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INTRODUCTION

We continue the study of thermodynamics and
kinetics of aggregation in nonionic surfactant solutions
containing spherical and cylindrical micelles above the
second critical micellization concentration (CMC2)
that was initiated in [1–3]. In [1, 2] and in the general
section of [3], we considered complex situation where
the aggregation work done during the micellization was
characterized by two potential barriers. The first barrier
is the activation barrier for the transition to spherical
micelles; the second barrier is the activation barrier for
the transition to cylindrical micelles. A simpler (albeit
realistic) situation [4, 5], where the height of the second
potential barrier of aggregation work is lower than that
of the first potential barrier, was also considered in [3].
To be more exact, for the study in [3], it was sufficient
for the relative height of the second potential barrier to
be at least slightly lower than that of the first potential
barrier.

As was demonstrated by recent studies [6], it is pos-
sible that the second potential barrier of aggregation
work is almost unnoticeable or even absent at all. Then,

the transition from spherical to cylindrical micelles
occurs without overcoming the activation barrier, and
quasi-equilibrium exists between spherical and cylin-
drical micelles; however, there is no equilibrium
between these micelles and subcritical molecular
aggregates located on the aggregation number axis to
the left of the first potential barrier of aggregation work.
According to [6], the analytical extension of the results
of the description (done in [3]) of the micellar relax-
ation to the realistic situation is impossible, because it
was assumed in [3] that the second potential barrier is
still expressed noticeably on the dependence of the
aggregation work on the aggregation number, even if its
height is small. Thus, the situation arising in the
absence of the second potential barrier requires special
study. This consideration is the one of main goals of
this work.

The variations in the sum of the total concentrations
of spherical and cylindrical micelles caused by total
flux of molecular aggregates over the first potential bar-
rier of aggregation work will be taken into account, as
well as the fact that, in the absence of the second poten-
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Abstract

 

—The realistic situation, where there is no potential barrier of aggregation work between the spherical
and cylindrical micelles, is analyzed within the framework of the kinetic description of the relaxation of non-
ionic surfactant solution containing spherical and cylindrical micelles. The variations in the sum of the total
concentrations of spherical and cylindrical micelles caused by the total flux of molecular aggregates over the
potential barrier of aggregation work between the monomers and spherical micelles is taken into account; it is
also accounted for that, in the absence of the potential barrier of aggregation work between the spherical and
cylindrical micelles, they are present in the mutual quasi-equilibrium. The closed linearized relaxation equation
determining the variations (with time) in the total concentrations of spherical and cylindrical micelles in a mate-
rially isolated surfactant solution is derived and solved. The variations (with time) of the total concentrations of
spherical and cylindrical micelles, the concentration of surfactant monomers, as well as the total amount of sur-
factant in cylindrical micelles, in the process of approach of a materially isolated micellar solution to the final
equilibrium state are described analytically. It is disclosed that, at the mutual quasi-equilibrium of spherical and
cylindrical micelles, the opposite-sign deviations of the total amount of substance in cylindrical micelles and
the total amount of cylindrical micelles from their values in the final equilibrium state of a materially isolated
solution is attributed to the relatively large cylindrical micelles. The agreement between the results obtained and
analogous results of the description of micellar relaxation in the presence of the potential barrier of aggregation
work between spherical and cylindrical micelles whose relative height is at least slightly lower than that
between monomers and spherical micelles is demonstrated. Comparison is performed for the cases of the
absence of either spherical or cylindrical micelles. Analytical expressions, which are accessible for experimen-
tal verification, for the ratios of relaxation times of surfactant solutions containing spherical and cylindrical
micelles to those of surfactant solutions containing either spherical or cylindrical micelles alone are derived.
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tial barrier of the aggregation work, spherical and cylin-
drical micelles are in mutual quasi-equilibrium but not
in the equilibrium with subcritical molecular aggre-
gates. Closed linearized relaxation equation determin-
ing the variations (with time) in the total concentration
of spherical micelles and the total concentration of
cylindrical micelles in a materially isolated surfactant
solution will be derived and solved. On this basis, we
will describe analytically the variations (with time) in
the total concentrations of spherical and cylindrical
micelles, the concentration of surfactant monomers and
total amount of surfactant in cylindrical micelles in the
approach of a materially isolated micellar solution to
the final equilibrium state. We disclose that, at the
mutual quasi-equilibrium of spherical and cylindrical
micelles, the opposite-sign deviations of the total
amount of substance in cylindrical micelles and the
total number of cylindrical micelles from their values in
the final equilibrium state of a materially isolated solu-
tion is explained by the presence of relatively large
cylindrical micelles. We will demonstrate the agree-
ment between the obtained results and analogous
results [3] obtained upon the description of micellar
relaxation in the presence of the second potential bar-
rier of aggregation work whose relative height is at least
slightly lower than that of the first potential barrier. We
compare the case of the absence of spherical micelles
with that of the absence of micellar micelles studied
previously [7]. We derive accessible for experimental
verification analytical expressions for the ratios of
relaxation times of surfactant solutions containing
spherical and cylindrical micelles and solutions con-
taining either spherical or cylindrical micelles alone.

1. THE ACCOUNT OF MUTUAL 
QUASI-EQUILIBRIUM BETWEEN SPHERICAL 

AND CYLINDRICAL MICELLES 
IN THE ABSENCE OF ACTIVATION BARRIER 

BETWEEN THEM

We will use the same system of notations as in [1–3].
The aggregation number (the number of surfactant mol-
ecules in an aggregate) is denoted by 

 

n

 

. The concentra-
tion of molecular aggregates (the number of aggregates
per solution unit volume) is denoted by 

 

c

 

n

 

. At 

 

n

 

 = 1, the
aggregates are nothing other than surfactant monomers.
Correspondingly, 

 

c

 

1

 

 is the monomer concentration.
Overall surfactant concentration (the total number of
surfactant molecules per solution unit volume) is
denoted by 

 

c

 

; total concentrations of spherical and
cylindrical micelles, by 

 

c

 

M

 

 and 

 

g

 

, respectively. The 

 

W

 

n

 

is understood as the aggregation work of molecular
aggregate with aggregation number 

 

n

 

 expressed in ther-
mal units 

 

kT

 

 (

 

k

 

 is Boltzmann’s constant and 

 

T

 

 is the
absolute temperature).

The dependence of work 

 

W

 

n

 

 on aggregation number

 

n

 

 in the absence of potential barrier between spherical
and cylindrical micelles at the overall surfactant con-
centration in solution above the CMC2 generalizing

known experimental and theoretical data [4–6] is

shown in Fig. 1. The value of aggregation work 

 

 

 

in

point 

 

n

 

 

 

=  

 

of its first maximum on the aggregation
number axis (the second maximum is absent) deter-
mines the height of activation barrier for the formation
of spherical and cylindrical micelles. Hence, we can

state the aggregates in the region 

 

1 

 

≤

 

 

 

n

 

 <  – 

 

∆

 

on the aggregation number axis, where 

 

∆

 

 

 

is the
half-width of the only potential barrier of aggregation
work, as subcritical aggregates. The value of aggrega-

tion work 

 

 

 

in point 

 

n

 

 =  

 

of its first (and the only
one) minimum characterizes the depth of potential well
where spherical micelles are accumulated. The half-
width of this potential well on the aggregation number

axis is denoted by 

 

∆

 

. According to constraints (1.3)

and (1.4) in [2], we assume 
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, and 
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. These constraints mean that the potential
barrier and potential well of aggregation work are
noticeably exhibited on the dependence of work 

 

W

 

n

 

 on 

 

n

 

.

To the right of point 

 

 + 

 

∆

 

 on the aggregation
number axis, the micelles exist already in a cylindrical
modification [6]. The value of aggregation work 

 

W

 

0

 

 is
taken in point 

 

n

 

 = 

 

n

 

0

 

 corresponding to the left-hand
boundary of the region of aggregation numbers, where
the length of cylindrical micelle is already such that the
dependence of aggregation work 

 

W

 

n

 

 on 

 

n

 

 is linear. In

this case, it is assumed that 

 

∆

 

/(

 

n

 

0

 

 – ) 

 

�

 

 1

 

. The
right-hand boundary of the region of the linear depen-
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Fig. 1.

 

 The work of aggregation 

 

W

 

n

 

 as a function of aggre-
gation number 

 

n 

 

in the absence of the potential barrier
between spherical and cylindrical micelles in the solution at
the overall surfactant concentration above the CMC2.
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dence of Wn on n is set by point n = n1; as one
approaches this point, the equilibrium distribution of
cylindrical micelles over aggregation numbers (propor-
tional to exp(–Wn)) decays rapidly. Thus, the region of
aggregation numbers n > n1 is no longer of interest.

As in [1–3], we assume for , n0, and n1 values
the estimates that are typical for many surfactants

(1.1)

Note that, according to [1, 2], estimates  ~ 4 and

W0 ~ 14, as well as, according to [8], estimate  ~
16–18 are valid.

The n0 < n < n1 region of the linear dependence of
aggregation work Wn on n contributes mainly to the
total number N of surfactant molecules (the total
amount of substance) in cylindrical micelles per solu-
tion unit volume and to the total concentration of cylin-
drical micelles g. Indeed, in the absence of the second
barrier, work Wn increases with aggregation number n

from the  + ∆  value (above which the micelles
exist already in cylindrical modification); moreover,
this value first increases very fast [6] approaching value
W0 (qualitatively, this is shown in Fig. 1). Provided that

n0 �  + ∆  in the main part of  + ∆  < n <
n0 region is fulfilled, work Wn is approximately equal to
W0 and, according to Boltzmann’s principle, the distri-
bution of cylindrical micelles over the aggregation
numbers is approximately equal to c1exp(–W0). To esti-

mate contributions of ∆N and ∆g from the  + ∆  <
n < n0 region to values N and g, one can use relations

∆N ~ c1[  – (  + ∆ )2]exp(–W0) and ∆g ~

c1[n0 – (  + ∆ )]exp(–W0). Taking into account
these relations, as well as estimates (1.1) and W0 ~ 14,
we have ∆N ~ c1 and ∆g ~ 10–3c1. It is seen that ∆N �
N and ∆g � g, because in the experimentally important
range (which is of interest to us) of overall concentra-
tion c of surfactant solution, where the predominant
contribution to this concentration is introduced by
cylindrical micelles, N � c ~ 104c1 and g ~ 10–1c1 are
valid [2].

Let us introduce direct J '(1) and reverse J ''(1) fluxes of
molecular aggregates over the potential barrier of
aggregation work. These fluxes determine the numbers
of molecular aggregates, which pass (by fluctuations)
over the potential barrier per unit time in micellar solu-

tion unit volume from the n <  – ∆  region to the

n >  + ∆  region (direct flux) and from the n >

 + ∆  region to the n <  – ∆  region
(reverse flux). Evidently, J '(1) + J ''(1) is the total flux of
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molecular aggregates passing (by fluctuations) from the

n <  – ∆  region to the n >  + ∆  region.

In accordance with the meaning of introduced
fluxes, we have

(1.2)

where t is the time. Remind that cM is the total concen-
tration (the total number per solution unit volume) of

spherical micelles that are present in the  – ∆  <

n <  + ∆ , region and g is the total concentration
(the total number per solution unit volume) of cylindri-
cal micelles that are present in the n0 < n < n1 region.

With the fulfillment of aforementioned constraints

imposed on ∆  and ∆  , we have

(1.3)

(1.4)

(expressions (1.8) and (1.9) in [2]) where  is the

number of surfactant monomers absorbed (  > 0)
from solution per unit time by the molecular aggregate

composed of  molecules.

The values in the final state of complete aggregation
equilibrium are denoted by the tilde over symbols.

Hereafter, direct flux  will be often encountered.
Denoting, for brevity, this flux as J1, as was already
done in [3], we have from Eq. (1.3)

(1.5)

We denote the deviations of values from their mag-
nitudes in the final equilibrium state of a materially iso-
lated solution by symbol δ to the left of these values. In
the process of solution relaxation, relative values of
these deviations become small; then, one can perform
the linearization using these values, thus significantly
simplifying the study.

In this case, relation (1.2) is expressed as

(1.6)

According to [2], provided that condition |δc1/ | �

2/  is fulfilled, we have

(1.7)

(relation (2.4) in [2]). Definition J1 ≡  is accounted
for in Eq. (1.7).

In the absence of the second potential barrier of
aggregation work, there is no equation supplemented to
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Eq. (1.6) that is analogous to Eq. (2.2) in [2]. This man-
ifests the originality of the situation studied in this work
compared to the situation treated in [2, 3]. We consider
in the near future how Eq. (1.6) can be supplemented to
make it mathematically closed equation.

Using definition

(1.8)

let us introduce the concentration of spherical micelles

 in point n =  at the bottom of potential well of

aggregation work Wn. At ∆ /  � 1, concentration

 is related to concentration cM by the expression

(1.9)

Then, using definition

(1.10)

we introduce the concentration of cylindrical micelles
cs in point n = n0 corresponding to the left-hand side of
the boundary of the region of aggregation numbers
where the dependence of aggregation work Wn on n is
already linear.

In the absence of the second potential barrier of
aggregation work, the transformation of spherical
micelles into cylindrical ones occurs without overcom-
ing the activation barrier. Therefore, spherical and cylin-
drical micelles are in mutual quasi-equilibrium (but not
in equilibrium with subcritical molecular aggregates).
Accounting for Eqs. (1.8) and (1.10), according to Bolt-
zmann’s principle, we arrive at

(1.11)

From Eqs. (1.9) and (1.11), we obtain

(1.12)

Let us use relations

(1.13)

(the second and the third of relations (1.2) in [1]). Lin-
earizing (with the aid of Eq. (1.13)) equality (1.12) with
respect to deviations δcM, δcs, and δc1 and accounting

for fairly weak sensitivity of the ∆  value (the more
so, its logarithm) to concentration c1 shown in [8], we
obtain

(1.14)

As in [1–3], we are interested in experimentally sig-
nificant region of the overall concentration  of surfac-
tant solution where the predominant contribution to the
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total amount of surfactant in solution is made by cylin-
drical micelles. In this case, we have

(1.15)

(relation (3.1) in [2]) and

(1.16)

(relation (3.2) in [2]). Here, b –  is the coefficient of

the linear dependence of work  on n in the n0 < n < n1

region. From Eqs. (1.15) and (1.16), we obtain

(1.17)

(1.18)

(1.19)

At the overall concentration , at which the pre-
dominant contribution to the total amount of surfactant
in solution is introduced by cylindrical micelles, for a
materially isolated surfactant solution, we have

(1.20)

(1.21)

(relations (8.10) and (8.11) in [1]). The condition of the
applicability of linearized expressions (1.20) and (1.21) is

(1.22)

(condition (8.5) in [1]). As is seen from estimates (1.1),
condition (1.22) is much stronger than aforementioned

condition |δc1/ | � 2/  of the applicability of lin-
earized expression (1.7). Condition (1.22) is the condi-
tion that determines the closeness of a materially iso-
lated solution to its final equilibrium state accessible for
the relaxation theory.

Substituting relations (1.20) and (1.21) into Eq. (1.14)
and taking into account Eqs. (1.17)–(1.19), as well as

equality  = exp( ) (equality (2.5) in [1]) that is
valid at the solution equilibrium, we obtain

(1.23)

In relation (1.11), the mutual quasi-equilibrium of
spherical and cylindrical micelles was required only for
relatively small cylindrical micelles for which n � n0.
Meanwhile, in relation (1.23), the mutual quasi-equi-
librium of spherical and cylindrical micelles is required
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already throughout the n0 < n < n1 region where cylin-
drical micelles are mainly accumulated. This is associ-
ated with the fact that relations (1.20) and (1.21) used
in Eq. (1.23) were derived [1] under the assumption that
quasi-equilibrium state of cylindrical micelles is true
throughout the n0 < n < n1 region.

As is [2, 3], we take estimates

(1.24)

(1.25)

where according to [2], it is assumed that /  ~ 0.1,
if the CMC2 exceeds, by the order of magnitude, the
first critical micellization concentration (CMC1) equal
to the overall solution concentration at which the
amount of surfactant in spherical micelles already
becomes noticeable; /  ~ 1, if the CMC2 exceeds
the CMC1 by two orders of magnitude.

Let us combine Eqs. (1.1), (1.24), and (1.25) to esti-
mate the relative values of the contributions of sum-
mands at the coefficients at δcM and δg in Eq. (1.23).
Then, we have

(1.26)

(1.27)

(1.28)

Estimates (1.26)–(1.28) demonstrate that the predomi-
nant contribution to the coefficients at δcM and δg in
Eq. (1.23) is introduced by the first summands in these
coefficients. Then, from Eq. (1.23) with relatively high
accuracy of the order of 10–2, we obtain

(1.29)

This is equality (1.29) that serves as the desired supple-
ment to Eq. (1.6).

2. RELAXATION OF A MATERIALLY ISOLATED 
MICELLAR SOLUTION IN THE ABSENCE 

OF THE ACTIVATION BARRIER BETWEEN 
SPHERICAL AND CYLINRDICAL MICELLES

According to [3], let us introduce parameters

(2.1)

related to experimentally measurable characteristics of
equilibrium surfactant solution. In view of Eqs. (1.1),
(1.24), and (1.25), these parameters satisfy the esti-
mates

(2.2)
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1( )–( ) 10 2– .∼

δg
2 10ln

n1
-------------- c̃

c̃M

------δcM.=

u ñs
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With the aid of Eq. (2.1), relation (1.29) is expressed as

(2.3)

Substituting Eqs. (1.18) and (1.19) into Eq. (1.20),
we arrive at

(2.4)

From Eq. (2.4) with the aid of Eq. (2.3) and defini-
tions (2.1), we find

(2.5)

or, what is equivalent,

(2.6)

Let us substitute Eq. (2.5) into Eq. (1.7). Accounting
for definitions (2.1), we obtain

(2.7)

where the 2u2/vw term, which is in view of estimates (2.2)
has the second order of smallness, is ignored compared
to the u/v term.

From Eqs. (1.6), (2.3), and (2.7), we derive linear-
ized relaxation equation

(2.8)

describing the variations (with time) in the total con-
centration of spherical micelles in a materially isolated
surfactant solution. The same equation, in view of lin-
ear relation (2.3) between δg and δcM, describes varia-
tions (with time) in the total concentration of cylindri-
cal micelles in a materially isolated surfactant solution.

Common solution to Eq. (2.8) has the following
form:

(2.9)

where A is the arbitrary constant of integration, and
positive value θ is given by equality

(2.10)

From Eqs. (2.3) and (2.9), it also follows

(2.11)

The θ value plays in Eqs. (2.9) and (2.11) the role of the
rate of relaxation of a materially isolated micellar solu-
tion. Inverse value tr, which, according to Eq. (2.10), is
set by the analytical expression
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(2.12)

has the meaning of the relaxation time of micellar solu-
tion.

Let us take into account relation

(2.13)

(relation (8.12) in [1]), which is true for a materially
isolated micellar solution. Remind that N is the total
number of surfactant molecules in cylindrical micelles
per solution unit volume. Formulas (2.3), (2.5), (2.6),
and (2.9)–(2.13) provide the complete analytical
description of the relaxation stage of a materially iso-
lated surfactant solution containing spherical and cylin-
drical micelles. Note that the n0 value, which by its
meaning can be determined only with some allowance,
is not entered into these formulas.

Let us clarify the sign of arbitrary constant A of inte-
gration in formulas (2.9) and (2.11). We consider the
situation when total concentrations of spherical (cM)
and cylindrical (g) micelles increase with time at the
relaxation stage so that deviations δcM and δg also
increase approaching zero from the lower limit. Then

(2.14)

The mutual consistency of inequalities is secured by
equality (2.3); i.e., by the fact that spherical and cylin-
drical micelles are in mutual quasi-equilibrium. Rela-
tions (2.9), (2.11), and (2.14) yield

A < 0. (2.15)

According to Eqs. (2.5), (2.6), and (2.13), together with
inequalities (2.14), inequalities

(2.16)

are also valid.
According to inequalities (2.16), the tendency of

deviations δc1 and δN to zero with time takes place at
the stage of relaxation from the side of positive δc1 and
δN values.

In the situation opposite to that described above
when total concentrations cM and g of spherical and
cylindrical micelles decrease with time at the stage of
relaxation, inequalities (2.14)–(2.16) would be also
opposite. Such a situation can be observed experimen-
tally during the relaxation of a materially isolated
micellar solution to the new equilibrium state after
external distortion of the previous equilibrium state of
solution by the instantaneous changes of its pressure or
temperature.

Let us elucidate what constraints on the values of

relative deviations |δcM|/ , |δg|/ , and |δN|/  follow
from condition (1.22) determining the accessible for
relaxation theory the degree of closeness of the state of
a materially isolated micellar solution to its final equi-

tr c̃1
w v+

w v u+( )
---------------------- 1

J1
-----,=

δN ñs
1( )δcM–=

d δcM( )/dt 0, d δg( )/dt 0.> >

d δc1( )/dt 0, d δN( )/dt 0< <

c̃M g̃ Ñ

librium. From Eqs. (1.22) and (2.5) with account of def-
initions (2.1) and estimates (2.2), we obtain

(2.17)

Further, according to [2], we have

(2.18)

(relation (4.15) in [2]). From Eqs. (1.22), (2.6), and
(2.18) with account of estimates (2.2), we find

(2.19)

Finally, from Eqs. (1.22), (2.5), (2.13), and equality

(2.20)

that is valid with high accuracy in the experimentally
significant range of the overall surfactant concentration

, where the predominant fraction of the total amount
of surfactant in solution is contained in cylindrical
micelles, with account of estimates (1.1) and (1.2), we
obtain

(2.21)

Constraints (2.17) and (2.19), which are much
weaker than extremely strong (in view of estimate n1 ~
106 in Eq. (1.1)) constraint (1.22), admit noticeable (not
too small compared to unity) relative deviations
|δcM|/  and |δg|/  of the total concentrations of spher-
ical and cylindrical micelles. Hence, predicted by the
relaxation kinetics deviations of the total concentra-
tions of spherical and cylindrical micelles from their
values in the final equilibrium state of a materially iso-
lated surfactant solution can be actually measured in
experiment. In this case, the relaxation time of solution
given by equality (2.12) can also be measured experi-
mentally and the validity of relation (2.3) can be veri-
fied as well.

Although constraint (2.21) is much weaker than
extremely strong constraint (1.22), it is still strong
enough. This is explained by the fact that, in a materi-
ally isolated solution with the overall surfactant con-
centration significantly exceeding the CMC2, the total
amount of substance in cylindrical micelles per solution
unit volume, in practice, coincides with a given overall
surfactant concentration and, hence, slightly changes at
the stage of solution relaxation. Thus, the deviation of
the total amount of substance in cylindrical micelles
from its value in the final equilibrium state of a materi-
ally isolated surfactant solution predicted by the relax-
ation kinetics is rather difficult to be measured in exper-
iment.

According to Eq. (2.13), the sign of deviation δN is
opposite to that of deviation δcM. At the mutual quasi-
equilibrium of spherical and cylindrical micelles when
Eq. (2.3) is true, the sign of deviation δN is opposite
also to that of deviation δg; at first glance, this seems to
be strange. Let us disclose the reason for this fact.

δcM /c̃M � 4/3.

g̃
c̃1
---- 4

c̃
c̃1
---- 10ln

n1
-----------=

δg /g̃ � 2/3.

Ñ  � c̃,

c̃

δN /Ñ  � 10 2– –10 3–( ).

c̃M g̃
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For the distribution of cylindrical micelle concentra-
tion cn over the aggregation numbers, on the basis of
formula (2.3) in [1], we have

(2.22)

Formula (2.22) suggests the quasi-equilibrium state of
cylindrical micelles (but not their equilibrium with sub-
critical molecular aggregates and spherical micelles).
Taking into account that the a value, by its definition (2.4)
in [1], depends on monomer concentration c1 via term
lnc1 and the b value, according to its meaning estab-
lished in [1], is independent of c1, we find, using
Eq. (2.22), deviation δcn

(2.23)

Condition of linearization of Eq. (2.23) with respect to
δc1 (the disregard for quadratic and higher-order cor-
rections to deviation δc1) is |δc1/ | � 2/(n – n0) that is
fulfilled throughout the n0 < n < n1 region, provided that
condition (1.22) is fulfilled.

From Eq. (1.21) with account of Eqs. (1.15) and
(2.3) and definitions (2.1), for a materially isolated sur-
factant solution at the mutual quasi-equilibrium of
spherical and cylindrical micelles, we obtain

(2.24)

Substituting Eqs. (2.5) and (2.24) into Eq. (2.23), we
have for a materially isolated surfactant solution at the
mutual quasi-equilibrium of spherical and cylindrical
micelles

(2.25)

The first term in square brackets of Eq. (2.25) is posi-
tive; the second one is negative. These terms become
identical by the absolute values in point n1/2ln10 on the
number aggregation axis. This is seen from formula

 = exp( ) [formula (2.5) in [1] with account of
Eqs. (1.16) and (2.1)] that is valid in the state of solu-
tion equilibrium, as well as from inequality n1 � n0 and
the smallness (in view of estimates (2.2)) of parameter
u compared to parameter w.

As was already mentioned, the n0 < n < n1 region of
the linear dependence of aggregation work of cylindri-
cal micelle on n mainly contributes to the total amount
N of substance in cylindrical micelles and the total con-
centration g of cylindrical micelles. Then, with a high
accuracy, we have

cn cse
b a–( ) n n0–( )–

n0 n n1< <( ).=

δcn c̃n

δcs

c̃s

------- n n0–( )
δc1

c̃1
--------+ n0 n n1< <( ).=

c̃1

δcs 4
c̃1

c̃
----w u+

v
2

-------------δcM.=

δcn c̃n

4c̃1

c̃c̃s

--------w u+

v
2

-------------
n n0–( )

c̃
------------------w 2u+

v
----------------– δcM=

n0 n n1< <( ).

c̃s c̃1 W̃
0

–

(2.26)

(2.27)

Using Eqs. (2.25) and (2.27), let us elucidate the
contributions of the first and second terms in square
brackets of Eq. (2.25) to δN and δg. These contributions
are from relatively small and relatively large cylindrical
micelles, respectively. It can be expected that, due to
factor n under the sing of the first of integrals in
Eq. (2.27), the role of relatively large cylindrical micelles
in the integral for δN will be larger than in the integral
for δg.

Let us take advantage of formulas (4.14), (7.1),
(7.4), and (7.6) in [1]

(2.28)

as well as of relation (1.15) and inequality (b – )n0 � 1
that, in this case, is fulfilled in view of n1 � n0. To find

the /  value, we use formula  = exp( )
(formula (2.5) in [1]) that is valid in the state of solution
equilibrium and relation (1.16). Taking into account
definitions (2.1), we represent contributions to δN and
δg from the first and second terms in square brackets of
Eq. (2.25) (that are of interest to us) with the aid of rela-
tions

(2.29)

(2.30)

The first and second terms in parentheses in
Eqs. (2.29) and (2.30) just correspond to contributions to
δN and δg we are interested in. For brevity, we call them
the first and the second contributions to δN and δg.

It follows from Eqs. (2.29) and (2.30) that the first
contributions to δN and δg are identical by the sign to
deviation δcM; the second contributions are opposite by
the sign to deviation δcM. According to Eq. (2.29), in
the principal order set by estimates (2.2), i.e., with
account of term w/v, the first and the second contribu-
tions to δN are mutually compensated. As for the cor-
rections, i.e., with account of term u/v, the second con-
tribution is twice as large as the first one. This explains
why the sign of deviation δN is opposite to the sign of

N ncn n, gd

n0

n1

∫ cn n,d

n0

n1

∫= =

δN n δcn( ) n, δgd
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n1
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b ã–
-----------,= =

nc̃n nd

n0

n1

∫ Ñ
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deviation δcM. The conclusion drawn for a materially
isolated surfactant solution at the mutual quasi-equilib-
rium of spherical and cylindrical micelles owes to a rel-
atively large cylindrical micelles for which the second
term in square brackets in Eq. (2.25) is quite significant.
As would be expected, after mutual cancellations, rela-
tion (2.29) is exactly transformed, due to definitions (2.1),
into relation (2.13).

According to Eq. (2.30), the first and the second
contributions to δg are not mutually cancelled in the
principal order set by estimates (2.2), i.e., with account
of term w/v. In this order, the first contribution is twice
as large as the second one so that the signs of deviations
δg and δcM are identical. It is seen that, in a materially
isolated surfactant solution at the mutual quasi-equilib-
rium of spherical and cylindrical micelles, deviation δg
of the total concentration of cylindrical micelles is
caused mainly by relatively small cylindrical micelles,
for which the first term in square brackets in Eq. (2.25)
is relatively more significant. As for the corrections,
i.e., with account of term u/v, the first and second con-
tributions to deviation δg are mutually compensated. As
would be expected, after cancellations, relation (2.30)
is exactly transformed into relation (2.3).

Using Eq. (2.3), we represent Eq. (2.29) as

(2.31)

This relation demonstrates that opposite signs of devia-
tions δN and δg in a materially isolated surfactant solu-
tion at the mutual quasi-equilibrium of spherical and
cylindrical micelles are associated with relatively large
cylindrical micelles and explains the fact that deviation δN
appears only in the correction order set by estimates (2.2).

Let us emphasize the significant role played by the
ability of cylindrical micelles to be distributed, in
accordance with inequality n1 � n0, within a rather wide
range of aggregation numbers. This ability is not inher-
ent to spherical micelles, which, on the contrary, are
accumulated within a rather narrow range of aggrega-

tion numbers due to inequality ∆ /  � 1.

Let us compare these data with the results obtained
in [3] under the existence of the second potential barrier
of aggregation work between spherical and cylindrical
micelles whose relative height is at least slightly lower
than that of the first potential barrier of aggregation
work between monomers and spherical micelles. Let us
make the following tentative remark. The consideration
of the second potential barrier in [3] suggested the ful-

fillment of constraints ∆  � 1, ∆ /(  – ) � 1,

and ∆ /(n0 – ) � 1 (constraints (1.5) in [2]),

where ∆  is the half-width of the second barrier and

 is the position of its vertex on the aggregation num-

ber axis. By the meaning of half-width ∆ , work Wn

δN
n1

2 10ln
-------------- w u+

w
------------- w 2u+

w
----------------– 

  δg.=

ns
1( ) ns

1( )

nc
2( ) nc

2( ) nc
2( ) ns

1( )

nc
2( ) nc

2( )

nc
2( )

nc
2( )

nc
2( )

(expressed in thermal units kT) decreases by unity

when variable n deviates from  value by ∆ . Con-
sequently, these constraints imply that the potential bar-
rier should be distinctly marked on the dependence of
work Wn on n, even when its height is low. Therefore,
one cannot be assured for the coincidence of results
obtained in [3] when the relative height of the second
potential barrier is at least slightly lower than that of the
first potential barrier and the results reported in this
communication for the complete absence of the second
potential barrier of aggregation work.

Nevertheless, as can be easily seen from this com-
parison, these results appeared to be completely coin-
ciding. It is clear that the θ, tr, and A values should be
understood as the θ2, tr2, and A2 values in [3] related to
the higher (of two) relaxation time (the least of two
relaxation rates). However, the θ1, tr1 values found in [3]
correspond to times at which the mutual quasi-equilib-
rium between spherical and cylindrical micelles is
attained relatively fast, beginning with relatively small
cylindrical micelles, and equality (1.11) becomes valid.

All what have been said above makes it possible to
state the following. The dependence of the relaxation
time of solution on the overall surfactant concentration
disclosed in [3] by formulas (2.31) and (2.32) and
derived in [3] expression (3.10) for characteristic time
τ of the establishment of the quasi-equilibrium state of
cylindrical micelles throughout the n0 < n < n1 region
where cylindrical micelles are mainly accumulated, as
well as constraint (3.17) on the lower limit of the height
of the first potential barrier of aggregation work remain
also valid in the situation studied in this work. How-
ever, the reason for the opposite signs of deviations δN
and δg in a materially isolated surfactant solution at the
mutual quasi-equilibrium between spherical and cylin-
drical micelles disclosed by formulas (2.22)–(2.31) in
this communication will be also valid in the situation
studied in [3].

3. COMPARISON WITH THE CASE 
OF THE ABSENCE OF SPHERICAL MICELLES 

AND THE CASE OF THE ABSENCE
OF CYLINDRICAL MICELLES

Relations discussed in Section 2 (and relevant rela-
tions in [3]) refer to the most complicated case when
the spherical and cylindrical micelles coexist simulta-
neously above the CMC2. However, in practice, more
simple case is encountered when the spherical shape of
a micelle becomes unrealizable due to the structure and
packing conditions of surfactant molecules and the
micellization starts just from the formation of cylindri-
cal micelles. Thus, there is only the CMC2 and the
CMC1 is absent. We start the consideration in this sec-
tion with this case.

The dependence of the work of molecular aggregate
formation in a surfactant solution on the aggregation
number in the case of the absence of spherical micelles

nc
2( ) nc

2( )
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at the overall surfactant concentration above the CMC2
was qualitatively shown in the figure to [2]. For the uni-
formity of notations employed in this work with the

those used in [2], we assume Wc = , nc = , and

∆nc = ∆ . The  value of the aggregation work in

point n =  of its first maximum on the aggregation
number axis (the second maximum is absent) deter-
mines the height of the activation barrier needed only
for the formation of cylindrical micelles. The W0 value
of the aggregation work is still taken in point n = n0 cor-
responding to the left-hand boundary of the aggregation
number region where the dependence of Wn on n is
already linear. The right-hand boundary of this region is
still set by point n = n1; as one approaches this point, the
equilibrium distribution of cylindrical micelles over
aggregation numbers decays rapidly so that the region
of aggregation numbers n > n1 is no longer of interest.
We assume also that estimates for values n0 and n1 in

Eq. (1.1), as well as estimates W0 ~ 14 and  ~ 16–18,
are still valid.

Considering the case of the absence of spherical
micelles as a specific case of the study performed in
Section 2, we should take into account that now we
have

(3.1)

In this case, definitions (2.1) look like

(3.2)

and estimates (2.2) are reduced to:

v ~ 10. (3.3)

From Eq. (2.6) with allowance for Eq. (3.2), we have

(3.4)

that coincides with relation (4.14) in [2].

It was mentioned in Section 2 that the total concen-
tration of cylindrical micelles in a materially isolated
surfactant solution varies with time by the same equa-
tion as Eq. (2.8). Accounting for this fact, as well as for
Eq. (3.2), we obtain from Eq. (2.8)

(3.5)

where J1 is given by the same expression (1.5). Com-
mon solution to Eq. (3.5) has the following form:

(3.6)

where B is the arbitrary constant of integration and pos-
itive value θ is determined by the equality

Wc
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----δg,–=
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v
----d δg( )
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-------------- 1

c̃1
----J1δg,–=

δg Be θt– ,=

(3.7)

The θ value acts as the rate of relaxation of a materially
isolated surfactant solution in the absence of spherical
micelles. Inverse value tr given, according to Eq. (3.7),
by the analytical expression

(3.8)

has the meaning of relaxation time of this solution.
In [3] (prior to the derivation of relations (2.31) and

(2.32)), it was shown that, upon the variations in overall
concentration  within the limits admissible by esti-
mate (1.24), values  and J1 are independent of con-

centration  with rather high accuracy. Then it is seen
from Eqs. (3.2) and (3.8) that time tr is proportional to
the overall concentration of the solution.

For a materially isolated surfactant solution in the
absence of spherical micelles, equality δN = –δc1 is strictly
valid that refines relation followed from Eq. (2.13) at
δcM = 0. Then, accounting for Eq. (3.4), we have

(3.9)

Relation (3.9) indicates that, in the absence of spherical
micelles in a materially isolated surfactant solution, the
signs of deviations δN and δg are identical.

In the case under consideration, if Eq. (2.14) is ful-
filled, the relation

(3.10)

is also fulfilled that, according to Eq. (3.6), leads to the
inequality

B < 0 (3.11)

for the constant of integration B in formula (3.6).
According to Eq. (3.4), together with inequality (3.10),
the inequality

(3.12)

is also valid. If the inequality opposite to inequality (3.10)
is fulfilled, it is possible that, after the instantaneous
distortion of solution equilibrium state, inequalities (3.11)
and (3.12) will be opposite.

In the considered case, condition (1.22) determining
the degree of closeness of a materially isolated micellar
solution to its final equilibrium accessible for the relax-
ation theory is still true. From Eqs. (1.22), (2.18), and (3.4)
with account of estimate (3.3) follow aforementioned con-
straint (2.19) that coincides with constraint (4.16) in [2].

Let us now consider the case of the absence of cylin-
drical micelles. We make the following tentative
remark. The theory proposed above was developed for
the experimentally significant region of the overall sur-
factant concentrations in a solution where the predom-

θ v
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inant contribution to the total amount of surfactant is
introduced by the cylindrical micelles. Thus, one can-
not pass in this theory to the situation where cylindrical
micelles are virtually absent. The kinetic theory of the
relaxation of a materially isolated surfactant solution
was developed in [7] for the case of the absence of
cylindrical micelles and the presence of only spherical
micelles.

We summarize briefly the main formulas and con-
clusions made in [7] at the overall surfactant concentra-
tion in solution above the CMC1 but below the CMC2
when the main contribution to the total amount of sur-
factant is introduced by the spherical micelles. In this
case, the dependence of work Wn on the aggregation
number is shown in Fig. 2 (we adhere to notations

accepted in this work but not in [7]). The  value of

aggregation work in point n =  of its maximum on
the aggregation number axis determines the height of
activation barrier needed for the formation of spherical
micelles. Unlimited increase of work Wn on the n axis
to the right of the potential well of work with the mini-

mum in point n =  and depth  corresponds to
the fact that, at the overall surfactant concentration in
solution below the CMC2, no cylindrical micelles are

yet appeared. For the  value, we take the same esti-

mate  ~ 102 as in relation (1.1).

The direct flux of molecular aggregates over the
potential barrier for the formation work, which is
denoted by J1, is given by expression (1.5). In the case
of a materially isolated surfactant solution, the surfac-
tant balance equation

(3.13)

(Eq. (1.5) in [7]), after its linearization in the vicinity of
the final equilibrium state of solution, leads to relation

(3.14)

where a rather weak sensitivity of  value (demon-
strated in [8]) to concentration c1 is accounted for.

Further, the linearized sum of direct and reverse
fluxes of molecular aggregates over the potential barrier
of the aggregation work is given by expression (1.7). As
was already mentioned, the condition of the applicabil-
ity of this equation is

(3.15)

Condition (3.15) justifies with large excess the disre-

gard for the dependence of the  value on concentra-
tion c1 made while deriving relation (3.14). It is seen
that, in the case of a materially isolated surfactant solu-
tion containing spherical micelles, the domain of the
applicability of analytical theory is limited by the
domain of the applicability of the linearization of the
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δc1/c1  � 2/ñs
1( ).)
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sum of direct and reverse fluxes of molecular aggre-
gates over the potential barrier for the aggregation work
but not by the linearization of the surfactant balance
equation for the solution. However, in the case of a
materially isolated surfactant solution containing
spherical and cylindrical micelles, as well as only cylin-
drical micelles, the situation, as was disclosed in [2],
turned out to be just opposite.

According to substance balance equation (3.13), we
have

(3.16)

where the total number of surfactant molecules in
spherical micelles per solution unit volume is denoted
by N(s). From Eq. (3.16) and already mentioned rather

exact relation  � , it follows

(3.17)

It is seen that expression (3.17) for the solution contain-
ing only spherical micelles is opposite by the sign to
analogous expression (2.13) for the number of mole-
cules in cylindrical micelles in solution containing
spherical and cylindrical micelles. The reason for this
difference was elucidated in Section 2.

In the considered case of a materially isolated sur-
factant solution containing spherical micelles, we have
inequality d(δcM)/dt > 0, provided that relation (2.14) is
fulfilled. Then, in view of Eq. (3.14), inequality
d(δc1)/dt < 0 is true and, in view of Eq. (3.17), the ine-
quality

N s( ) ns
1( )cM,=

ns
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δN s( ) ñs
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Fig. 2. The work of aggregation Wn as a function of aggre-
gation number n in the presence of only spherical micelles
in the solution at the overall surfactant concentration above
the CMC1 (but below the CMC2).



156

COLLOID JOURNAL      Vol. 67     No. 2      2005

KUNI et al.

(3.18)

is also true.
Inequality (3.18) is opposite by the sign to the sec-

ond of inequalities (2.16), i.e., to its analogue of a mate-
rially isolated surfactant solution containing spherical
and cylindrical micelles. The noted discrepancy would
also exist at d(δcM)/dt < 0 that is possible only after the
instantaneous external distortion of the state of solution
equilibrium. The reason for these discrepancies was
disclosed in Section 2.

In accordance with balance equation (3.13), at the
overall surfactant concentration in solution twice or

more exceeding the CMC1, inequality /  > 1 is

fulfilled. In view of  � 1, strong inequality

( )2 /  � 1 is fulfilled with large excess. In this

case, from relation (4.7) in [7] for relaxation time 
of a materially isolated surfactant solution containing
spherical micelles, we have

(3.19)

(direct flux J1 is given by expression (1.5)).
From Eqs. (3.14)–(3.17) with account of estimate
/  ~ 10–1 that is valid at the overall surfactant con-

centration in solution significantly higher than the
CMC1 (but lower than the CMC2), we have

(3.20)

In view of  ~ 102, constraints (3.20) are much stron-
ger than constraints (3.15) which is itself rather strong.
Thus, predicted by the theory deviations of the total
concentration of spherical micelles and the total
amount of substance in these micelles from their values
in the final equilibrium state of a materially isolated
solution containing spherical micelles are rather diffi-
cult to be measured in experiment at the stage of relax-
ation.

The fact that time  is still experimentally signifi-
cant is seen from the following explanation. An
increase in the total concentration of spherical micelles
and the total amount of substance in these micelles in a
materially isolated solution occurs prior to the attain-
ment of the stage of relaxation of surfactant solution,
which is the final stage of micellization. The expression
for the time of the attainment of the final stage of micel-
lization from the beginning of this process in a materi-
ally isolated surfactant solution containing spherical
micelles was derived in [7]. As was shown in [7], this
time exceeds the time of solution relaxation by no more
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than 2.5 times. Hence, it is seen that time  given by
expression (3.19) determines not only the relaxation
time of a solution at the final stage of micellization but
also rather exactly estimates experimentally measur-
able total time of the establishment of equilibrium from
the onset of the micellization process in a materially
isolated surfactant solution containing spherical
micelles.

4. COMPARISON OF RELAXATION TIMES 
OF SURFACTANT SOLUTIONS CONTAINING 

SIMULTANEOUSLY SPHERICAL 
AND CYLINDRICAL MICELLES, ONLY 
CYLINDRICAL AND ONLY SPHERICAL 

MICELLES

The cases where spherical and cylindrical micelles
simultaneously and only cylindrical and only spherical
micelles are present in the surfactant solution we
denote by superscripts (sc), (c), and (s), respectively, in
the designation of relaxation time tr of a materially iso-

lated surfactant solution. Let us compare times ,

, and .

According to Eqs. (2.12), (3.8), and (3.19), we have
the following analytical expressions:

(4.1)

(4.2)

(4.3)

Direct flux J1 of molecular aggregates over the potential
barrier of aggregation work in the equilibrium state of
surfactant solution is given in all three formulas (4.1)–
(4.3) by the united analytical expression (1.5). Parame-
ters u, v, and w are expressed by definitions (2.1) via
experimentally measurable characteristics of equilib-
rium surfactant solution. These parameters satisfy esti-
mates (2.2). Estimate w ~ 1 shown in Eq. (2.2) is valid,
if the CMC2 exceeds the CMC1 by two orders of mag-
nitude; estimate w ~ 10 is true, if the CMC2 exceeds the
CMC1 by the order of magnitude.

It is natural to assume that the solvent and the dis-
solved surfactant, as well as the pressure and tempera-
ture remain the same in all three cases under consider-
ation. Expressions (4.1) and (4.2) refer to experimen-
tally significant region of the values of overall
concentration  of surfactant solution where the pre-
dominant contribution to the total amount of surfactant
in solution is introduced by the cylindrical micelles.
This region is located much above the CMC2. We will
use expression (4.3) in experimentally accessible
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region of the values of overall concentration  of sur-
factant solution located in the vicinity of the CMC2. In
this region, the main contribution to the total amount of
surfactant in solution is introduced by the spherical
micelles (cylindrical micelles do not play a significant
role yet); hence, expression (4.3) is valid. As was
shown in [1], throughout the region of the values of
overall concentration  above the CMC2, monomer
concentration  will be identical with a rather high
accuracy (irrespective of vary large variations in overall
concentration  in this region). In this case, the value of

exponent exp( ) dependent on  and, according
to Eq. (1.5), the value of flux J1 will be practically
invariable throughout the region above the CMC2.
Using expression (4.3) in the region of the values of
overall concentration  located in the vicinity of the
CMC2, we thus secure practical equality of the /J1

value (for the solutions with the same solvents and dis-
solved surfactant, as well as the pressure and tempera-
ture) in all three expression (4.1)–(4.3). When finding

ratios /  and /  (which are of interest to us),

factor /J1 is eliminated. This fact markedly simplifies
the problem.

Let us ignore parameter u in Eq. (4.1); according to
Eq. (2.2), this parameter is by three orders of magnitude
smaller than parameter v. According to Eq. (2.1), only
parameter v (out of parameters v and w) depends on
overall concentration . Referring expressions (4.1)
and (4.2) to the identical values of overall concentration 
located, as was already mentioned, much above the
CMC2, we secure the identical values of parameter v in
these expressions. Then, canceling (when finding

/ ) factor v, as well as factor /J1, we finally
obtain with high accuracy from Eqs. (4.1) and (4.2)

(4.4)

Because v, according to Eq. (2.1), is inversely propor-
tional to overall concentration  and w is independent
of , Eq. (4.4) agrees with the fact (followed from Sec-

tion 3) that  is proportional to , as well as with the

fact (reported in [3]) that  is approximately propor-

tional to  at v � w and practically is independent of 
at v � w. Accounting in Eq. (4.4) for estimates of v and
w in Eq. (2.2), we find

(4.5)
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∼

From Eqs. (4.2) and (4.3), it follows (after the can-
cellation by factor /J1):

(4.6)

Using in Eq. (4.6) estimate for v in Eq. (2.2), we obtain

(4.7)

We would like to emphasize an extreme simplicity of
analytical expressions (4.4) and (4.6). Knowing at least

one of the relaxation times , , and , one can
easily find other times, using Eqs. (4.4) and (4.6).

According to Eq. (4.5), time  cannot too

noticeably exceed time . According to relation (4.7),

time  exceeds time  quite largely (by 103 times at

 ~ 102). Note that time  used in relations (4.6)

and (4.7) at overall concentration  in the vicinity of

the CMC2, according to [7], will be by (CMC2/

times shorter than analogous time  referred to over-

all concentration  between the CMC1 and the CMC2.
According to [9], for typical nonionic surfactants above

the CMC1, experimental estimates of time  lie
within the range from 1 to 100 s. In view of the preced-

ing, time  should fit the 103–105 s range; time ,
the 103–106 s range.

From what have been said above at the end of Sec-
tion 2 follows that expression (4.1) is exactly valid also
in the situation where, in addition to the first potential
barrier of aggregation work between the monomers and
spherical micelles, there is still the second potential
barrier of aggregation work between the spherical and
cylindrical micelles whose height at least slightly lower
(by the relative value) than the height of the first poten-
tial barrier. Consequently, in this, more complex, situa-
tion, equality (4.4) and approximate relation (4.5) are
still valid.

Comparing the values of times , , and 
calculated by formulas (4.1)–(4.3) and experimental
data on the relaxation times of surfactant solution at
various values of its overall concentrations, one can
see, even with no other information on the micellar
structure of a solution, whether these values of overall
concentration lie above the CMC1, between the CMC1
and the CMC2, or above the CMC2.
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ñs
1( )( )2

10
---------------.∼

tr
s( ) tr

c( ) tr
sc( )

tr
sc( )

tr
c( )

tr
c( ) tr

s( )

ñs
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