � nc + ∆nc).

According to Eqs. (7.59), (7.64) and (7.65), the boundary conditions to Eqs. (7.46)
and (7.51) for the total concentrations cn (t) of molecular aggregates in the near-
critical region are

cn (t)

c
(e)
n

∼= 1 for n � nc ∓ ∆nc , (7.66)

where the quasi-equilibrium concentrations c
(e)
n are given by Eqs. (7.41) (at n �

nc − ∆nc) and (7.45) (at n � nc + ∆nc).

At the quasi-equilibrium concentrations of molecular aggregates in the pre-critical
and super-critical regions, the concentrations cn of molecular aggregates in the
near-critical region will be quasi-stationary ones. The prefix ”quasi” to the words
”equilibrium”, ”steady” and ”stationary” specifies the absence of a significant
time dependence of the concentrations cn within the time intervals, during which
the concentrations c1 and cM do not vary noticeably in the course of the slow
tendency of evolution of the micellar solution to its final state of complete equi-
librium.

Let us study the quasi-steady state of molecular aggregates in the near-critical
region. The concentrations c′n (t), c′′n (t) and cn (t) of the aggregates are indepen-
dent of time t in this state, whereas the aggregate fluxes J ′

n (t), J ′′
n (t) and Jn (t)

are also independent of the aggregation number n (cf. Eqs. (7.60), (7.62) and
(7.46)). We denote the concentrations c′n (t), c′′n (t) and cn (t) in a quasi-steady
state by c

′(s)
n , c

′′(s)
n and c

(s)
n , and the fluxes J ′

n (t), J ′′
n (t) and Jn (t) in this state

by J ′, J ′′ and J (for simplicity of the notations, the quasi-steady state of fluxes
is specified by the omission of the argument n and t). Then, in the near-critical
region, nc − ∆nc � n � nc + ∆nc, we have

c′n (t) = c′(s)n , c′′n (t) = c′′(s)n , cn (t) = c(s)
n (7.67)
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as well as

J ′
n (t) = J ′, J ′′

n (t) = J ′′, Jn (t) = J . (7.68)

The right-hand sides of the continuity equations Eqs. (7.60) and (7.62) are equal
to zero in the quasi-steady state of molecular aggregates. We employ further
Eqs. (7.61) and (7.63) for the fluxes of molecular aggregates and the boundary
conditions Eq. (7.64) and (7.65) (with Eqs. (7.41) and (7.45)). Then, performing
the integration, we obtain in the near-critical region nc − ∆nc � n � nc + ∆nc

[19]

c′(s)n =
c1 exp (−Wc)

π1/2∆nc
exp

[(
n − nc

∆nc

)2
] ∞∫

n

exp

[
−
(

n′ − nc

∆nc

)2
]
dn′ , (7.69)

J ′ = c1j
+
c exp (−Wc)

/
π1/2∆nc , (7.70)

c′′(s)n =
cM exp [− (Wc − Ws)]

π∆nc∆ns
exp

[(
n − nc

∆nc

)2
]
× (7.71)

×
n∫

−∞
exp

[
−
(

n′ − nc

∆nc

)2
]
dn′ ,

J ′′ = −cM j+
c exp [− (Wc − Ws)]

/
π∆nc∆ns . (7.72)

For the total concentrations of molecular aggregates and their total flux in the
quasi-steady state in the near-critical region, we have according to Eqs. (7.59)
and (7.58)

c(s)
n = c′(s)n + c′′(s)n , J = J ′ + J ′′ . (7.73)

Direct J ′ and reverse J ′′ fluxes, given by Eqs. (7.70) and (7.72), are, naturally,
positive and negative, respectively. In accordance with Eq. (7.70), higher values
of c1, j+

c and lower values of Wc and ∆nc result in larger values of the direct flux
J ′. According to Eq. (7.72), the higher cM , j+

c and the lower Wc − Ws, ∆nc and
∆ns, the larger is the absolute value of the reverse flux J ′′.
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7.7 Times of Establishment of Quasi-equilibrium
Concentrations

7.7.1 Pre- and Super-critical Sizes

Let us consider the initial stages of micellization. At these stages, the quasi-
equilibrium concentrations of surfactant molecular aggregates in the pre-critical
and super-critical regions of their sizes, as well as the quasi-steady concentra-
tions of molecular surfactant aggregates in the near-critical region of their sizes,
are established. We will analyze here how this process of establishment of the
quasi-equilibrium concentrations proceeds with time in the pre-critical and super-
critical regions.

Let us consider first the establishment of the quasi-equilibrium state in the mi-
cellar region ns − ∆ns � n � ns + ∆ns. This range of sizes is a part of the
super-critical region. The variations in the concentrations cn of the molecular ag-
gregates with time t are governed then by the continuity equation Eq. (7.46) with
fluxes Jn (t) determined by Eq. (7.52). The boundary conditions to the kinetic
equation can be written in the form

cn (t) � 0 for n � ns ∓ ∆ns . (7.74)

The approximate equality Eq. (7.74) should be interpreted as if the concentrations
of molecular aggregates at the boundaries n � ns ∓ ∆ns of the micellar region
are negligible as compared to the concentration at n = ns. For the description of
the quasi-equilibrium aggregate concentrations, which are established with time
in the micellar region, we have at our disposal Eq. (7.45). Taking into account the
approximation for Wn, as given by Eq. (7.38), we can see from Eq. (7.45) that
the quasi-equilibrium concentrations rather rapidly decrease as n approaches the
boundaries n � ns ∓ ∆ns of the micellar region. Thus, the boundary conditions
Eq. (7.74) are fulfilled.

Let us go over in the micellar region from the variable n to the variable

u ≡ (n − ns)
∆ns

for − 1 � u � 1 . (7.75)

Assuming that

c (u, t) ≡ cn (t) , c(e) (u) ≡ c(e)
n for − 1 � u � 1 , (7.76)
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with Eqs. (7.46) and (7.52) we arrive at the kinetic equation

∂c (u, t)
∂t

=
j+
s

(∆ns)
2

∂

∂u

(
2u +

∂

∂u

)
c (u, t) for − 1 � u � 1 . (7.77)

In this case, the boundary conditions in Eq. (7.74) can be rewritten as

c (u, t) ≈ 0 for u ≈ ∓1 . (7.78)

According to Eqs. (7.45), (7.75) and (7.76), we also have

c(e) (u) = const · exp
(−u2

)
for − 1 � u � 1 . (7.79)

To solve Eq. (7.77), we first recall some properties of the Hermitean polynomials
Hi (ξ) (i = 0, 1, . . .): H0 (ξ) = 1, H1 (ξ) = 2ξ, H2 (ξ) = 4ξ2 − 2,. . . They satisfy
the recurrent relations,

∂

∂ξ
Hi (ξ) = 2iHi−1 (ξ) ,

(
2ξ − ∂

∂ξ

)
Hi (ξ) = Hi+1 (ξ) , (7.80)

and the orthogonality and normalization relations,

π−1/2

∞∫
−∞

exp
(−ξ2

)
Hi (ξ)Hi′ (ξ) dξ = i!2iδii′ for i, i′ = 0, 1, . . . , (7.81)

where δii′ is the Kronecker symbol and 0! ≡ 1. With Eq. (7.80), we obtain

∂

∂ξ

(
2ξ +

∂

∂ξ

)
exp

(−ξ2
)
Hi (ξ) = −2i exp

(−ξ2
)
Hi (ξ) (7.82)

for i = 0, 1, . . . According to Eq. (7.79), the quasi-equilibrium concentrations
c(e) (u) satisfy the kinetic equation Eq. (7.77) and the relevant boundary con-
ditions Eq. (7.78). It follows that the general solution of Eq. (7.77) with the
boundary conditions Eq. (7.78) has (in the range −1 � u � 1) the form

c (u, t) = c(e) (u) +
∞∑
i=1

ki exp
[
−2ij+

s t
/

(∆ns)
2
]
exp

(−u2
)
Hi (u) . (7.83)
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The coefficients ki are independent of u and t. They can be expressed with
Eq. (7.81) via the initial concentrations c (u, t)|t=0 in the micellar region. The
quasi-equilibrium concentrations c(e) (u) can be included into Eq. (7.83) in the
sum over i, adding the term with i = 0 to the sum. This result indicates that
the obtained solution Eq. (7.83) is indeed the general solution: it represents an
expansion in complete system of functions.

Eq. (7.83) describes the establishment of the quasi-equilibrium concentrations of
molecular aggregates in the micellar region. Its analysis shows that the quantities
t
(i)
s can be determined as

t(i)s =
(∆ns)

2

2ij+
s

for i = 1, 2, . . . (7.84)

The quantities represent the spectrum of times required to establish these partic-
ular concentrations. For the largest of these times and, hence, the characteristic
time, ts, we have

ts =
(∆ns)2

2j+
s

. (7.85)

According to Eq. (7.85), the larger ∆ns and the smaller j+
s , the larger is the time

ts.

Now let us find out how the quasi-equilibrium concentrations of molecular aggre-
gates are established with time in the pre-critical region n � nc − ∆nc. We con-
clude that, since the same pre-critical region also exists in the case of nucleation,
the quasi-equilibrium concentrations of molecular aggregates will be established
in the pre-critical region in the same manner as in the course of nucleation. As
was shown in [35, 36], it occurs due to the tendency of molecular aggregates with
the initial aggregation number equal to unity to overcome (by fluctuations) the
potential barrier of the work of their formation. Then, according to [35, 36, 24],
we can estimate the characteristic time, t′, of establishing the quasi-equilibrium
concentrations of molecular aggregates in the pre-critical region n � nc −∆nc as

t′ ≈ nc
∆nc

j+
c

. (7.86)

According to Eq. (7.86), the larger nc and ∆nc and the lower j+
c , the larger is

the time t′.
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Finally, it remains to be shown how the quasi-equilibrium concentrations of molec-
ular aggregates are established with time in the range nc + ∆nc � n � ns −∆ns

of the super-critical region, which is located at the n-axis between the near-
critical and micellar regions. Evidently, it occurs due to the tendency of molec-
ular aggregates, which were originally located in the micellar region, to over-
come (by fluctuations) the potential barrier of the work of their formation in
the backward direction. Hence, there is a complete analogy between the estab-
lishment of the quasi-equilibrium concentrations of molecular aggregates in the
nc + ∆nc � n � ns − ∆ns and n � nc − ∆nc regions. The only difference is
that the role nc is now played by the difference ns − nc. Taking these facts into
account, we estimate, by analogy with Eq. (7.86), the characteristic time, t′′, of
establishment of quasi-equilibrium concentrations of molecular aggregates in the
range nc + ∆nc � n � ns − ∆ns as [24]

t′′ ≈ (ns − nc)
∆nc

j+
c

. (7.87)

The larger ns and ∆nc and the smaller nc and j+
c , then, according to Eq. (7.87),

the larger is the time t′′.

7.7.2 Near-critical Sizes

The assumption of quasi-steady concentrations of molecular aggregates in the
near-critical region of their sizes is important in the kinetic theory of micelliza-
tion. Let us consider how the quasi-steady state is established with time. The vari-
ation in concentrations cn of molecular aggregates with time in the near-critical
region is still determined by the continuity equation Eq. (7.46) where, however,
the flux Jn (t) of molecular aggregates is determined, now, by Eq. (7.51). Accord-
ing to Eqs. (7.66) and (7.40), the boundary conditions to the kinetic equation
Eqs. (7.46) and (7.51) can be rewritten in the near-critical region as

cn(t) = c(e)
n = const · exp [− (Wn − Wc)] for n ≈ nc ∓ ∆nc , (7.88)

where the factor const may be different on the left- and right-hand side from
the near-critical region. Let us go over for the analysis of the behavior in the
near-critical region from the variable n to the variable v via

v ≡ (n − nc)
∆nc

, −1 � v � 1 . (7.89)
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Assuming

c (v, t) ≡ cn (t) , c(e) (v) ≡ c(e)
n for − 1 � v � 1 , (7.90)

we obtain from Eqs. (7.46) and (7.51) the following kinetic equation

∂c (v.t)
∂t

= − j+
c

(∆nc)
2

∂

∂v

(
2v − ∂

∂v

)
c (v, t) for − 1 � v � 1 . (7.91)

Then, substituting Eq. (7.89) into Eq. (7.88), we arrive at the boundary conditions

c (v, t)
c(e) (v)

≈ 1 for v ≈ ∓1 . (7.92)

Employing Eq. (7.37) in Eq. (7.88) and using Eq. (7.89), we get

c(e) (v) = const · exp
(
v2
)

for − 1 � v � 1 . (7.93)

For the determination of the solution of Eq. (7.91) with the boundary condition
Eq. (7.92), we cannot directly use the results obtained in the previous section.
Eq. (7.91) and the conditions Eq. (7.92) differ from Eqs. (7.77) and (7.78). The
quasi-steady concentrations of molecular aggregates, c(s) (v), which are estab-
lished with time in the near-critical region satisfy the kinetic equation Eq. (7.91)
with the boundary conditions Eq. (7.92). From Eq. (7.80), we get further

∂

∂ξ

(
2ξ − ∂

∂ξ

)
Hi (ξ) = 2 (i + 1) Hi (ξ) , i = 0, 1, . . . (7.94)

Then, taking into account that, according to Eq. (7.93), the quasi-steady con-
centrations c(e) (v) increase with |v| quite rapidly, we can represent the general
solution of Eq. (7.91) with the boundary conditions Eq. (7.92) as

c (v, t) = c(s) (v) +
∞∑
i=0

pi exp
[−2 (i + 1) j+

c t

(∆nc)
2

]
Hi (v) for − 1 � v � 1 . (7.95)

The coefficients pi are independent of v and t. They can be expressed, employing
Eq. (7.81), via the initial concentrations c (v, t)|t=0 of aggregates in the near-
critical region. The solution obtained is indeed the general solution: it represents
the expansion of the difference c (v, t) − c(s) (v) in the complete function system
of the Hermitean polynomials Hi (v) (i = 0, 1, . . .). Note that the rapid increase
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in the quasi-equilibrium concentrations c(e) (v) with |v| allows us to neglect the
contribution from the polynomial sum over i in Eq. (7.95) at the boundaries
of the near-critical region, and, hence, provides the fulfillment of the boundary
conditions Eq. (7.92).

Eq. (7.95) describes the establishment of the quasi-steady concentrations of
molecular aggregates in the near-critical region. As it is seen from Eq. (7.95), the
quantities t

(i)
c ,

t(i)c =
(∆nc)

2

2 (i + 1) j+
c

for i = 0, 1, . . . , (7.96)

represent the spectrum of times required to establish these concentrations. For
the largest of these times and, hence, the characteristic time, tc, we have [24]

tc =
(∆nc)

2

2j+
c

. (7.97)

According to Eq. (7.97), the larger ∆nc and the smaller j+
c , the larger is the

time tc.

7.8 Time of Fast Relaxation in Surfactant Solutions

Let us now elucidate the interrelation between the time ts and the time of fast
relaxation of micellar solutions. It is possible to clarify in this way the concept of
the fast relaxation of a micellar solution introduced first in Refs. 13 - 16 and then
widely used in the literature [37 - 40] as the concept corresponding to the process
of local rearrangement of micelles without changing their numbers in the micellar
region. Besides we will investigate the validity of the assumption of constancy of
the monomer concentration at local rearrangement of the micelle size distribution
in the micellar region. The assumption was important for the derivation of the
results obtained in the two preceding sections.

We mark the values corresponding to the end of fast relaxation of micellar solu-
tions with superscript zero. We introduce further with

ξn =

(
cn − c

(0)
n

)
c
(0)
n

(7.98)
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a measure of the relative deviation of current concentrations cn of aggregates
from the concentrations c

(0)
n at the end of the fast relaxation process. Assuming

further that fast relaxation is realized only via the emission and absorption of
monomers in the micellar region, we take into account in Eq. (7.98) exclusively the
aggregates in the micellar region and the monomers at n = 1. For a description
of the aggregates in the micellar region, we use, together with the aggregation
number n, also the variable

w ≡
(
n − n

(0)
s

)
∆n

(0)
s

(7.99)

varying within the range −1 � w � 1. Apparently, the variable w is similar to
the variable u defined by Eq. (7.75). Taking into account Eqs. (7.45), (7.38) and
(7.99), the micelle concentrations c

(0)
n , reached after completion of fast relaxation,

can be written as

c(0)
n =

(
c
(0)
M

π1/2∆n
(0)
s

)
exp (−w2) for − 1 � w � 1 . (7.100)

We considered the solution of the kinetic equation of aggregation in the micellar
region already in Section 7.7. There the kinetic equation Eq. (7.77) was formulated
under the assumption of constancy of the monomer concentration in surfactant
solution. With sufficiently large micelle concentrations in the micellar region,
the local rearrangement of the micelle distribution in sizes may be followed by
considerable changes in the monomer concentration. Thus we cannot set a priori
the monomer concentration as constant in the consideration of fast relaxation.
Therefore we need to refine the form of the kinetic equation of aggregation in the
micellar region. With Eq. (7.98), we have

cn (t) = c(0)
n (1 + ξn (t)) for n ≥ 1 , j+

n (t) = j+(0)
n (1 + ξ1 (t)) . (7.101)

where j
+(0)
n = j+

n

(
c
(0)
1

)
. As follows from Eq. (7.21), the relations of detailed

balance after completion of fast relaxation can be written in the micellar region
as

j+(0)
n c(0)

n = j−n+1c
(0)
n+1 . (7.102)
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According to the definition Eq. (7.21) and taking into account Eqs. (7.101)-
(7.102), the flux Jn of aggregates can be expressed as

Jn = j+(0)
n c(0)

n (ξn − ξn+1) + j+(0)
n c(0)

n ξ1 + j+(0)
n c(0)

n ξ1ξn . (7.103)

Approaching the state of completion of fast relaxation, we have ξn � 1. This
inequality allows us to neglect the last term on the right-hand side of Eq. (7.103)
and to rewrite Eq. (7.103) at n � 1 as

Jn � −j+(0)
n c(0)

n

∂ξn

∂n
+ j+(0)

n c(0)
n ξ1 . (7.104)

With Eqs. (7.46), (7.98) and (7.104) the desired kinetic equation of fast relaxation
can be written as

c(0)
n

∂ξn (t)
∂t

� ∂

∂n

(
j+(0)
n c(0)

n

∂ξn (t)
∂n

)
− ξ1 (t)

∂

∂n

(
j+(0)
n c(0)

n

)
. (7.105)

As we did before, for a description of the evolution within the micellar region we
can set j

+(0)
n � j

+(0)
s on the right-hand side of Eq. (7.105). One important pecu-

liarity of Eq. (7.105) is the presence of the last term on the right-hand side. The
kinetic equation becomes inhomogeneous due to this term. Eq. (7.105) transforms
at ξ1 (t) = 0 into the homogeneous equation Eq. (7.77).

In addition to Eq. (7.105), we have to use Eq. (7.8) of mass balance of the
surfactant per volume unit of the solution. Substituting the first expression in
Eqs. (7.101) into the right-hand side of Eq. (7.8) and recognizing that the total
surfactant concentration c remains the same after the completion of the fast
relaxation process, we find

c
(0)
1 ζ1(t) = −

∞∑
n=2

nc(0)
n ζn(t) . (7.106)

We will search for a solution of Eqs. (7.105) and (7.106) on the basis of the
expansion

ξn(t) =
∞∑
i=0

qi (t)Hi (w) for − 1 � w � 1 (7.107)

in the full system of the Hermitean polynomials Hi (w), where qi (t) are w-
independent coefficients of expansion, which are the desired functions of time
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t. Substituting Eq. (7.107) into Eq. (7.106) and assuming that the main contri-
bution to the sum on the right-hand side of Eq. (7.106) is given by the micellar
region, passing from summation over n to integration over w with Eq. (7.99),
taking into account Eq. (7.100) and the orthogonality relations Eqs. (7.81), we
obtain

c
(0)
1 ζ1(t) = −c

(0)
M ∆n(0)

s q1(t) − c
(0)
M n(0)

s q0 . (7.108)

Substituting further Eqs. (7.107) and (7.108) into Eq. (7.105) and using again
Eqs. (7.99) and (7.100), computing the scalar products of both sides of Eq. (7.105)
with the Hermitean polynomials Hk, k = 0, 1, 2, . . . and taking into account
Eq. (7.81), we get (∂q0(t)/∂t) = 0, i.e., q0 =const, and

∂q1(t)
∂t

= − 2j+(0)
s

(∆n
(0)
s )2

q1(t) − j+(0)
s

c
(0)
M

c
(0)
1

(
q1(t) +

n
(0)
s

∆n
(0)
s

q0

)
, (7.109)

∂qk(t)
∂t

= − 2j+(0)
s k

(∆n
(0)
s )2

qk(t) for k = 2, 3, . . . . (7.110)

We assume here further that

q0 (t) = 0 (7.111)

holds. Condition Eq. (7.111) is required to guarantee that the final concentrations
c
(0)
n are indeed achieved at the end of fast relaxation of the micellar solution.

Eqs. (7.109)-(7.111) yield

q1 (t) = q1(0) exp
(
− t

t1

)
, qk (t) = qk(0) exp

(
− kt

t
(0)
s

)
(7.112)

for k = 2, 3, . . .. Here, q1 (0), q2 (0) , . . . are the values of the coefficients q1 (t),
q2 (t) , . . . at the initial (for fast relaxation) time t = 0. The times t1 and ts

(0)

are defined by

t1 =
1

j
+(0)
s

 2(
∆n

(0)
s

)2 +
c
(0)
M

c
(0)
1


−1

, t(0)s =

(
∆n0

s

)2
2j+(0)

s

. (7.113)
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Note that the time ts
(0) is an analogue of the characteristic time ts given by

Eq. (7.85). According to Eqs. (7.108) and (7.112), the relation

ξ1 (t) = −c
(0)
M ∆n

(0)
s

c
(0)
1

q1 (0) e−t/t1 (7.114)

holds as well provided that Eq. (7.111) is fulfilled.

Eqs. (7.43), (7.99), (7.100), (7.101), (7.107), (7.111) and (7.81) result in

cM (t) = c
(0)
M , (7.115)

i.e. the total number of micelles is constant during the fast relaxation process in
a micellar solution. According to Eqs. (7.113), we have further

t1 < t(0)s , and t1 = t(0)s for
c
(0)
M

c
(0)
1

� 2(
∆n

(0)
s

)2 . (7.116)

For the micelles, we get from Eqs. (7.101), (7.107), (7.111)-(7.112) and (7.116)
that

cn (t)|t>>ts(0) = c(0)
n (7.117)

holds. For monomers, Eqs. (7.114) and (7.101) lead to

c1 (t)|t�t1
= c

(0)
1 . (7.118)

Eqs. (7.117) and (7.118) indicate that the time-independent aggregate concen-
trations c

(0)
n in the micellar region and the monomer concentration c

(0)
1 are ac-

tually established with time. If the contributions from the higher terms of the
expansion Eq. (7.107) with i = 2, 3, . . . are ignored, then the condition of applica-
bility t � ts

(0) of Eq. (7.117) can be substituted by a weaker (as compared with
Eq. (7.116)) condition t � t1. Then, it is evident that the time t1 defined by the
first expression in Eq. (7.113) is the time of fast relaxation of a micellar solution.

Fast relaxation of a micellar solution, as described in Refs. 13 - 16, is directly
observable in experiment [37 - 39, 41 - 44] and has been found in numerical
modelling [45, 46]. This relaxation can be caused by the instantaneous external
disturbance (for example, by temperature or pressure jumps) of the equilibrium
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micellar solution at the initial moment t = 0. The external disturbance of the
solution was not considered in the previous sections, where the evolution of the
solution was due exclusively to internal processes beginning with the time when
only monomers were present in a solution.

According to Eqs. (7.114) and (7.101), the monomer concentration c1 (t) varies
in the period of fast relaxation of the solution; it increases at q1 (0) > 0 and, on
the contrary, decreases at q1 (0) < 0. The greater the initial solution disturbance,
the greater is the variation of the concentration c1 (t).

According to Eq. (7.115), the total micelle concentration cM (t) does not vary in
the course of fast relaxation of a micellar solution. However, the micelle concen-
tration varies at the slower (final) stage of micellization as well as at the stage
preceding its establishment. This variation is caused by the existence of direct
J ′ (J ′ > 0) and reverse J ′′ (J ′′ < 0) fluxes of molecular aggregates over the
potential barrier of aggregation work and will be considered in the next section.

7.9 Time of Slow Relaxation in Surfactant Solutions

Direct J ′ and reverse J ′′ fluxes of molecular aggregates over the potential barrier
of the aggregation work result in the fluctuation transfer of the total number
J ′ + J ′′ (J ′′ < 0) of molecular aggregates from the pre-critical to the micellar
regions in a unit volume of micellar solution per unit time. As a result, we have

∂cM

∂t
= J ′ + J ′′ . (7.119)

In the case (which is of interest for practice and the forthcoming analysis),
where the surfactant concentration exceeds the critical micellization concentra-
tion (CMC), the strong inequalities Eq. (7.35) are valid. According to the second
inequality in Eq. (7.35), the scattering ∆ns of the micellar aggregation numbers
with respect to their average value ns is quite small. Therefore, the number of
surfactant monomers absorbed by micelles in a unit volume of a micellar solu-
tion is equal to nscM with a high degree of accuracy. Then, due to the condition
exp (Wc) � 1 and the resultant steep slope of the potential barrier of the ag-

gregation work (at not too large values of nc), the inequality
nc+∆nc∑

n=2
ncn � c1 is

fulfilled. As a result we have (cf. Eq. (7.8)) the equation of a bimodal approxi-
mation for the total concentration of the surfactant in solution, i.e.,

c1 + nscM = c . (7.120)
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According to Eq. (7.44) the term nscM is of significance in Eq. (7.120) if exp (Ws)
does not exceed ns∆ns too much. The stronger the inequality exp (Wc) �
exp (Ws), the more noticeable is the role of the term nscM .

In the considered case of a closed micellar solution, the total concentration c has
a preset value exceeding the CMC. Let us investigate the time evolution of such
a solution, assuming that, in the initial moment when the surfactant is added
to the solvent and mixed throughout its volume, almost the whole amount of
dissolved surfactant is present in the system in form of monomers only. Hence,
at the initial moment, the conditions c1 = c, cM = 0 and J ′′ = 0 (only the direct
flux J ′ exists) are valid. The concentration c1 decreases with time (at a given
total concentration c), while the micelle concentration cM becomes different from
zero and gradually increases. Correspondingly, the reverse flux J ′′ of molecular
aggregates develops, which progressively starts to compete with their direct flux
J ′. At fairly long times, the reverse flux J ′′ begins to fully compensate the direct
flux J ′. In this case, the closed micellar solution comes to equilibrium.

With Eq. (7.120) and Eqs. (7.70) and (7.72) for the fluxes J ′ and J ′′ at the known
dependence of the aggregation work Wn on n and, hence, at the known depen-
dences of nc, ns, ∆nc, ∆ns, Wc, Ws, and j+

c on concentration c1, the relaxation
equation Eq. (7.119) can be reduced to a nonlinear first-order differential equa-
tion with separable variables. The solution of this equation with respect to the
monomer concentration c1(t) can be written in a general form in quadratures
over the entire time interval. However, the dependence of Wn on n is known only
in some particular cases for specific models of micelles. Therefore, it is of interest
to analytically solve the problem of the relaxation of the micellar solution at the
final stage of micellization near the state of the complete equilibrium of a solu-
tion as well as the problem of the determination of the time of establishment of
this final stage, using only the most representative general characteristics of the
aggregation work Wn instead of the whole dependence of Wn on n.

Denoting the values characterizing the equilibrium state of the closed micellar
solution by the upper tilde, we have

J̃ ′ + J̃ ′′ = 0 . (7.121)

Substituting Eqs. (7.70) and (7.72) into Eq. (7.121), we obtain

c̃M = π1/2c̃1∆̃ns exp
(
−W̃s

)
. (7.122)
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As follows from Eq. (7.122), (7.41) and (7.45) with respect to the concentrations
cn of molecular aggregates in the pre-critical and super-critical regions of their
sizes, the complete equilibrium between all molecular aggregates of a micellar
solution is established at the final stage. According to Eqs. (7.122) and (7.45),
this state is characterized by the following concentrations of molecular aggregates

c̃(e)
n = c̃1 exp

(
−W̃n

)
. (7.123)

Taking into account Eq. (7.122), Eq. (7.120) yields

c̃1 + π1/2c̃1ñs∆̃ns exp
(
−W̃s

)
= c . (7.124)

At a given total concentration c and the known dependencies of ñs, ∆̃ns and W̃s

on monomer concentration c̃1, Eq. (7.124) gives an equation for determination of
the equilibrium concentration c̃1. Once the equilibrium concentration c̃1 of sur-
factant monomers is found, the equilibrium concentration c̃M can be determined
using the relation

c̃M =
(c − c̃1)

ñs
, (7.125)

which follows from Eq. (7.120). If the equilibrium concentration c̃1 of surfactant
monomers is known from the experiment, the total concentration c and the equi-
librium concentration c̃M are determined by Eqs. (7.124) and (7.125). If the
equilibrium micelle concentration c̃M is known experimentally, the equilibrium
concentration c̃1 can be calculated solving Eq. (7.122) with respect to c̃1, and
the total concentration c can be determined using Eq. (7.125). Hence, for the
nonequilibrium micellar solution, two concentrations out of three characteristic
concentrations, c1, cM , and c, are independent parameters (cf. Eq. (7.120)), while
for the equilibrium solution, only one concentration will be an independent pa-
rameter (due to the Eq. (7.121)). It follows from Eq. (7.19) that

∂Wn

∂c1
= −(n − 1)

c1
(7.126)

holds. Taking into account the definition Ws ≡ Wn|n=ns
of the minimum Ws of

aggregation work Wn, we have

∂Ws

∂c1
=

∂Wn

∂c1

∣∣∣∣
n=ns

+
∂Wn

∂n

∣∣∣∣
n=ns

∂ns

∂c1
. (7.127)
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The work Wn is minimal at n = ns. Taking into account the necessary condition
(∂Wn/∂n)|n=ns

= 0, Eqs. (7.127) and (7.126) yield

∂Ws

∂c1
= −(ns − 1)

c1
< 0 . (7.128)

Similar considerations result in

∂Wc

∂c1
= −(nc − 1)

c1
< 0 . (7.129)

According to Eq. (7.35), the inequality ns � 1 is valid. In this case, the de-
pendence of the second term on the left-hand side of Eq. (7.124) on c̃1 is very
strong (cf. Eq. (7.128)). As the result, we can make the following conclusion. As
the total concentration c exceeds the CMC, the monomer concentration c̃1 also
begins to exceed gradually (albeit rather slowly) the CMC, still remaining near
the CMC. According to Eq. (7.128), the value in the left-hand side of Eq. (7.124)
monotonically increases with concentration c̃1. This result indicates that the so-
lution of Eq. (7.124) with respect to concentration c̃1 at a given concentration c
is the unique solution. According to Eq. (7.128), the solution of Eq. (7.122) with
respect to concentration c̃1 at a given concentration c̃M will also be the unique
solution.

The solution of the system of equations Eqs. (7.119) and (7.120), describing slow
relaxation in micellar solution after the initial addition of surfactant to the sol-
vent and mixing throughout the entire volume, we begin with the times, when the
concentrations c1 and cM are already close to their values c̃1 and c̃M at the equi-
librium state of a solution and the reverse flux J ′′ almost completely compensates
the direct flux J ′. These times correspond to the final stage of micellization. The
smallness of the deviations of the solution characteristics from their equilibrium
values at the final stage allows us to linearize Eqs. (7.119) and (7.120) at this
stage and hereby to significantly simplify the problem.

Let us denote the deviations of the parameters from their values at the equilibrium
state of micellar solution by δ. Then, we have

c1 = c̃1 + δc1 , cM = c̃M + δcM . (7.130)

Linearizing Eqs. (7.119) and (7.120) with Eqs. (7.130), taking into account
Eqs. (7.70), (7.72) and (7.121) and the constancy of the total concentration
c in the closed solution, we obtain

∂δcM

∂t
= J̃ ′

[
(1 + γ + η)

δc1

c̃1
− δcM

c̃M

]
, (1 + λ) δc1 + ñsδcM = 0 . (7.131)
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Here γ, η and λ are dimensionless parameters defined by

γ ≡ −c̃1

(
∂Ws

∂c1

)∣∣∣∣
c1=c̃1

, η ≡ c̃1

(
∂ ln ∆ns

∂c1

)∣∣∣∣
c1=c̃1

,

λ ≡ c̃M

(
∂ns

∂c1

)∣∣∣∣
c1=c̃1

. (7.132)

These parameters characterize the influence of the monomer concentration c1 in
the vicinity of its equilibrium value c̃1 on the values Ws, ∆ns and ns. A similar
effect of the concentration c1 on the values j+

c , Wc and ∆nc in Eqs. (7.70) and
(7.72) does not appear in Eq. (7.131) because the dependencies on j+

c , Wc and
∆nc in Eqs. (7.70) and (7.72) are identical. Eqs. (7.132) and (7.128) yield

γ = ñs − 1 . (7.133)

The flux J̃ ′ in Eq. (7.131) can be written according to Eq. (7.70) as

J̃ ′ = c̃1j̃
+
c exp

(
−W̃c

)/
π1/2∆̃nc . (7.134)

According to Eq. (7.121), the reverse flux J̃ ′′ differs from J̃ ′ only in sign. The
solution of the system of Eqs. (7.131) results in

δc1 = −ñs
δcM

(1 + λ)
, δcM = const · exp

(
− t

tr

)
, (7.135)

where the time tr is defined by [25]

1
tr

= J̃ ′
[
ñs (1 + γ + η)

c̃1 (1 + λ)
+

1
c̃M

]
. (7.136)

Let us perform, now, an estimate of the role of the parameters η and λ in
Eq. (7.136). Eqs. (7.132) and (7.133) result in

η

1 + γ
=

c̃1

ñs

(
∂ ln ∆ns

∂c1

)∣∣∣∣
c1=c̃1

. (7.137)

The value of ∆ns varies quite slowly with the variation of c1. According to the first
of the inequalities in Eq. (7.35), ln ∆ns varies with concentration c1 even consid-
erably slower than ∆ns. Further, taking into account the inequalities Eq. (7.35),
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the inequality ns � 1 is valid. Then it follows from Eq. (7.137) that the in-
equality |η /(1 + γ)| � 1 holds. According to this inequality, the parameter η in
Eq. (7.136) can be ignored. Likewise, in view of the weak dependence of the aver-
age micelle aggregation number ns on concentration c1, it follows from Eq. (7.132)
that the inequality |λ| � 1 holds. It follows that the parameter λ in Eq. (7.136)
can also be ignored.

Omitting the parameters η and λ in Eq. (7.136), taking into account Eqs. (7.133)
and (7.134), we have

tr =
π1/2c̃M∆̃nc exp

(
W̃c

)
c̃1j̃

+
c

(
1 +

ñ2
s c̃M

c̃1

)−1

. (7.138)

According to Eq. (7.138), the time tr is positive. Thus, Eqs. (7.135) describe the
irreversible tendency of the closed micellar solution to equilibrium. The same
expressions indicate that the time tr, given by Eq. (7.138), is the relaxation time
of a solution at the final stage of micellization. According to Eq. (7.138), the
relaxation time of the micellar solution does not depend on its volume.

As it is seen from Eq. (7.120), the quantity ñsc̃M/c̃1 is the ratio of the amount of
substance accumulated by the micelles at the final state of solution equilibrium
to that part of the substance remaining in the form of monomers. In terms of the
degree of micellization [5] α,

α ≡ ñsc̃M

c
, (7.139)

this ratio is equal to α/(1−α). In a typical case, the critical degree of micellization
(corresponding to the CMC) has a value of the order of 0.1. Thus, at ñs � 1, the
strong inequality

ñ2
s c̃M

c̃1
� 1 (7.140)

holds. Since ñs � 1, this case surely is realized when ñsc̃M/c̃1 > 1, i.e., when
micelles in the final state of solution equilibrium accumulate noticeable or even
the main part of the whole amount of a surfactant is contained in them. With
Eq. (7.140), we obtain from Eq. (7.138) that

tr = (π1/2∆̃nc/ñ
2
s j̃

+
c ) exp

(
W̃c

)
for ñ2

s c̃M/c̃1 � 1 . (7.141)
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Let us establish the relation between the time tr and the micelle concentration in
the final equilibrium state of the solution at a slow variation of the monomer con-
centration, when ñs, ñc, ∆̃ns and ∆̃nc remain practically constant. We consider
two micellar solutions with almost identical monomer concentrations at the final
equilibrium states. Specifying the values for these solutions by the superscripts
(1) and (2), we then have (c̃(1)

1 /c̃
(2)
1 ) ≈ 1, and, with Eqs. (7.128) and (7.129), we

also have

exp
(
W̃ (1)

s

)/
exp

(
W̃ (2)

s

)
=
(
c̃
(2)
1

/
c̃
(1)
1

)ñs−1
, (7.142)

exp
(
W̃ (1)

c

)/
exp

(
W̃ (2)

c

)
=
(
c̃
(2)
1

/
c̃
(1)
1

)ñc−1
. (7.143)

Eqs. (7.122) and (7.142) yield

c̃
(1)
M

/
c̃
(2)
M =

(
c̃
(1)
1

/
c̃
(2)
1

)ñs

. (7.144)

Since ñs � 1, Eq. (7.144) demonstrates that, at almost identical monomer con-
centrations in the equilibrium solutions, the micelle concentrations can be quite
different. According to Eqs. (7.143) and (7.144), we have

exp
(
W̃ (1)

c

)/
exp

(
W̃ (2)

c

)
=
(
c̃
(2)
M

/
c̃
(1)
M

)(ñc−1)/ñs

. (7.145)

Taking into account Eqs. (7.144) and (7.145) and the fact that the rate j̃+
c of

monomer absorption by the critical molecular aggregate is proportional to the
monomer concentration in the solution, with Eq. (7.141) we have

t(1)r

/
t(2)r =

(
c̃
(2)
M

/
c̃
(1)
M

)ñc/ñs

for ñ2
s c̃

(1)
M

/
c̃
(1)
1 � 1, ñ2

s c̃
(2)
M

/
c̃
(2)
1 � 1. (7.146)

According to Eq. (7.146), the relaxation time tr of a solution to a final equilibrium
state decreases with an increase in micelle concentration c̃M inversely proportion-
al to c̃

ñc/ñs

M . The higher the micelle concentration at the final state of solution
equilibrium is, the higher is the total surfactant concentration of this solution.
Then we get from Eq. (7.146) that, at a rather large degree of micellization at the
final state of solution equilibrium, the relaxation time of a solution decreases with
an increase in the total surfactant concentration of this solution. This conclusion
of the theory is supported by experimental data reported in Refs. 37 and 41 and
by data of numerical modelling [45, 46].

Analyzing the time tr of slow relaxation, we followed widely Ref. 25. The concept
and a first derivation of this time was introduced by Aniansson and Wall [13].
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7.10 Time of Approach of the Final Micellization
Stage

Let us now go over to the solution of the system of kinetic equations of aggregation
in a micellar solution at the times preceding the final stage of micellization.
Assuming the condition ns = ñs, which will be justified somewhat later, we can
rewrite Eqs. (7.120) and (7.119) at a given total concentration c of the solution
as

c1 + ñscM = c ,
∂c1

∂t
= −ñs

(
J ′ + J ′′) . (7.147)

To obtain Eq. (7.131), we used the linearization of exp (Ws) with respect to the
deviation δc1. Expanding exp (Ws) in a Taylor series in powers of δc1 and taking
Eq. (7.128) into account, we see that this linearization is valid at

δc1

c̃1
<

1
ñs

. (7.148)

Eq. (7.148) specifies the region at the c1-axis, where the final stage of micellization
occurs. Although this region is quite narrow at ñs � 1, the relative variation of
the exponent exp (Ws) can be rather significant as evident from Eq. (7.128).

Assuming the condition ∆ns = ∆̃ns, which will be substantiated somewhat later,
Eqs. (7.70), (7.72) and Eq. (7.121) yield

J ′ = J̃ ′
(

c1j
+
c ∆̃nc

c̃1j̃
+
c ∆nc

)
exp(−Wc + W̃c) ,

(7.149)

J ′′ = −J̃ ′
(

cM j+
c ∆̃nc

c̃M j̃+
c ∆nc

)
exp(Ws − W̃s − Wc + W̃c) .

Eqs. (7.149) result in

J ′′

J ′ =
(

cM

c̃M

)(
c̃1

c1

)
exp(Ws − W̃s) . (7.150)

At the assumed equality ns = ñs, Eq. (7.128) gives

exp
(
Ws − W̃s

)
=
(

c̃1

c1

)ñs−1

. (7.151)
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Employing Eq. (7.151) and the evident inequality cM ≤ c̃M , we obtain from
Eqs. (7.150) and (7.130)

|J ′′|
J ′ ≤ exp

[
−ñs ln

(
1 +

δc1

c̃1

)]
. (7.152)

According to Eq. (7.152), the inequality∣∣J ′′∣∣/J ′ � 1 (7.153)

will be actually valid at

δc1/c̃1 > 1/ñs. (7.154)

Taking into account Eq. (7.154), we can transform the second equation in
Eqs. (7.147) into

∂c1

∂t
= −ñsJ

′ for
δc1

c̃1
>

1
ñs

. (7.155)

Let us emphasize the different relative role of the reverse flux J ′′ compared with
the direct flux J ′ when passing from the concentration range c1 admitted by
Eq. (7.154) to the concentration range c1 admitted by Eq. (7.148). In the con-
centration range c1 admitted by Eq. (7.154), the reverse flux J ′′ does not play
any significant role (cf. Eq. (7.153)). However, the reverse flux J ′′ is already quite
noticeable in the concentration range c1 admitted by Eq. (7.148) and even deter-
mines the condition Eq. (7.148) due to the term exp (Ws) entering Eq. (7.72).

We assume the conditions ∆nc = ∆̃nc and nc = ñc which will be substantiated
below. Then, from Eqs. (7.70) and (7.129), we have

J ′ = J̃ ′
(

c1j
+
c

c̃1j̃
+
c

)
exp(−Wc + W̃c) , exp(Wc − W̃c) =

(
c̃1

c1

)ñc−1

. (7.156)

The number of monomers j+
c absorbed by the critical molecular aggregate from

a solution per unit time is proportional to the monomer concentration c1 in the
solution. Taking this fact into account, we arrive with Eq. (7.156) at

J ′ = J̃ ′
(

c1

c̃1

)ñc+1

. (7.157)
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Substituting Eq. (7.157) into Eq. (7.155) yields

∂c1

∂t
= −ñsJ̃

′
(

c1

c̃1

)ñc+1

for
δc1

ñs
>

1
ñs

. (7.158)

In order to fit the region specified by Eq. (7.154), the monomer concentration
(1 + 1/ñs) c̃1, corresponding, according to Eqs. (7.130) and (7.148), to the onset
of the final stage of micellization, has to be lower than the monomer concentration
c1 = c corresponding to the onset of the whole process of micellization. Thus, we
should have(

1 +
1
ñs

)
c̃1

c
< 1 . (7.159)

Otherwise, the condition Eq. (7.148) should be valid within the entire concentra-
tion region c ≥ c1 ≥ c̃1 of the micellization process. Then, the final stage would
occur from the very beginning of this process, and the relaxation time tr at this
stage would determine the total time of the establishment of the equilibrium in
a micellar solution.

We assume hereafter that the inequality Eq. (7.159) is fulfilled. It is possible only
at ñ2

s c̃M

/
c̃1 > 1, as it is shown by

(1 + 1/ñs) c̃1

c
=

ñs + 1
ñs + ñ2

s c̃M

/
c̃1

, (7.160)

resulting from Eq. (7.147). Integrating Eq. (7.158) over c1 from the value c1 =
(1 + 1/ñs) c̃1 to c1 = c and, taking into account Eq. (7.134), we obtain [25]

t0 =
π1/2∆̃nc exp

(
W̃c

)
ñsñcj̃

+
c (1 + 1/ñs)

ñc

{
1 −

[
(1 + 1/ñs) c̃1

c

]ñc
}

(7.161)

for (
1 +

1
ñs

)
c̃1

c
< 1 . (7.162)

The time t0 is the desired time of approach of the final stage of micellization. The
accumulation of surfactants in micelles occurs just during the time t0 (accumu-
lation at the final stage is negligible).
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Let us establish the interrelation between the time t0 and the micelle concen-
tration c̃M at the final state of the solution equilibrium at a small variation
in the equilibrium monomer concentration at which ñs, ñc, ∆̃ns and ∆̃nc re-
main practically constant. Ignoring in Eq. (7.161) the small at ñc � 1 value
[(1 + 1/ñs) c̃1/c]

ñc (cf. Eq. (7.159)), taking into account Eqs. (7.144) and (7.145)
and the fact that j̃+

c is proportional to the concentration c̃1, we have

t
(1)
0

/
t
(2)
0 =

(
c̃
(2)
M

/
c̃
(1)
M

)ñc/ñs

(7.163)

for

(1 + 1/ñs) c̃
(1)
1

/
c
(1)

< 1 , (1 + 1/ñs) c̃
(2)
1

/
c(2) < 1. (7.164)

Similar to the behavior of the time tr, as described by Eq. (7.146), the time t0
decreases with an increase in micelle concentration c̃M in inverse proportion to
c̃
ñc/ñs

M .

Eq. (7.158) and ñc � 1 lead to the conclusion that the rate of decrease in con-
centration c1 with time is relatively high in the region where c1 exceeds (at least
negligibly) c̃1, i.e., in the region where (c1/c̃1)

ñc � 1. Consequently, this region
does not contribute much in the integration of Eq. (7.158). All said above justifies
the equalities ns = ñs, nc = ñc, ∆ns = ∆̃ns and ∆nc = ∆̃nc advanced above. In
view of Eq. (7.156), this result also justifies the suggested practical independence
of exp (Wc) on time.

7.11 The Hierarchy of Micellization Times

Let us consider the hierarchy of the characteristic times of micellization. The
existence of such hierarchy proves that the quasi-equilibrium concentrations of
molecular aggregates in the pre-critical and super-critical regions of their sizes
and the quasi-steady concentration of molecular aggregates in the near-critical
region of their sizes are actually established. The hierarchy also sets estimates of
the relative values of the times of the formation and decomposition of micelles
and is a clear indication of the complex multi-stage process of approaching the
final state of equilibrium in a micellar solution.

The average time between two successive acts of emission of a surfactant monomer
by a micelle is an important parameter in micellization. We denote this time by
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τ1. As follows from Eqs. (7.25) and (7.50) at the condition (cf. Eq. (7.35)) of
the applicability of the macroscopic description of the micellization kinetics, the
approximate equality

j−n = j+
s for ns − ∆ns � n � ns + ∆ns (7.165)

is fulfilled in the micellar region with a high degree of accuracy. Thus the average
time between two successive acts of emission of a surfactant monomer by the
micelle containing ns molecules is determined by the time

τ1 = 1
/
j+
s . (7.166)

It is evident that, simultaneously, τ1 is the average time of emission of any of
ns surfactant monomers, contained in a micelle, from a micelle. Because the
probability of the emission of some of these monomers from a micelle is larger by
ns times than that of the isolated (labeled) surfactant monomer, the quantity nsτ1

determines the average time for an emission of the labeled surfactant monomer
from a micelle, i.e., the average value of the resident time of a surfactant monomer
in a micelle.

The average micelle lifetime is also an important parameter of micellization. We
found in Section 7.6 the direct flux J ′ and the reverse flux J ′′ of molecular aggre-
gates overcoming by fluctuations the potential barrier of the aggregation work.
The existence of the reverse flux J ′′ results in the fluctuational transfer of −J ′′

molecular aggregates from the micellar to the pre-critical region in a unit volume
of the micellar solution per unit time (the outflow of molecular aggregates from
the micellar region to the region n > ns + ∆ns is not observed at the total sur-
factant concentrations below the second CMC due to a rather rapid increase in
the aggregation work with an increase in n in this region).

The fluctuation transfer of molecular aggregates from the micellar to the pre-
critical region results in a ”decay” of micelles. This decay occurs by the multi-
stage mechanism of the exchange of surfactant monomers between the molecular
aggregates and the micellar solution. During the time τM , determined by

τM = cM

/∣∣J ′′∣∣ , (7.167)

the micellar region would be left by all micelles due to their fluctuational transfer
to the pre-critical region. Hence, it is the time τM that represents the average
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value of the lifetime of a micelle. Using Eq. (7.72) for the flux J ′′, we rewrite
Eq. (7.167) as

τM = π∆nc∆nsexp (Wc − Ws)
/
j+
c . (7.168)

According to Eq. (7.168), the time τM is independent of the volume of the micellar
solution.

Let us collect the data on the characteristic kinetic times obtained in this and
the previous sections. We are interested in the times ts and t′ of establishment
of quasi-steady concentrations of molecular aggregates in the micellar and pre-
critical regions, respectively; the time t′′ of establishing the quasi-steady concen-
trations of molecular aggregates in the part of the super-critical region located to
the left of the micellar region at the n-axis; the time tc of establishing the quasi-
steady concentrations of molecular aggregates in the near-critical region; the time
t1 of fast relaxation; the time t0 of approaching the final stage of micellization
and the time tr of relaxation of the micellar solution at the final stage of micel-
lization; the average monomer lifetime τ1 in a micelle and the average lifetime of a
micelle τM . While the times ts, t′, t′′ and tc describe the evolution of the ensemble
of molecular aggregates within the characteristic ranges of aggregation numbers
and the times t1, t0 and tr are related to the relaxation behavior of the whole
micellar solution (micelles and monomers), the times τ1 and τM characterize a
single micelle.

According to Eqs. (7.86), (7.87) and (7.97), we have

t′

tc
≈ 2nc

∆nc
,

t′′

tc
≈ 2 (ns − nc)

∆nc
. (7.169)

Taking into account Eqs. (7.34) and employing the estimate ns −nc � nc (which
allows for the equality of the orders of magnitudes for ns −nc and nc), we obtain
from Eq. (7.169) the inequalities

t′′

tc
� t′

tc
� 1 . (7.170)

According to Eqs. (7.85) and (7.97), we have

tc
ts

=
(

∆nc

∆ns

)2(j+
s

j+
c

)
. (7.171)
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Analytical models for the aggregation work Wn in surfactant solutions do not
result in large differences between the values of ∆nc and ∆ns. Assuming that a
large difference in the values of j+

c and j+
s is also improbable, we can see from

Eq. (7.171) that

tc/ts ∼ 1 . (7.172)

According to Eqs. (7.85) and (7.166), we have

ts/τ1 = (∆ns)
2
/

2 . (7.173)

A substitution of the first condition from Eq. (7.35) into Eq. (7.173) yields

ts/τ1 � 1 . (7.174)

Comparing Eq. (7.161) for the time t0 with Eq. (7.138) for the time tr and taking
into account Eq. (7.160), we obtain

t0
tr

=
ñs

ñc (1 + 1/ñs)
ñc

1 −
(

ñs + 1
ñs + ñ2

s c̃M

/
c̃1

)ñc
 for

ñ2
s c̃M

c̃1
� 1 . (7.175)

Let us discuss the results for the realistic estimates ñs ∼ 102 and ñc ∼ 30. At
ñ2

s c̃M

/
c̃1 = 3, when Eq. (7.140) is fulfilled at the breaking point, we have from

Eq. (7.175) the result t0/tr � 1.5. When the ratio ñ2
s c̃M

/
c̃1 becomes larger than

3, and correspondingly, the inequality Eq. (7.140) becomes stronger, the ratio
t0/tr slightly increases but still remains smaller than 2.5. Hence, it is clear that
the time tr is an estimate not only of the duration of the very final stage of
micellization, but of the total time t0 + tr of the establishment of equilibrium in
a micellar solution as well [26].

Hereafter we will use the estimates for all kinetic times as applied to the final
stage of micellization (taken at values of parameters corresponding to the final
equilibrium). According to Eqs. (7.141) and (7.87), we have

tr
t′′

≈ π1/2 exp
(
W̃c

)/[
(ñs − ñc) ñ2

s

]
for

ñ2
s c̃M

c̃1
� 1 . (7.176)
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Taking into account that the first inequality in Eq. (7.36) is extremely strong due
to its exponential character, we derive from Eq. (7.176) the strong inequality,

tr
t′′

� 1 for
ñ2

s c̃M

c̃1
� 1 . (7.177)

According to Eqs. (7.141) and (7.168) accounting for Eq. (7.122), we have
τM/tr = ñ2

s c̃M

/
c̃1 and thus

τM/tr � 1 for
ñ2

s c̃M

c̃1
� 1 . (7.178)

Eqs. (7.85) and (7.113) yield then

t1 � ts for
ñ2

s c̃M

c̃1
� 1 . (7.179)

As a whole, the set of Eqs. (7.170), (7.172), (7.174), (7.175), (7.177), (7.178) and
(7.179) discloses the following hierarchy of the times of micellization kinetics [26]

τM � t0 ∼ tr � t′′ � t′ � tc ∼ ts � t1 � τ1 for
ñ2

s c̃M

c̃1
� 1 . (7.180)

The last six relations in the hierarchical sequence Eq. (7.180) are not related with
the limitation as expressed in Eq. (7.140).

According to Eq. (7.180), the times ts, t′, t′′, tc and t1 are much shorter than the
time tr. This result proves that quasi-steady concentrations of molecular aggre-
gates in the pre-critical and super-critical regions and the quasi-steady concentra-
tions of molecular aggregates in the near-critical region are actually established.
Being the consequence of the proportionality between the time tr and exp

(
W̃c

)
,

the statement of the smallness of the times ts, t′, t′′, tc (compared with time
tr) is valid in the general case, i.e., it is not related with the limitation as given
via Eq. (7.140). The time τM ranks first and the time τ1 is the smallest among
the characteristic times of the micellization kinetics in the hierarchical sequence
Eq. (7.180). This result demonstrates that the micelles are stable molecular for-
mations, which are quite capable of renewing the composition of constituting
molecules.

The established here hierarchy of the kinetic times has recently been confirmed
by the numerical solutions of the set of kinetic equations of micellization reported
by Grinin and Grebenkov [46]. Some modern results on the experimental inves-
tigation of kinetic times in micellization are available in Refs. 41 - 44. Results of
molecular dynamics simulations can be found in Ref. 47.
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7.12 Chemical Potential of a Surfactant Monomer in
a Micelle and the Aggregation Work in the

Droplet Model of Spherical Micelles

Aggregates of surfactant molecules in micellar solutions, including the relatively
stable micelles, are limited by the number of constituent molecules and have such
a structure that they cannot be considered as small parts of a new macroscop-
ic phase. This fact complicates the study of the thermodynamics of molecular
aggregates as compared with the theory of nucleation and forces one to find a
model representation of their structure and the contributions to the work of their
formation or the chemical potential of the aggregates [6, 7, 48 - 50]. One of the
widely recognized models of surfactant molecular aggregates is the droplet mod-
el of an aggregate with a liquid-like core formed by the hydrophobic fragments
of surfactant molecules. This model was proposed by Tanford [6] and developed
later in Refs. 5, 7 - 11, 17, 27, 28, 51 - 56.

For definiteness, we deal here with a typical case of an aqueous solution of
molecules of nonionic or zwitterionic surfactants having dipole hydrophilic parts
and hydrophobic fragments in the form of linear hydrocarbon radicals. Let us
denote by nC the number of carbon atoms in a hydrocarbon chain of a surfac-
tant molecule. The end methyl group has the characteristic volume v0 while the
volume of the methylene group is v. According to published data [6], we have
v0 ≈ 54.3Å3 and v ≈ 26.9Å3 at an absolute temperature T = 298 K. Hereafter
we assume that the equality v0/v � 2 holds.

It is accepted in the droplet model of a spherical molecular aggregate that the
total number nnC of hydrocarbon segments of all n surfactant molecules consti-
tuting the molecular aggregate is located inside a spherical surface in a compact
manner (with no voids). Then, considering volume balance, we have for the radius
r of the aggregate surface

r =
(

3vC

4π

)1/3

n1/3 , (7.181)

where the approximate equality

vC = v0 + v (nC − 1) ≈ v (nC + 1) (7.182)
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is taken into account in view of v0/v � 2. At nC � 1, Eq. (7.181) remains valid
also in the case of a slight deviation of hydrocarbon chains from their complete
insertion inside the sphere of radius r.

The inner contents of a sphere of radius r, occupied completely by the hydro-
carbon groups of all surfactant molecules in a molecular aggregate, can be con-
sidered as a ”hydrocarbon core”. Let us emphasize that the hydrocarbon core
does not include protruding hydrophilic parts of surfactant molecules. Accord-
ing to Eq. (7.181), as the aggregation number n increases, the radius r increases
also. Since the hydrophilic parts of surfactant molecules in an aggregate are lo-
cated outside the sphere of radius r and the droplet model does not suggest the
existence of cavities inside the molecular aggregate, the hydrocarbon chains of
surfactant molecules in the aggregate become less convolute with an increase in n.
Denoting the length of the completely unfolded hydrocarbon chain of the surfac-
tant molecule by lC , for which according to [6] we have lC = (1, 5 + 1, 265nC ) Å,
we obtain the following packing condition,

r ≤ lC . (7.183)

Rewriting lC as lC = l1 (nC + 1), where l1 ≡ 1.265Å is the average length of the
hydrocarbon group, using Eq. (7.181) and taking into account the aforementioned
equality v ≈ 26, 9Å3, we present Eq. (7.183) in the form of the constraint

n < 0.3 (nC + 1)2 , (7.184)

which is imposed from above on the aggregation number n in the droplet model
of surfactant spherical molecular aggregates. The stronger the inequality nC � 1,
the weaker is the constraint Eq. (7.184). At a sufficiently large value of nC , the
constraint Eq. (7.184) is quite comparable with the constraint n � 1, which is re-
quired for the applicability of the asymptotic (with respect to n) thermodynamic
and kinetic theories of micellization.

We denote by µ̄1n and µ̄1 the dimensionless chemical potential of surfactant
molecules in the aggregate and, correspondingly, the dimensionless chemical po-
tential of surfactant monomers in the micellar solution. Both chemical potentials
are expressed in thermal energy units kBT . The following general thermodynamic
relationship [57]

∂Wn

∂n
= µ̄1n − µ̄1 (7.185)
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is valid at thermal and mechanical equilibrium between the molecular aggregate
and solution. From Eqs. (7.6) and Eq. (7.185), we immediately obtain

Wn =

n∫
1

(µ̄1n − µ̄1)dn . (7.186)

We also use the standard expression for the dimensionless chemical potential of
a molecule in an arbitrary medium

µ̄ = µ̄0 + w + ln
(
cvΛ3

)
, (7.187)

where µ̄0 is the dimensionless chemical potential of a molecule with a fixed center
of mass in vacuum, w is the work of transfer of a molecule from a fixed position
in vacuum to a fixed position in a medium with concentration cv (the number of
molecules per unit volume), Λ is the de Broglie mean wavelength of a molecule.
Eq. (7.187) is applicable to both µ̄1n and µ̄1, with identical µ̄0 and Λ in both
expressions. The term v1p, where p is the pressure and v1 is the partial molar
volume of a substance in a given phase, is usually separated in the expressions
for the chemical potential of a substance in the condensed state. Therefore, for
the chemical potential of a surfactant in solution (let it be the β-phase) with
concentration c1, we can write

µ̄1 = µ̄0 + w1 + v1p
β/kBT + ln(c1Λ3) , (7.188)

where the work of transfer w1 is referred to zero-value pressure. In view of the
low compressibility of condensed media, the partial molar volume of a substance
can be considered as constant and coinciding with the molecular volume. The
dependence of µ̄1 on c1 is given for the dilute solution by the ln(c1Λ3) term, thus,
according to Eq. (7.188), w1 is independent of c1.

The situation is more complicated when one is dealing with the chemical potential
of a surfactant molecule in a molecular aggregate. Let us consider the inner
part of a molecular aggregate, the hydrophobic core, as the α-phase. We set a
dividing surface between the α- and β-phases and use the concepts of interfacial
thermodynamics. In particular, if both phases are considered to be mechanically
uniform up to the dividing surface, we should ascribe a certain surface tension γ
to the latter. The position of a surfactant molecule in the molecular aggregate is
such that the dividing surface splits it into two parts with volumes vα and vβ ,

v1 = vα + vβ . (7.189)
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Moreover, these parts turned out to be at different pressures (pα and pβ). In
addition, the molecule intersects the dividing surface (producing cross section a)
and appeared under the action of surface tension γ. Therefore we arrive at the
expression,

µ̄1n = µ̄0 + w1n +
(vαpα + vβpβ − γa)

kBT
+ ln

(
c1nΛ3

)
, (7.190)

for the chemical potential µ̄1n of a surfactant molecule in an aggregate. Here
c1n is the concentration of surfactant monomers in the molecular aggregate, the
work w1n of the molecular transfer to the aggregate is referred to zero-valued
pressure, and the term −γa is substantiated in the thermodynamics of interfacial
phenomena [57]. In view of Eq. (7.189), Eq. (7.188) can be rewritten as

µ̄1 = µ̄0 + w1 +
(vαpβ + vβpβ)

kBT
+ ln

(
c1Λ3

)
. (7.191)

The pressures in the α- and β-phases are interrelated by the condition of me-
chanical equilibrium (Laplace’s equation)

pα − pβ =
2γ
r′

, (7.192)

where r′ is the radius of the dividing surface. From Eqs. (7.190)-(7.192) we have

µ̄1n − µ̄1 = w1n − w1 +
2γvα

r′kBT
− γa

kBT
+ ln

(
c1n

c1

)
. (7.193)

Substitution of Eq. (7.193) into Eq. (7.186) yields

Wn =

n∫
1

(w1n − w1) dn +

n∫
1

2γvα

r′kBT
dn −

n∫
1

γa

kBT
dn +

n∫
1

ln
(

c1n

c1

)
dn . (7.194)

A difficulty arises in the direct calculation of the integrals in Eq. (7.194) if one
takes into account the interactions of polar groups. These interactions result in the
contribution W p

n to the aggregation work Wn. It is more simple to calculate the
contribution of the interactions separately, taking all other integrals in Eq. (7.194)
as if the interaction of polar groups is nonexistent. Then, the surface tension γ,
the radius of the dividing surface r′, and the limiting area a can be referred to
the surface of the hydrocarbon core (γ = γ0, r′ = r, a = (4π)1/3 (3v)2/3) and the
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volume vα is identified with the volume vC of the hydrocarbon chain entering the
hydrocarbon core. Within such an approach, Eq. (7.194) can be written as

Wn =

n∫
1

(w1n − w1)dn +

n∫
1

2γ0vC

rkBT
dn −

n∫
1

aγ0

kBT
dn (7.195)

+

n∫
1

ln
(

c1n

c1

)
dn + W p

n .

Evidently, the difference w1n −w1 is the work of transfer of a surfactant molecule
from the solution (the β-phase) to the molecular aggregate in the absence of pres-
sure and surface tension. Considering the hydrocarbon core as the α-phase, we
express this work of transfer as wβα (the order of indices indicates the direction
of transfer). For the dilute solution, the work wβα does not depend on the con-
centration of the solution. This result follows already from the aforementioned
absence of the dependence of the work w1 on c1 for the dilute solution and also
from the fact that the work w1n is generally independent of c1. If we denote the
concentration of the hydrocarbon tails in the β- and α-phases by cβ and cα, re-
spectively, then it is evident that cβ = c1; however, strictly speaking, cα �= c1n

(the concentration of hydrocarbon chains in the hydrocarbon core is not equal
to that of the molecules in the aggregate). However, according to Eq. (7.181),
at nC � 1 and n � 1, the radius r is so large that it considerably exceeds the
thickness of the hydrophilic layer of an aggregate and the distance from the layer
to the surface of the hydrocarbon core. Denoting by R the radius of a spherical
molecular aggregate, we have then R ≈ r, and it follows from c1n = 3n

/
4πR3 and

cα = 3n
/
4πr3 that c1n ≈ cα. Since for a dilute solution c1n/c1 ∼ 104 ÷ 105 and

cα/c1 ∼ 104 ÷ 105 hold, the equality ln (c1n/c1) ≈ ln (cα/c1) will be fulfilled with
even higher accuracy. Taking into account this equality and cα = const, we write
Eq. (7.195), after calculating the integral in the penultimate term at n � 1, as

Wn =

n∫
1

wβαdn +

n∫
1

2γ0vC

rkBT
dn −

n∫
1

aγ0

kBT
dn + n ln

(
cα

c1

)
+ W p

n . (7.196)

There are other, in addition to W p
n , contributions to Wn due to the work of

transfer. Some of them are already known in the integral form, the others will be
calculated by integrating (during the integration, it is admissible to ignore the
lower limit, similarly as it was done in the penultimate term in Eq. (7.196)).
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Let us begin with the hydrophobic contribution W h
n to the work Wn given by

the first term on the right-hand side of Eq. (7.196). For the work wβα of transfer
of the entire hydrophobic part of a single surfactant molecule containing nC

hydrocarbon groups from the surfactant solution to the hydrocarbon bulk phase
through the flat surface, we have the empirical expression

wβα = −BnC , (7.197)

which is valid at nC � 1. Here, B is a positive dimensionless parameter of hy-
drophobic interaction. Eq. (7.197) does not refer to the zero-valued but rather
to atmospheric pressure (identical in both phases). However, this difference can
be ignored due to the small compressibility of liquids. The positive value of the
parameter B reflects the hydrophobicity of the hydrocarbon groups. According
to empirical data, B � 1.4 at 20oC. The difference between the work of trans-
fer of one or two segments of a hydrocarbon chain nearest to the polar group
and that of the end methyl group from the work −B does not practically affect
the applicability of Eq. (7.197) at nC � 1. The fact that, in the accepted mod-
el of molecular aggregates, the hydrocarbon core is really not the infinite bulk
phase but is surrounded by the surface with radius r will be taken into account
somewhat later.

Eq. (7.197) shows that the desired hydrophobic contribution W h
n to the aggrega-

tion work Wn is given by

W h
n = −nBnC . (7.198)

A negative value of the hydrophobic contribution W h
n to the work Wn facilitates

the formation of molecular aggregates in a micellar solution.

The hydrophobic tail of a surfactant molecule is slightly deformed at packing into
the spherical hydrocarbon core of the molecular aggregate and its conformation,
on the average, differs from the conformation in the infinitely large hydrocarbon
phase. The difference in conformations generates a positive contribution to the
work of molecular aggregate formation. The corresponding so-called deformation
contribution W d

n is described in [10, 53] and, in the notation employed here, is
given by

W d
n = n

3π2

80
r2

NL2
, (7.199)

where N is the number of rigid segments in the hydrophobic part of the surfactant
molecule and L is the length of the rigid segment. Evidently, the product NL is
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equal to the length lC of the hydrophobic part of a surfactant molecule. According
to Ref. 53, the rigid segment contains, on the average, 3.6 methylene groups in
the case of the hydrophobic part composed of such groups, so that N = nC/3.6.
With this relation and Eq. (7.183) we obtain from Eq. (7.199) the estimate

W d
n ≤ 0.1nnC . (7.200)

Comparing Eqs. (7.198) and (7.200), we see that, at B � 1.4, the W d
n contribution

gives a small correction to the hydrophobic contribution W h
n . Thus, hereafter the

contribution W h
n is neglected [27, 28].

As was mentioned above, the hydrophobic core is actually not the infinite bulk
phase with a flat interface. According to Eq. (7.192), the curvature of latter leads
to the appearance of the Laplace pressure, and a contribution W L

n to the work
of transfer which is represented by the second term on the right-hand side of
Eq. (7.196). Using Eqs. (7.181) and (7.182), we rewrite the integrand in the
second term on the right-hand side of Eq. (7.196) as

2γ0vC

rkBT
=

8πγ0

3kBT

[
3v (nC + 1)

4π

]2/3 1
n1/3

. (7.201)

Only the dependence of γ0 on n still remains unspecified in Eq. (7.201) so far.
For simplicity, we consider the surface tension γ0 as constant and equal to its
value for the flat surface. The possible dependence of the total surface tension γ
on the size of the molecular aggregate is further taken into account through the
contribution of polar groups.

Integrating now Eq. (7.201) with respect to aggregation number n and ignoring
the lower limit of integration at n � 1, we obtain the Laplace contribution W L

n

to the aggregation work in the form

W L
n =

4πγ0

kBT

[
3v (nC + 1)

4π

]2/3

n2/3 . (7.202)

Eqs. (7.202) and (7.181) indicate that this contribution is equal to the Gibbs sur-
face energy (4πγ0r

2
/
kBT ) of the hydrophobic core (in units of kBT ). Introducing

a positive dimensionless parameter b3 as

b3 ≡ (4π)1/3γ0[3v(nC + 1)]2/3/kBT , (7.203)
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we may present Eq. (7.202) as

W L
n = b3n

2/3 . (7.204)

Eq. (7.204) yields the inequality W L
n > 0. Positive values of the Laplace contri-

bution W L
n to the work Wn impede the formation of molecular aggregates in a

micellar solution.

Let us consider now the contribution W p
n of polar groups. The forced approach of

the polar groups due to the addition of the monomers into the molecular aggre-
gate results in an interaction, whose most typical part is the mutual electrostatic
repulsion of dipoles. We denote this electrical contribution to the work Wn by
W el

n and consider the case when the electrostatic component characterizes rather
well the total interaction of polar groups: W el

n ≈ W p
n . Because the molecular ag-

gregates are formed in a solution at constant temperature and external pressure,
W el

n is nothing else than the Gibbs electric energy of a capacitor formed by the
hydrophilic parts of the surfactant molecules in the molecular aggregate. Assum-
ing that the capacitor formed by the hydrophilic parts of surfactant molecules in
the molecular aggregate possesses spherical symmetry, we arrive in kBT units at
[7, 5]

W el
n =

(zen)2 δ

8πkBTε0ε (r + ∆l) (r + ∆l + δ)
. (7.205)

Here, ze is the electric charge of a single hydrophilic part of a surfactant molecule
in the dipole (e is the elementary charge); δ is the length of the dipole of the hy-
drophilic part, i.e., the capacitor thickness; ε is the effective permittivity of a
capacitor medium; ε0 is the dielectric constant; and ∆l is the bond length con-
necting the hydrophobic part of a surfactant molecule with its polar hydrophilic
part. We assume that the inequality r + ∆l � δ holds (which, according to
Eqs. (7.181) and (7.182), is valid at nC � 1 and n � 1). Suggesting further the
inequalities r � δ and r � ∆l to be valid at nC � 1 and n � 1, we can rewrite
Eq. (7.205) with Eqs. (7.181) and (7.182) as

W el
n = b1n

4/3 , (7.206)

where

b1 ≡ (ze)2 δ

2(4π)1/3kBTε0ε[3v(nC + 1)]2/3
(7.207)
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is a positive dimensionless parameter.

A positive value of the electric contribution W el
n to the work Wn impedes the

formation of molecular aggregates in a micellar solution. It should be mentioned
that we calculated the total contribution of polar interactions from both the
chemical potential and surface tension. For our purposes, there is no necessity to
calculate separately the contribution of mutual repulsion of polar groups to the
surface tension that results, as it is known, in a decrease of the surface tension with
an increase in the micelle size. In addition to electric forces, yet more powerful
forces of direct repulsion of polar groups arising at their contact, are possible
under very close approach of the hydrophilic parts of surfactant molecules. Such
picture is typical in the case when the molecular packing in micelles is governed
by the size of polar groups. However, we focus our attention to the case when
hydrocarbon chains determine the packing, and polar groups participate in the
micellization only via the long-range forces of electric repulsion.

The penultimate term on the right-hand side of Eq. (7.196) can be called the
concentration contribution. Combining this term with other contributions which
are proportional to the aggregation number n and introducing the dimensional
parameter b2,

b2 ≡ BnC +
aγ0

kBT
+ ln

( c1

cα

)
= BnC +

(4π)1/3 (3v)2/3 γ0

kBT
+ ln

( c1

cα

)
, (7.208)

we rewrite the work of aggregate formation Wn, employing Eqs. (7.196), (7.198),
(7.204) and (7.206) as [27]

Wn = b1n
4/3 − b2n + b3n

2/3 . (7.209)

The terms in Eq. (7.209) are arranged in decreasing powers of n. Evidently
Eq. (7.209) is valid at n � 1.

According to Eqs. (7.207), (7.208) and (7.203), the coefficients b1, b2 and b3 are
dimensionless parameters independent of the aggregation number n. In addition,
the coefficients b1 and b3 do not depend on the concentration c1 of surfactant
monomers in solution. Eq. (7.209) is consistent with the expression reported in
Refs. 6 and 56. However, the coefficient at n obtained in Refs. 6 and 56, does not
explicitely include the dependence on the monomer concentration in the solution.

vch 24 Jun 2004 23:11



344 7 Nucleation in Micellization Processes

7.13 Critical Micelle Concentration and
Thermodynamic Characteristics of Micellization

7.13.1 Results of Analysis of the Droplet Model

With the dependence of aggregation work Wn, given explicitly by Eq. (7.209), we
are able to find all thermodynamic characteristics of micellization in the droplet
model of molecular aggregates. Eq. (7.209), taking into account that the coeffi-
cients b1, b2, and b3 are independent of n, yields

∂Wn

∂n
=

4
3
b1n

1/3 − b2 +
2
3
b3n

−1/3 ,
∂2Wn

∂n2
=

4
9
b1n

−2/3 − 2
9
b3n

−4/3 . (7.210)

With Eq. (7.210) we can derive the roots n = nc and n = ns of the equations(
∂Wn

∂n

)
n=nc

= 0 ,

(
∂Wn

∂n

)
n=ns

= 0 , (7.211)

determining the aggregation numbers nc and ns of critical and stable molecular
aggregates, respectively. The fact that the largest root ns corresponds to the
minimum and, respectively, the smallest root nc, to the maximum of the work
Wn follows from b1 > 0 and an asymptotic rise of the work Wn with an increase
in aggregation number n. The root n = n0 of equation(

∂2Wn

∂n2

)
n=n0

= 0 (7.212)

determines the inflection point n0 of the work Wn,

n0 = (b3/2b1)
3/2 . (7.213)

According to Eqs. (7.213), (7.207) and (7.203), the inflection point n0 of the
work Wn does not depend on the monomer concentrations c1 in the surfactant
solution. Eq. (7.213) allows one to reveal the constraint on the value of (b3/2b1)3/2,
at which n0 fits the region of aggregation numbers n that is realistic for spherical
molecular aggregates.

The droplet model of the molecular aggregates reflects the existence of the poten-
tial maximum and potential well of the work Wn at a sufficiently high monomer
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concentration c1 in the surfactant solution. We denote the monomer concentra-
tion in surfactant solutions, at which the potential maximum and potential well
of the work Wn appear, by c10. Since at c1 = c10 the maximum and minimum of
the work Wn merge in its inflection point n0, Eq. (7.211) yields(

∂Wn

∂n

)
c1=c10,n=n0

= 0 . (7.214)

Note that the concentration c10 is lower than the CMC, at which the potential
well of the work Wn begins to play a significant role in the consumption of the
total amount of surfactant from micellar solution.

Let us represent Eq. (7.208) as

b2 = ln
(

c1

c10

)
+ b̃2 , (7.215)

where b̃2 is no longer dependent on c1. Using Eqs. (7.214), (7.213) and (7.210),
we then arrive at

b̃2 =
4
3

(2b1b3)
1/2 , (7.216)

which, together with Eq. (7.215), gives a dependence between the coefficient b2

and the coefficients b1 and b3 in Eq. (7.209). Finally, substituting Eqs. (7.215)
and (7.216) into Eq. (7.209), we obtain

Wn = b1n
4/3 −

[
ln
(

c1

c10

)
+

4
3

(2b1b3)
1/2

]
n + b3n

2/3 . (7.217)

Eq. (7.217) contains three parameters b1, b3 and c10 which are independent of n
and c1. The introduction of the parameter c10 allows us to eliminate the depen-
dence on B and cα in Eq. (7.217). All three parameters b1, b3 and c10 have a clear
physical meaning.

According to Eqs. (7.208), (7.215) and (7.216), the parameter c10 is related to
the parameters B and cα by

ln
(c10

cα

)
= −BnC − (4π)1/3 (3v)2/3 γ0

kBT
+

4
3

(2b1b3)
1/2 . (7.218)
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Taking into account cα = 1/vC and Eq. (7.182), we rewrite Eq. (7.218) as

ln (vc10) = −BnC − (4π)1/3 (3v)2/3 γ0

kBT
− ln (nC + 1) +

4
3

(2b1b3)
1/2 . (7.219)

Eqs. (7.217) and (7.211) show that the aggregation numbers of critical and stable
molecular aggregates satisfy at c1 > c10 the relations

nc = (8b1)
−3

{
25/2 (b1b3)

1/2 + 3 ln
(

c1

c10

)
− (7.220)

−
√[

25/2 (b1b3)
1/2 + 3 ln

(
c1

c10

)]2

− 32b1b3


3

,

ns = (8b1)−3

{
25/2 (b1b3)1/2 + 3 ln

(
c1

c10

)
(7.221)

+

√[
25/2 (b1b3)

1/2 + 3 ln
(

c1

c10

)]2

− 32b1b3


3

.

Let us calculate, now, the thermodynamic characteristics of the kinetics of micel-
lization such as nc, ns, Wc, Ws, ∆nc and ∆ns in the droplet model of a surfactant
spherical molecular aggregate. We use the following values of the initial parame-
ters of the model

nC = 18 , γ0 = 30
mN
m

, ε = 30 , δ = 3 · 10−10 m , z = 1 , T = 293 K . (7.222)

For the accepted value of the parameter nC (it can be an octadecyl radical that
can be completely packed into the hydrocarbon core or a fragment of a longer
aliphatic hydrocarbon radical), Eq. (7.184) is reduced to n < 108. Results of
calculations reported below are fairly sensitive to the values of the parameters
γ0, ε and δ.

From Eqs. (7.207), (7.203) and (7.213) with allowance for Eq. (7.222), we have

b1 = 1.13 , b3 = 22.4 , n0 = 31.2 . (7.223)
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Fig. 7.2 Dependencies of nc and ns on the concentration ratio (c1/c10).
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Fig. 7.3 Dependencies of Wc and Ws on the concentration ratio c1/c10.

Results of the calculation of the dependence of nc and ns on c1/c10 obtained
with Eqs. (7.220), (7.221) and (7.223) are shown in Fig. 7.2. At c1/c10 = 1,
the values nc and ns coincide and are equal to n0. As the ratio c1/c10 increases,
the value nc decreases monotonically and the value ns increases monotonically;
moreover, ns increases faster than nc decreases so that the curve has the form of
an asymmetric loop. In this case, the constraints ns < 108 and nc � 1, which are
required as the conditions of the applicability of the droplet model of molecular
aggregation at nC = 18, are fulfilled to increasingly lower extent.
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Fig. 7.3 demonstrates the dependences of Wc and Ws on the concentration ratio
c1/c10 obtained using Eqs. (7.217), (7.220), (7.221) and (7.223). At c1/c10 = 1,
the values Wc and Ws coincide. As the ratio c1/c10 increases, the values Wc

and Ws decrease monotonically; moreover, Wc decreases much slowlier than Ws.
Finally, the results of the calculations of the dependences of ∆nc and ∆ns on the
ratio c1/c10, obtained using Eqs. (7.217), (7.220), (7.221), (7.33) and (7.223), are
shown in Fig. 7.4. At c1/c10 = 1, the values ∆nc and ∆ns tend to infinity. As the
ratio c1/c10 increases, the values ∆nc and ∆ns decrease monotonically; however,
the inequality ∆nc < ∆ns is fulfilled (the peak of the aggregation work becomes
noticeably narrower than the potential well). Figs. 7.2-7.4 agree with Fig. 7.1.

Let us consider further the CMC. The values at the CMC will be marked by a
subscript m. Passing to the CMC in Eq. (7.122) for cM , using the bimodal approx-
imation Eq. (7.120) and the definition Eq. (7.139) of the degree of micellization
α, we obtain [27]

Wsm = ln
(

π1/2 1 − αm

αm
nsm∆nsm

)
. (7.224)

As earlier in Section 7.10, we take the critical degree of micellization as equal to
αm ≈ 0.1. Possible deviations of the value αm from 0.1 are slightly manifested in
Eq. (7.224) due to weaker sensitivity of the logarithm to its argument.

The substitution of Eq. (7.221) into Eq. (7.217) at c1 = c1m makes it possible to
express the value Wsm on the left-hand side of Eq. (7.224) as a known function
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Fig. 7.5 Dependencies of ncm, n0 and nsm on nC The dotted curve denotes the upper boundary
of the values of aggregation number for the spherical model of molecular aggregate
corresponding to the constraint Eq. (7.184).

of the ratio c1m/c10. Using Eqs. (7.220) and (7.217) and the second relation of
Eq. (7.33) at c1 = c1m, we can also represent the right-hand side of Eq. (7.224)
as a known function of the ratio c1m/c10. As a result, a transcendental equation
for the determination of the ratio c1m/c10 can be derived from Eq. (7.224) at
αm � 0.1. Solving this equation with Eq. (7.223), we have

c1m/c10 = 1.58 . (7.225)

Substituting Eqs. (7.225) and (7.223) into Eqs. (7.220) and (7.217) and into the
second relation of Eq. (7.33), we find

nsm = 79.0 , Wsm = 9.67 , ∆nsm = 12.6 . (7.226)

Similarly, substituting Eqs. (7.225) and (7.223) into Eqs. (7.220) and (7.217) and
into the first relation of Eq. (7.33), we obtain

ncm = 12.3 , Wcm = 29.1 , ∆ncm = 4.97 . (7.227)

As it is seen from Eqs. (7.226) and (7.227), the values nsm and ncm for the droplet
model are located at the CMC in the realistic region of aggregation numbers
admitted by the constraint n < 108. It is also seen that the inequality nsm �
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1 and even the inequality ncm � 1 are fulfilled, which are necessary for the
applicability of the theory.

The dependence of the thermodynamic characteristics of micellization on the
number nC of hydrocarbon groups in the hydrophobic part of a surfactant
molecule (the length of the hydrocarbon chain) is also important for any model
of molecular aggregates. Figs. 7.5-7.7 show the behavior of the values ncm, n0

and nsm as well as the values Wcm, Wsm and c1m/c10 as functions of nC in the
range 12 ≤ nC ≤ 27. Although the number nC in Eq. (7.222) varies in this case,
the other parameters in Eq. (7.222) are assumed, for definiteness, to be constant.
As it is seen from Fig. 7.5, regardless of the rapid increase in the value nsm with
an increase in nC , Eq. (7.184) is fulfilled at n = nsm rather well. This result can
be explained by a quadratic increase of the right-hand side of Eq. (7.184) with
an increase in nC .

According to the definitions Eqs. (7.207) and (7.203), the product b1b3 is inde-
pendent of nC . With Eqs. (7.223) and (7.219), we obtain

ln (vc10) = −BnC − (4π)1/3 (3v)2/3 γ0

kBT
− ln (nC + 1) + 9.4 . (7.228)

Within the entire range 12 ≤ nC ≤ 27, the inequality ln (vc10) < −10 follows
from Eq. (7.228) and B = 1.4. As shown in Fig. 7.7, within the same range, the
ratio c1m/c10 is equal approximately to 1.6. We then have ln (vc1m) = ln (vc10)+
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ln(1.6) with a rather high accuracy. Therefore, in addition to Eq. (7.228), the
relation [27]

ln (vc1m) = −BnC − (4π)1/3 (3v)2/3 γ0

kBT
− ln (nC + 1) + 9.9 (7.229)

is also valid. According to Eq. (7.229), the logarithm of the concentration c1m,
i.e., the logarithm of the CMC, decreases with an increase in nC almost linearly
at nC � 1. This result is confirmed by known experimental data [6, 10, 53, 56].

7.13.2 The Quasi-droplet Model

As it is known from experiments [6] and the theory of the hydrophilic-hydrophobic
balance [5], water molecules can partly penetrate into the depth of a micelle.
In this sense, the droplet model considers the limiting version of the structure
of a molecular aggregate that completely excludes water penetration into the
hydrocarbon core. It is thus of interest to consider the model of a surfactant
spherical molecular aggregate allowing for the maximal (in accordance with the
packing rules) penetration of water molecules into the aggregate and, hence,
realizing another limiting version of the structure of the hydrocarbon core. This
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model is called the quasi-droplet model of surfactant molecular aggregates [29].
The formation of micelles from surfactant molecules begins with the appearance
of molecular aggregates of two, three, etc. monomers. In this case, the part of the
would-be micelle is occupied by water. As new surfactant molecules are added to
the aggregate, water is displaced from the space between surfactant molecules in
the aagregate; however, at small aggregation numbers, water can rather deeply
penetrate into the molecular aggregate.

In the quasi-droplet model of molecular aggregates, shown schematically in
Fig. 7.8, the hydrophobic part of each molecule constituting the aggregate is
represented by two fragments. The first fragment counted from the hydrophilic
part is still surrounded by water molecules. The second fragment is in the internal
region of the molecular aggregate into which water molecules cannot penetrate.
This region is similar to the hydrocarbon core in the droplet model of the molecu-
lar aggregate, and that explains the name ”quasi-droplet model”. Due to mutual
repulsion of the hydrophilic parts, the first fragments of monomer hydrophobic
parts are located, on the average, on the radii coming out from the aggregate
center and are uniformly distributed over all directions in space. The angle φ
formed by two such radii corresponding to adjacent monomers in the aggregate
is determined by the aggregation number n and, at fairly large values of n, is
given by the simple formula

ϕ = (4π/n)1/2 for n � 1 . (7.230)

We bear here in mind that fairly large values are, in particular, such values of n
which satisfy the inequality ϕ/2 � 1 allowing to replace the function sin (ϕ/2)
by its argument. In this sense, a value n = 10 is no longer small.

The radius rα of the internal (free of water molecules) region in the center of
a molecular aggregate is determined by the possibility of arrangement of water
molecules with the characteristic diameter dH2O between the first fragments of
the hydrophobic parts of neighboring surfactant molecules in the aggregate with
the characteristic cross-section diameter d. This internal region is filled with the
second (in the aforementioned meaning) fragments of the hydrophobic parts of
the monomers constituting the aggregate. With Eq. (7.230), we obtain

rα = (d + dH2O)n1/2/(2π1/2) , (7.231)

where the approximation sin (ϕ/2) ≈ ϕ/2 is used. We assume here, as in the
droplet model, that the second fragments of the hydrophobic parts interact with
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Fig. 7.8 Quasi-droplet model of molecular aggregates: (1) the hydrophilic part of a surfactant
molecule, (2) the boundary of water penetration into the aggregate, (3) the hydrophobic
part of a surfactant molecule, and (4) the hydrocarbon core of the molecular aggregate.

each other in such a way that they seemingly constitute the hydrocarbon phase.
The internal region of molecular aggregate determined as described above we
will call the hydrocarbon core similar to the case of droplet model. We use values
d = 5.2Å [5] and dH2O = 3.1Å for the further numerical estimates.

Let us find the number ∆nC of hydrocarbon groups in the second fragments of the
hydrophobic parts of molecules, constituting the hydrocarbon core. The volume
∆vC of each fragment can be represented in the form

∆vC = v (∆nC + 1) , (7.232)

where the fact that the terminal methyl group has a characteristic volume v0
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which is approximately twice as large as the volume v is taken into account.
According to the packing rule, we have

4
3
πr3

α = n∆vC . (7.233)

Eqs. (7.232) and (7.233) result with Eq. (7.231) in

∆nC = (d + dH2O)3 n1/2/(6π1/2v) − 1 . (7.234)

The determination of the number ∆nC from Eq. (7.234) as a continuous quantity
suggests that this number is already fairly large. Let us assume that this condition
is fulfilled, if

∆nC > 4 ÷ 5 . (7.235)

In view of Eq. (7.234), Eq. (7.235) implies the existence of a lower bound n1,
n > n1, for the aggregation numbers in the quasi-droplet model. According to
Eqs. (7.234) and (7.235), we obtain

n
1/2
1 = (5 ÷ 6)6π1/2v/ (d + dH2O)3 . (7.236)

In contrast, the condition ∆nC < nC introduces the upper bound n2 of aggre-
gation numbers permissible for the applicability of the proposed model. With
Eq. (7.234), the value n2 is determined as

n
1/2
2 = (nC + 1)6π1/2v/ (d + dH2O)3 . (7.237)

At the characteristic values of d, dH2O and v, we have the estimate

6π1/2v/ (d + dH2O)3 ≈ 1/2 . (7.238)

We combine, now, the constraints on the aggregation number in the quasi-droplet
model. Eqs. (7.236) - Eq. (7.238) allow to conclude that the permissible values of
the aggregation number n should fit the range

(5 ÷ 6)2
/

4 < n < (nC + 1)2
/

4 . (7.239)

Note that the lower bound of n in Eq. (7.239) agrees with the constraint intro-
duced in the note to Eq. (7.230).
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Evidently, the first (surrounded by water molecules) fragments of the hydropho-
bic parts of surfactant molecules constituting the aggregate contain nC − ∆nC

hydrocarbon groups each and have the length (nC − ∆nC) l1. Adding this length
to the radius rα, using Eqs. (7.231) and (7.234), we find the radius r of a sphere
with the center in the middle of the molecular aggregate as

r = l1(nC + 1) + [(d + dH2O)/(2π1/2) − (d + dH2O)3l1/(6π1/2v)]n1/2 . (7.240)

The hydrophobic parts of surfactant molecules enter this sphere completely. Ac-
cording to Eq. (7.235), we have r − rα ≥ 0. Introducing the notation

αqd = [(d + dH2O)/(2π1/2) − (d + dH2O)3l1/(6π1/2v)][l1(nC + 1)]−1 , (7.241)

we rewrite Eq. (7.240) as

r = �1 (nC + 1)
(
1 + αqdn

1/2
)

. (7.242)

Substituting the numerical values of the parameters into Eq. (7.241), we arrive
at the estimate

αqd ≈ −0.15/(nC + 1) . (7.243)

With Eq. (7.239), this estimate demonstrates that the term αqdn
1/2 in the second

round brackets on the right-hand side of Eq. (7.243) is bounded in its absolute
value as∣∣∣αqdn

1/2
∣∣∣ � 0.08 . (7.244)

Note that, according to Eqs. (7.240) or (7.242), the radius r decreases with an
increase in the aggregation number n due to the negative value of the parame-
ter αqd. Nevertheless, the radius r is larger than the radius of the hydrocarbon
core in the droplet model of surfactant molecular aggregates at each n satisfying
Eq. (7.239). Eqs. (7.230), (7.231) and (7.242) determine the geometric parameters
of the molecular aggregates in the quasi-droplet model. Let us assume that the
molecular aggregate is in a mechanical equilibrium at these parameters.

Taking into account the fairly small number of molecules in the molecular ag-
gregates that are of interest to us, their geometric and thermodynamic charac-
teristics in the quasi-droplet model undergo noticeable changes on adding a new
molecule to the aggregate. In particular, the hypothetical condensed phase for the
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substance constituting the hydrocarbon core of the molecular aggregate consists
only of the second (in the meaning indicated at the beginning of this section) frag-
ment of hydrocarbon chains of surfactant molecules. The characteristics of such
a phase are changed as the length of these fragments varies with aggregation
numbers.

In any phase, the molecular chemical potential is given by the standard expression
Eq. (7.187). If the phase characteristics of the molecular aggregate do not change
with the attachment of a surfactant monomer, then Eq. (7.191) would follow
from Eq. (7.187) allowing to determine the difference in the monomer chemical
potentials in the aggregate and in the solution. We need just to take into account
that, during this process, only the second fragment of the hydrophobic part of a
molecule is transferred from the solution to the hydrocarbon core of the molecular
aggregate.

If the surface of the hydrocarbon core is flat and the hydrophobic part of a
surfactant molecule is completely transferred to the core, then the work of transfer
of a single hydrophobic part from water to the bulk of the hydrocarbon phase
would be equal to the value known from experiments. This value is a linear
function of the number of carbon atoms constituting the hydrocarbon part with
the coefficient of linear dependence -B, the positive dimensionless parameter of
hydrophobic interaction, determined earlier. Since, in the quasi-droplet model,
only the second fragment of the hydrophobic part of a surfactant molecule enters
into the hydrocarbon core composed of ∆nC hydrocarbon groups, the relevant
transfer work wβα can be evidently represented as

wβα = −B∆nC . (7.245)

With Eq. (7.234), we can write Eq. (7.245) also in the form

wβα = −a3n
1/2 + B , (7.246)

where

a3 ≡ B (d + dH2O)3 /(6π1/2v) . (7.247)

The surface of a hydrocarbon core is curved and is characterized by the surface
tension γ0; therefore, the work of surfactant molecule transfer from the solution to
the molecular aggregate contains a contribution wL expressing the work required
to overcome the Laplace pressure difference on this surface (the surface of polar
groups will be accounted for separately). For a spherical surface (with a radius
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rα) of the hydrocarbon core composed of molecular fragments with a volume
∆vC , this contribution is (instead of the third term on the right-hand side of
Eq. (7.193)) given by

wL =
(

2γ0

rαkBT

)
∆vC . (7.248)

Substitution of Eqs. (7.231) and (7.232) for rα and ∆vC into Eq. (7.248) with
account of Eq. (7.234) yields

wL =
(

2γ0

3kBT

)
(d + dH2O)2 . (7.249)

In addition, one should take into account that the surfactant molecule is not
transferred as a whole into the bulk of the hydrocarbon phase but remains in a
position when it intersects the aggregate dividing surface (to which the surface
tension is referred) with the cross section a. Therefore, the monomer chemical
potential in the aggregate contains also, as well as in the droplet model, the
additional surface contribution (−γ0a0/kBT ).

During the transfer of a surfactant molecule to the molecular aggregate, polar
groups remain in the solvent medium; however, they approach each other and
form the electrical double layer. The corresponding electrostatic contribution wel

can be estimated, as in the case of the droplet model, with the aid of the model of
a spherical capacitor. We take advantage here of Eq. (7.205) for the electrostatic
contribution W el

n . According to Eq. (7.185), we can calculate the electrostatic
contribution wel by differentiating Eq. (7.205) with respect to aggregation number
n and using Eq. (7.242) for the radius r of the surface confining the hydrocarbon
parts of surfactant molecules in the quasi-droplet model of molecular aggregates.
When writing the result and utilizing the inequalities r � δ and r � ∆l at
nC � 1 and n � 1, we ignore the second-order terms due to the small (because
of the constraint Eq. (7.244)) value of αqdn

1/2. With Eq. (7.242), we find

wel = 2a1n

[
1 − 5

2
αqdn

1/2

]
, (7.250)

where

a1 ≡ (ez)2δ
8πε0ε[l1 (nC + 1)]2kBT

. (7.251)
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According to above given derivation, the contribution wel takes into account the
change in the characteristics of the molecular aggregate (more specific, its radius
r) on the attachment of new molecules to the aggregate. Let us take now into
account the contributions wβα and wL, as well as the concentration contribution
wconc = ln(c1n/c1) given by the last term on the right-hand side of Eq. (7.193).

The chemical potentials of a surfactant monomer in an aggregate and the relevant
contributions caused by the change in the characteristics of molecular aggregates
we will specify with an accent. It follows from above considerations that

w′
el = wel . (7.252)

As it is seen from Eq. (7.234), when the next molecule is attached, the num-
ber ∆nC of hydrocarbon groups (entering into the aggregate core) of the hy-
drophobic part of each molecule constituting the aggregate increases. According
to Eq. (7.232), the volume ∆vC (the volume of the fragments of the hydrophobic
parts of surfactant molecules forming the hydrocarbon core) also increases. The
increase in the number ∆nC gives rise to the energy gain from the transfer of the
corresponding fragment of the hydrophobic part of surfactant molecules to the
hydrocarbon core of the aggregate. Extending Eq. (7.245), we can write

w′βα = −B

(
∆nC + n

∂∆nC

∂n

)
. (7.253)

The factor n in front of the derivative with respect to n suggests that all n
molecules in the molecular aggregate participate in the formation of the chemical
potential in this aggregate. From Eq. (7.253) with Eqs. (7.234) and (7.247), we
obtain

w′βα = −3
2
a3n

1/2 + B . (7.254)

According to Eq. (7.197), the contribution wβα in the droplet model is indepen-
dent of the aggregation number of the molecular aggregate; however, the similar
contribution w′βα in the quasi-droplet model increases in its absolute value with
n according to Eq. (7.254). In this case, it can be shown that the contribution
Eq. (7.254) is smaller in its absolute value as compared with the similar contri-
bution for the droplet model in the lower part of the range of permissible values
of aggregation numbers determined by Eqs. (7.239); in contrast, it is larger in the
upper part.
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During the attachment of a new molecule to the aggregate, an increase in volume
∆vC of all second fragments of the hydrophobic parts of molecules constituting
the hydrocarbon core of the aggregate tends to increase the work required for
overcoming the Laplace pressure difference on the surface of the hydrocarbon
core. We determine the contribution w′

L, that takes into account this effect, by

w′
L =

2γ0

rαkBT

(
∆vC + n

∂∆vC

∂n

)
(7.255)

generalizing Eq. (7.248). Hence, combining Eqs. (7.231), (7.232) and (7.234), we
arrive at

w′
L =

γ0

kBT
(d + dH2O)2 . (7.256)

Eq. (7.256) shows that the contribution w′
L is independent of aggregation number.

This circumstance distinguishes the quasi-droplet model from the droplet model
where a similar contribution is inversely proportional to the cubic root of n.

The molecular concentration cα in the contribution wconc is estimated in the case
of the quasi-droplet model as the concentration of the second fragments of the
hydrophobic parts of surfactant molecules constituting the hydrocarbon core of
the molecular aggregate. According to Eqs. (7.232) and (7.234), at the suggested
dense core packing, the concentration cα is then estimated by the relation

cα = [v1 (∆nC + 1)]−1 =
6π1/2

n1/2(d + dH2O)3
. (7.257)

The dependence of the concentration cα on the aggregation number n (that
was absent in the droplet model) requires the refinement of the contribution
wconc. Performing this refinement, using Eq. (7.257) and acting by analogy with
Eqs. (7.253) and (7.255), we obtain

w′
conc = ln

(
cα

c1

)
+ n

∂ ln (cα/c1)
∂n

= ln

[
6π1/2

c1n1/2(d + dH2O)3

]
− 1

2
. (7.258)

For dilute solutions, the ratio cα/c1 is fairly large (∼ 105). Although Eq. (7.257)
for cα is a rough estimate, these values lead to practically exact expressions for
ln(cα/c1), which have been actually used in Eq. (7.258).
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Similarly to Eq. (7.193), we can represent the desired chemical potential µ̄′
1n of

surfactant molecules in the molecular aggregate in the quasi-droplet model as

µ̄′
1n = µ̄1 − w′βα + w′

L − γ0a

kBT
+ w′

el + w′
conc . (7.259)

Substituting Eq. (7.259) into Eq. (7.186) and taking into account Eqs. (7.250),
(7.252), (7.254), (7.256) and (7.258), we can write the expression for the aggre-
gation work Wn in the case of the quasi-droplet model at n � 1 as [29]

Wn = −a3n
3/2 + a1n

2
(
1 − 2αqdn

1/2
)
− 1

2
n lnn + (7.260)

+

{
B +

(
γ0

kBT

)[
(d + dH2O)2 − a

]
− ln

[
c1 (d + dH2O)3

6π1/2

]}
n .

According to Eq. (7.260), there is a point n = n0 of inflection of the work Wn in
the case of the quasi-droplet model. This point is independent of the concentration
of the solution and satisfies Eq. (7.212) with substitution of Eq. (7.260). There is
also a monomer concentration c10 that satisfies Eq. (7.214) with substitution of
Eq. (7.260). The work Wn rises monotonically with n at c1 < c10. This result leads
to the absence of relatively stable aggregates in the solutions at such surfactant
concentrations. At c1 > c10, the work Wn is characterized by a local maximum
at nc and a local minimum at ns corresponding to micelles. As c1 increases, the
points nc and ns move correspondingly to the left and right from the inflection
point n0. Thus, the qualitative behavior of the aggregation work Wn in the case
of the quasi-droplet model is similar to that in the droplet model.

Let us consider an approximation for the work Wn allowing for an analytical
study. For such purposes, we omit in Eq. (7.260), according to Eq. (7.244), the
terms proportional to the parameter αqd and set lnn = ln n0 (assuming that the
relative deviations of n from n0 are not so large in the near-critical and micellar
regions of aggregation numbers). Then we can rewrite Eq. (7.260) as

Wn = −a3n
3/2 + a1n

2 +
(

9a3
2

32a1
− ln

c1

c10

)
n , (7.261)

where Eqs. (7.260), (7.212) and (7.214) yield

n0 = (3a3/8a1)2 , (7.262)
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ln
c10 (d + dH2O)3

6π1/2
= − 9

32
a3

2

a1
+ B (7.263)

+
γ0

[
(d + dH2O)2 − a

]
kBT

− ln
3a3

8a1
.

Note in conclusion that the significant formal difference in the dependence of the
work Wn on the aggregation number n according to Eq. (7.261) for the quasi-
droplet model and according to Eq. (7.217) for the droplet model is in fact that
the work Wn is represented in Eq. (7.217) as the expansion in powers of the
cubic root of n, whereas in Eq. (7.261) the expansion is performed in powers
of the quadratic root of n. Latter result can be considered as a reflection of an
almost two-dimensional structure of the surfactant molecular aggregate in the
quasi-droplet model with a structure similar to the rolled surfactant monolayer.
A comparison of the predictions of both models in application to experimental
data should demonstrate which of these models and in which cases more fully
accounts for the properties of real micellar solutions.

7.13.3 Comparison of Droplet and Quasi-droplet Models

We have seen in the preceding sections that both the droplet and the quasi-
droplet models of molecular aggregates result in different (albeit qualitatively
similar) dependencies of the aggregation work on the aggregation number and
the concentration of surfactant monomers. At the same time, simplified assump-
tions concerning both the structure of the molecular aggregates and the way
how the basic interactions of the surfactant molecules constituting the aggregate
are taken into account introduce some uncertainty into the quantitative data ob-
tained by using these models. It seems natural to interpret this uncertainty as the
result of the insufficiently correct determination of the initial parameters of the
models of the aggregates. The predictive power of the models can be increased by
introducing representative experimental characteristics of micellization, provided
that formulas linking the initial parameters of the models with the observable
values are understood as rigorous relations.

By now, relatively reliable experimental data on the position of the potential
well of the work of surfactant molecular aggregate formation on the aggregation
number axis (on the mean micelle size, ns), as well as on the half-width of this well
(the average statistical scattering of micelle sizes, ∆ns) are available in literature
for various micellar solutions. These data can be refined in the course of further
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experimental study of the equilibrium distribution with respect to the micelle
aggregation numbers. Note that the value ∆ns can experimentally be found by
measuring the time t1 of fast relaxation of the micellar solution.

According to their physical meaning, the initial parameters of the droplet and
quasi-droplet models of molecular aggregates (represented by the coefficients in
Eqs. (7.217) and (7.261)) cannot be determined directly from experiment or by
molecular simulations. At the high sensitivity of the thermodynamic character-
istics of micellization to these parameters, it is more convenient to initially take
into account in the theory the position and half-width of the potential well of
aggregation work. As a result, this procedure allows us to relate the theory to
experiment, moreover, in application to specific micellar solutions. Therefore the
main aim of this section is to demonstrate how, knowing the experimental posi-
tion and half-width of the potential well of the aggregation work, one can find
all other thermodynamic characteristics of micellization, in particular, those re-
ferring to molecular aggregates in the pre-micellar (pre-critical and near-critical)
regions of their sizes and which are not easily accessible in experiment. We will
follow here the approach proposed in Ref. 22. Another approach based on deriv-
ing and solving the differential equations for the initial parameters of the model
aggregation work was considered in Ref. 58.

It follows from Figs. 7.2 and 7.4 that the values ns and ∆ns undergo in the
droplet model only relatively small changes with concentration c1, beginning with
the CMC where the surfactant starts to be accumulated in micelles and ending
with the concentrations at which almost the whole surfactant is accumulated in
micelles. As we will see below, the same is true in the quasi-droplet model. Along
with that, taking into account Eq. (7.128) and ns � 1, the function exp (−Ws)
rapidly increases as c1 increases from c1m at the CMC. This property makes the
concentrations c

(e)
n in Eq. (7.45) to be sensitive to the values ns and ∆ns, thereby

decreasing the error of experimental determination of these values via Eq. (7.45).
The total concentration cM of micelles in the micellar region is determined at
solution equilibrium by Eq. (7.122). Dropping the sign ∼ and neglecting the weak
dependence of the half-width ∆ns on c1, we get from Eqs. (7.122) and (7.128)
the useful relation ∂ ln cM/∂c1 = ns/c1, which makes it possible to determine
experimentally the value ns, provided that the dependence of cM on c1 is known.

Eq. (7.224) relates the value Wsm of the aggregation work at CMC, i.e. at c1 =
c1m, with the value nsm of the aggregation number, the value ∆nsm of the average
statistical scattering of micelle sizes and the value αm of the degree of micellization
at c1 = c1m. The critical degree of micellization αm is estimated as αm ≈ 0.1.
Then, according to Eq. (7.139), we have nsmcMm/c1m ≈ 1/9 so that the relative
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amount of substance in the micelles at the CMC is still small, although it is
already noticeable. In order to increase the ratio nscM/c1 approximately tenfold
and, hence the relative amount of surfactant in micelles to exceed unity, we need
to increase the concentration c1 from c1m by the value ∆c1 small compared with
c1m. Eqs. (7.122) and (7.128) result in ∆c1/c1m ≈ ln (10)/(nsm − 1). Note that,
as we will see below, the value ∆c1 turns out also to be small as compared with
the increase of c1m − c10 at the concentration c1 required to achieve the CMC
after the appearance of the potential barrier and the potential well of the work
Wn. This result supports the correctness of the approximate value αm ≈ 0.1 of
the critical degree of micellization accepted and the corresponding approximate
value of CMC. Possible small deviations of the value αm from αm ≈ 0.1 can be
only slightly manifested in Eq. (7.224) due to the low sensitivity of the logarithm
in Eq. (7.224) to its argument at nsm∆nsm � 1.

Let us go over now to an analysis of other thermodynamic characteristics of micel-
lization at the CMC which may depend on the choice of the specific model of the
molecular aggregates. We start with the droplet model. The second relations in
Eqs. (7.211) and (7.33) at c1 = c1m, ns = nsm, ∆ns = ∆nsm, Eqs. (7.224), (7.217)
and the definition Wsm ≡ Wn|c1=c1m,n=nsm

give three transcendental equations
that allow us to analytically express three parameters b1, b3 and ln (c1m/c10) via
nsm, ∆nsm and αm. Solving these equations, we obtain

b1 =
9n2/3

sm

(∆nsm)2
(1+ ∈) , b3 =

9n4/3
sm

(∆nsm)2
(1 + 2 ∈) , (7.264)

ln
(

c1m

c10

)
=

1.1nsm

(∆nsm)2
(1 − 1.3 ∈) , (7.265)

where the quantity ∈ depends on nsm, ∆nsm, and αm and is determined by

∈=
1
3

(
∆nsm

nsm

)2

ln
(

π1/2 1 − αm

αm
nsm∆nsm

)
. (7.266)

At αm ≈ 0.1 and typical (by the order of magnitude) estimates nsm ∼ 102 and
∆nsm ∼ 10, we get from Eq. (7.266) the result ∈∼ 0.03 so that the value of ∈
can be considered as small as compared with one. Therefore we keep only the
principal (linear with respect to ∈) correction, ignoring quadratic and higher-
order corrections with respect to ∈. We emphasize that the existence of a fairly
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small parameter (∆nsm/nsm)2 is responsible for the strong inequality ∈� 1. Note
that Eqs. (7.264) are not restricted in its validity by the constraint ∈� 1.

Employing Eqs. (7.217) and (7.264)-(7.265), we find the analytical dependence of
the values ncm, ∆ncm and Wcm on nsm, ∆nsm and αm. Taking into account only
the first equations in Eqs. (7.211) and (7.33) at c1 = c1m, nc = ncm, ∆nc = ∆ncm,
as well as the definition Wcm ≡ Wn|c1=c1m,n=ncm

, we arrive at

ncm =
nsm

8
(1 + 3 ∈) , ∆ncm =

∆nsm

23/2

(
1 +

3
2
∈
)

,

Wcm =
9
16

(
nsm

∆nsm

)2(
1 +

11
3

∈
)

. (7.267)

Eqs. (7.224) and (7.265)-(7.267) express thermodynamic characteristics of micel-
lization at the CMC via nsm, ∆nsm and αm in the droplet model of molecular
aggregates. Eq. (7.265), together with Eq. (7.219) for the concentration c10, allows
us to find the experimentally measurable CMC.

According to Eqs. (7.267), the inequalities ∆ncm < ∆nsm and ∆ncm/ncm >
∆nsm/nsm are valid. Hence, the scattering of aggregation numbers in the region
of the potential barrier of work Wn is smaller than that of aggregation numbers in
the region of the potential well of the work Wn. However, the relative scattering
of the aggregation numbers in the region of the potential barrier is larger than
that of the aggregation numbers in the region of the potential well.

Let us illustrate the preceding statements by simple numerical calculations. For
comparison, we cover two typical cases with nsm = 100, ∆nsm = 15 and ∆nsm =
20 (for simplicity, we vary only ∆nsm out of two parameters, nsm and ∆nsm).
From Eqs. (7.224) and (7.264)-(7.266), at αm ≈ 0.1, nsm = 100 and ∆nsm = 15
we can easily find

Wsm = 10.1 , b1 = 0.926 , b3 = 21.4 ,
c1m

c10
= 1.61 , (7.268)

and for nsm = 100 and ∆nsm = 20

Wsm = 10.4 , b1 = 0.552 , b3 = 13.3 ,
c1m

c10
= 1.30 . (7.269)

Further, from Eqs. (7.266)-(7.267) at αm ≈ 0.1, nsm = 100 and ∆nsm = 15, we
can easily obtain

ncm = 15.3 , ∆ncm = 5.90 , Wcm = 31.9 , (7.270)
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and for nsm = 100 and ∆nsm = 20

ncm = 17.7 , ∆ncm = 8.54 , Wcm = 21.2 . (7.271)

Let us now recover the dependence (at the CMC) of the thermodynamic charac-
teristics of micellization on the initial parameters b1 and b3 of the droplet model
of molecular aggregates. Now it can be easily done, expressing in Eqs. (7.264)
and (7.266) the parameters nsm and ∆nsm by pertubation theory at ∈� 1 via
the initial parameters b1 and b3. As a result we obtain

nsm =
(

b3

b1

)3/2(
1 − 3

2
∈
)

, ∆nsm =
3b3

1/2

b1
, (7.272)

∈=
3b1

b2
3

ln

(
3π1/2 1 − αm

αm

b2
3

b
5/2
1

)
. (7.273)

The high sensitivity of the parameter nsm and a lower sensitivity of the param-
eter ∆nsm to the values of the parameters b1 and b3 are evident. In order for
Eqs. (7.272) to secure realistic estimates of nsm ∼ 102 and ∆nsm ∼ 10, and cor-
respondingly, in order for Eq. (7.273) to secure the inequality ∈� 1, the values
of the initial parameters b1 and b3 of the droplet model should satisfy rather
severe constraints. Eqs. (7.272)-(7.273), with Eqs. (7.224), (7.265) and (7.267),
determine in an analytical form the desired dependence (at the CMC) of all ther-
modynamic characteristics of micellization on the parameters b1 and b3 of the
droplet model of molecular aggregates. In particular, the approximations for the
values nsm and ncm,

nsm ≈
(

b3

b1

)3/2

, ncm ≈ 1
8

(
b3

b1

)3/2

(7.274)

follow from Eqs. (7.272) and (7.267) when correction terms containing the small
parameter ∈ are ignored. From Eqs. (7.213) and (7.274), we have ncm/n0 ≈
1
/
23/2 and nsm/n0 ≈ 23/2. These relations indicate that the relative positions of

maximum, inflection point and minimum of work Wn on the aggregation number
axis are independent of the parameters b1 and b3 in the droplet model of molecular
aggregates.

Let us turn, now, to the quasi-droplet model of molecular aggregates. The sec-
ond equations in Eqs. (7.211) and (7.33) at c1 = c1m, ns = nsm, ∆ns = ∆nsm,
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Eqs. (7.224) and (7.261) and the definition Wsm ≡ Wn|c1=c1m,n=nsm
give again

three transcendental equations that allow us to analytically express the three pa-
rameters a1, a3 and ln (c1m/c10) via nsm, ∆nsm and αm. Solving these equations,
we obtain

a1 =
4

(∆nsm)2
(1+ ∈) , a3 =

8n1/2
sm

(∆nsm)2

(
1 +

4
3
∈
)

, (7.275)

ln
c1m

c10
=

1
2

nsm

(∆nsm)2
(1− ∈) , (7.276)

where the quantity ∈ depends on nsm, ∆nsm, and αm and is given by

∈=
3
4

(
∆nsm

nsm

)2

ln
(

π1/2 1 − αm

αm
nsm∆nsm

)
. (7.277)

At αm ≈ 0.1 and typical (by the order of magnitude) estimates nsm ∼ 102 and
∆nsm ∼ 10, we have from Eq. (7.277) the result ∈∼ 0.07. Thus the value of ∈ can
be considered as small as compared with one also in the quasi-droplet model. This
result allows us to keep only the principal (linear with respect to ∈) correction,
ignoring quadratic and higher-order corrections with respect to ∈. Similarly to
the droplet model, the existence of a fairly small parameter (∆nsm/nsm)2 is
responsible for the strong inequality ∈� 1. Note that Eqs. (7.275) are not
restricted in its validity to the constraint ∈� 1.

Using Eqs. (7.261) and (7.275)-(7.276), we find the analytical dependence of the
values ncm, ∆ncm, and Wcm on nsm, ∆nsm and αm. Taking into account only the
first equations in Eqs. (7.211) and (7.33) at c1 = c1m, nc = ncm, ∆nc = ∆ncm,
as well as the definition Wcm ≡ Wn|c1=c1m,n=ncm

, we arrive at

ncm =
nsm

4
(1 + 2 ∈) , ∆ncm =

∆nsm

21/2

(
1 +

1
2
∈
)

, (7.278)

Wcm =
1
4

(
nsm

∆nsm

)2(
1 +

11
3

∈
)

. (7.279)

Eqs. (7.224), (7.276)-(7.279) express the thermodynamic characteristics of mi-
cellization at the CMC via nsm, ∆nsm and αm in the quasi-droplet model of
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molecular aggregates. Eq. (7.276), together with Eq. (7.263) for the concentra-
tion c10, allows us to find the experimentally measurable CMC.

Let us perform a comparison of the droplet and quasi-droplet models. According
to Eqs. (7.278), the inequalities ∆ncm < ∆nsm and ∆ncm/ncm > ∆nsm/nsm are
still valid in the quasi-droplet model. According to Eq. (7.279), a fairly strong
dependence of the value Wcm on the large parameter (nsm/∆nsm)2 still exists.
However, as it is now seen from a comparison of Eqs. (7.279) and (7.267), this
dependence is approximately by 9/4 times weaker than in the droplet model
of molecular aggregates. Correspondingly, the extremely strong dependence of
exp (Wcm) on the large parameter (nsm/∆nsm)2 becomes now weaker approxi-
mately by exp

[
(5/16) (nsm/∆nsm)2

]
times. Because exp (Wcm) determines the

time of slow relaxation of the micellar solution, it can be expected that, for
micellar solutions where this time is not so long and, hence, exp (Wcm) is not
very large, the quasi-droplet model of molecular aggregates provides the estimate
exp (Wcm) ∼ exp

[
(1/4) (nsm/∆nsm)2

]
which seems to be preferable. On the con-

trary, for micellar solutions where this time is very large and, hence, exp (Wcm) is
also very large, the droplet model of molecular aggregates provides the estimate
exp (Wcm) ∼ exp

[
(9/16) (nsm/∆nsm)2

]
which seems to be preferable in this al-

ternative case. Note also that, in the quasi-droplet model at the same values nsm

and ∆nsm, the values ncm and ∆ncm will be approximately twice as large (as is
seen from a comparison of Eqs. (7.278) with Eqs. (7.267)) and, on the contrary,
the value ln (c1m/c10) will be approximately twice as small as in the droplet model
(as evident from a comparison of Eqs. (7.276) and (7.265)).

Let us illustrate the preceding considerations by simple numerical calculations,
again. For comparison, we cover two typical cases with nsm = 100, ∆nsm = 10
and ∆nsm = 15 (for simplicity, we vary only ∆nsm out of two parameters, nsm

and ∆nsm). From Eqs. (7.224) and (7.275)-(7.277), at αm ≈ 0.1, nsm = 100 and
∆nsm = 15 we can easily find

Wsm = 9.68 , a1 = 0.0429 , a3 = 0.877 ,
c1m

c10
= 1.59 , (7.280)

and for nsm = 100 and ∆nsm = 15

Wsm = 10.1 , a1 = 0.0208 , a3 = 0.436 ,
c1m

c10
= 1.20 . (7.281)
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Further, from Eqs. (7.277)-(7.279) at αm ≈ 0.1, nsm = 100 and ∆nsm = 10, we
can easily obtain

ncm = 28.6 , ∆ncm = 7.33 , Wcm = 31.7 , (7.282)

and for nsm = 100 and ∆nsm = 15

ncm = 33.5 , ∆ncm = 11.5 , Wcm = 18.0 . (7.283)

Let us now recover the dependence on the initial parameters a1 and a3 in the
quasi-droplet model. From Eqs. (7.275) and (7.277), by the perturbation method
at ∈� 1, we obtain

nsm =
(

a3

2a1

)2(
1 − 2

3
∈
)

, ∆nsm =
2

a
1/2
1

(
1 +

1
2
∈
)

, (7.284)

∈=
48a3

1

a4
3

ln

(
π1/2 1 − αm

αm

a2
3

2a5/2
1

)
. (7.285)

The high sensitivity of the parameter nsm to the parameters a1 and a3 and lower
sensitivity of the parameter ∆nsm to the parameter a1 is evident. In order for
Eqs. (7.284) to provide realistic estimates of nsm ∼ 102 and ∆nsm ∼ 10, and
correspondingly, in order for Eq. (7.285) to provide the inequality ∈� 1, the
values of the initial parameters a1 and a3 of the quasi-droplet model should
satisfy rather severe constraints. Eqs. (7.284)-(7.285), with Eqs. (7.224), (7.276)
and (7.278)-(7.279), determine in an analytical form the desired dependence (at
the CMC) of all thermodynamic characteristics of micellization on the parameters
a1 and a3 of the quasi-droplet model of molecular aggregates. In particular, the
approximations for values nsm and ncm,

nsm ≈
(

a3

2a1

)2

, ncm ≈
(

a3

4a1

)2

(7.286)

follow from Eqs. (7.284) and (7.278) when corrections due to terms containing the
small parameter ∈ are ignored. From Eqs. (7.262) and (7.286), we have ncm/n0 ≈
(2/3)2, nsm/n0 ≈ (4/3)2. These relations indicate that the relative positions of
maximum, point of inflection and minimum of the work Wn on the aggregation
number axis are independent of the parameters a1 and a3 in the quasi-droplet
model of molecular aggregates.
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Let us now derive formulas for the thermodynamic characteristics of micellization
in the droplet and quasi-droplet models of molecular aggregates that are valid in
the region c1 > c1m of monomer concentration c1. It is natural that, within the
framework of the models, all conclusions will be referred only to the region of
concentrations where micelles still retain their spherical shape. As will be shown
below, this concentration region can be considered, even upon the accumulation
(in micelles) of almost the entire surfactant in micellar solution (when the degree
of micellization is close to unity and the total surfactant concentration is much
higher than the CMC), as so narrow that the relations

nc ≈ ncm , ns ≈ nsm , ∆nc ≈ ∆ncm , ∆ns ≈ ∆nsm (7.287)

hold in this region with a high accuracy with an error that does not exceed several
percent. It follows from Eq. (7.144) that, even at

cM/cMm � 103 , (7.288)

the inequality

c1/c1m < 1 + (6.91/nsm) (7.289)

is valid. According to Eq. (7.139) and αm � 0.1, we have α � 0.99 at the upper
limit of inequalities Eqs. (7.288) and (7.289). This result implies that micelles
already accumulate the main part of the entire surfactant in micellar solution.
Hereafter, we assume that Eqs. (7.288) and (7.289), which indicate the narrow-
ness of the concentration region c1 > c1m, are fulfilled.

For the droplet model of molecular aggregates we can find with Eqs. (7.210),
(7.33) and (7.217) the dependence of the values nc, ns, ∆nc and ∆ns on con-
centration c1 via ln (c1/c10) even in an analytical form. Eqs. (7.289) and (7.265)
show that, at the upper limit of the constraint Eq. (7.289), we have

ln (c1/c10) − ln (c1m/c10)
ln (c1m/c10)

� 6.28
(

∆nsm

nsm

)2

. (7.290)

For simplicity, we ignore here and below the correction terms of order ∈. Thus
we see that the deviation of the value of ln (c1/c10) from its magnitude at the
CMC is relatively small at (∆nsm/nsm)2 ∼ 10−2. Then, retaining the principal
(with respect to this deviation) contributions to the dependencies of nc, ns, ∆nc
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and ∆ns on ln (c1/c10) and taking into account Eqs. (7.264)-(7.265), (7.267) and
(7.290), we obtain

nc � ncm

[
1 − 3.45

(
∆nsm

nsm

)2
]

, ns � nsm

[
1 + 3.45

(
∆nsm

nsm

)2
]

,

∆nc � ∆ncm

[
1 − 3.45 (∆nsm/nsm)2

]
(7.291)

∆ns � ∆nsm

{
1 −

[
0.77 ln

(
π1/2(1 − αm)

αm
nsm∆nsm

)
− 2.65

]
× (7.292)

×
(

∆nsm

nsm

)4
}

.

The same approach can be used for the quasi-droplet model. Here Eqs. (7.210),
(7.33) and (7.261) allow to determine the dependence of nc, ns, ∆nc and ∆ns

on concentration c1 via ln (c1/c10) (again, in an analytical form). As follows from
Eqs. (7.289) and (7.276), we have at the upper limit of the constraint Eq. (7.289)
in the quasi-droplet model the result

ln (c1/c10) − ln (c1m/c10)
ln (c1m/c10)

� 13.8
(

∆nsm

nsm

)2

. (7.293)

We see that the deviation of ln (c1/c10) from its value at the CMC is still relatively
small. Then, retaining principal (with respect to this deviation) contributions to
the dependencies of nc, ns, ∆nc, and ∆ns on ln (c1/c10) and taking into account
Eqs. (7.275)-(7.276), (7.278) and (7.293, we obtain in the quasi-droplet model

nc � ncm

[
1 − 6.91

(
∆nsm

nsm

)2
]

, ns � nsm

[
1 + 3.45

(
∆nsm

nsm

)2
]

, (7.294)

∆nc � ∆ncm

[
1 − 5.18

(
∆nsm

nsm

)2
]

,

(7.295)

∆ns � ∆nsm

[
1 − 2.59

(
∆nsm

nsm

)2
]

.
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It follows from Eqs. (7.291)-(7.292) and Eqs. (7.294)-(7.295) at (∆nsm/nsm)2 ∼
10−2 that Eqs. (7.287) are fulfilled with high accuracy at the upper limit of the
constraint Eq. (7.289). Evidently, this statement is valid throughout the concen-
tration region c1 > c1m admitted by the constraint Eq. (7.289). The existence of
the small parameter (∆nsm/nsm)2 is responsible for the fulfillment of Eqs. (7.287)
in the droplet and quasi-droplet models of molecular aggregates.

Note also the following circumstance. According to Eq. (7.289), a relative increase
in monomer concentration c1 that is needed to accumulate almost the whole sur-
factants in micelles after reaching the CMC turned out to be still markedly lower
than the relative increase in monomer concentration c1 estimated by Eqs. (7.268),
(7.269) and (7.280), (7.281) that is necessary to reach the CMC after the appear-
ance of the potential barrier and potential well of work Wn at c1 = c10. This
results confirm all statements which have been made concerning the physical
meaning of the CMC.
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