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INTRODUCTION

The ability of amphiphilic surfactant molecules to
the aggregation and micellization in aqueous solutions is
of significant interest due to a large number of various
physicochemical and technological applications [1, 2], as
well as due to peculiarities of micellization mechanism
[2, 3]. The approach based on the methods of nucle-
ation theory can be very helpful in describing the micel-
lization mechanism. The kinetics and thermodynamics
of spherical micelle formation (within the framework
of the droplet and quasi-droplet models) and the relax-
ation of micellar solution have been recently consid-
ered using such an approach [4–12].

It is known that, as the concentration in the solution
above the critical micellization concentration (CMC)
corresponding to the onset of the accumulation of sur-
factant in spherical micelles increases, one should
expect the emergence of cylindrical micelles with
aggregation numbers much higher than for spherical

micelles [2, 3, 13–17]. The emergence of cylindrical
micelles (in addition to spherical ones) is referred to as
the polymorphous transformation in a micellar solution
[2, 3]. As was shown in [13], the formation of cylindri-
cal micelles is preceded by the overcoming of the sec-
ond potential barrier of the work of their formation by
the molecular aggregates; this process becomes mark-
edly notable when the overall surfactant concentration
exceeds a certain value called the second CMC. The
accumulation of surfactants occurs precisely in the
cylindrical micelles upon further increase in the overall
solution concentration within a rather wide range
before the onset of the formation of disc micelles and
extended bilayers in the solution [13–15].

In this publication, we systematize the notions of the
structure of surfactant solution in the presence of spher-
ical and cylindrical micelles and retrieve the detailed
information on the solution from their rather general
characteristics accessible for experimental observation.
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Abstract

 

—Based on thermodynamically substantiated linear dependence of the work of cylindrical micelle
formation on the aggregation number within a wide range of aggregation numbers where the cylindrical
micelles are accumulated in a surfactant solution, the second critical micellization concentration (CMC) is
introduced as an overall surfactant concentration at which the ratio of the total amount of substance in cylindri-
cal micelles to the amount of substance in monomers is equal to 0.1, i.e., it is already noticeable. It is shown
that this ratio increases rather rapidly with a monomer concentration. The coefficient of the linear dependence
of the work of cylindrical micelle formation on the aggregation number in the important practical situation
where the ratios of the total concentration of cylindrical micelles and total amount of substance in these micelles
to the monomer concentration are equal by the order of magnitude to 1 and 10

 

5

 

, respectively, while disc micelles
and extended bilayers are still not appeared. In the same situation, the ratios of the total concentration of spher-
ical micelles and total amount of substance in these micelles to the monomer concentration are equal by the
order of magnitude to 1 and 10

 

2

 

, respectively. The relationship between the overall surfactant concentration and
monomer concentration is found. It is shown that the second CMC exceeds by two orders of magnitude the first
CMC corresponding to the onset of the noticeable accumulation of surfactant in spherical micelles. The distri-
bution of cylindrical micelles over the aggregation numbers is analyzed. It is demonstrated that, in agreement
with the experiment, the distribution is almost uniform in the considerable part of the wide range of aggregation
numbers and drops exponentially in the remaining (right-hand) part of this range. Experimental result is con-
firmed that the total concentration of cylindrical micelles, the mean value, and the mean statistical scatter of
aggregation numbers in a cylindrical micelle is proportional to the square root of the overall surfactant concen-
tration. The balance equation of surfactant amount in the vicinity of the final equilibrium state of a materially
isolated solution is linearized. This linearization makes it possible to express the deviations of monomer and
aggregate concentrations from their equilibrium values at the lower boundary of the region of the linear depen-
dence of the work of cylindrical micelle formation on the aggregation numbers via the deviations of experimen-
tally observed total concentrations of spherical and cylindrical micelles from their equilibrium values. The case
of the solutions of such surfactants, for which spherical shape appeared to be unrealizable due to their molecular
structure and packing conditions, is considered separately.
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Based on thermodynamically substantiated linear
dependence of the formation work of surfactant cylin-
drical molecular aggregate on the aggregation number,
we will determine the second CMC as the overall sur-
factant concentration at which the ratio of the total
amount of substance in cylindrical micelles to the
amount of substance in monomers is equal to 0.1, i.e.,
it is already noticeable. We will find the coefficient of
the linear dependence of the work of cylindrical micelle
formation on the aggregation number. We will establish
the relationship between the overall surfactant concen-
tration and monomer concentration and demonstrate
that the second CMC by two orders of magnitude
exceeds the first CMC corresponding to the onset of the
noticeable accumulation of surfactant in spherical
micelles. We will show that, above the second CMC,
the amount of substance in cylindrical micelles is much
more sensitive to the monomer concentration than the
amount of substance in spherical micelles above the
first CMC. We will study the distribution of cylindrical
micelles over the aggregation numbers above the second
CMC and compare the results obtained with the avail-
able experimental and theoretical estimates [13–16]. We
will find the dependence of the total concentration of
cylindrical micelles, the mean value, and the mean sta-
tistical scatter of the aggregation numbers in a cylindri-
cal micelle on the overall surfactant concentration. We
will perform the linearization of the balance equation of
surfactant amount in the vicinity of the final state of
solution equilibrium in a materially isolated solution.
This linearization will make it possible to express the
deviations of the concentrations of monomers and
aggregates from their equilibrium values at the lower
boundary of the region of the linear dependence of the
work of cylindrical micelle formation on the aggrega-
tion numbers via the deviations of experimentally
observed total concentrations of spherical and cylindri-
cal micelles from their equilibrium values. We will con-
sider separately the case of solutions of such surfactants
for which the spherical shape of micelles appeared to be
unrealizable due to their molecular structure and pack-
ing conditions.

The main attention in this paper we focus on the
experimentally important range of the overall surfac-
tant concentration where the ratio of this concentration
to the surfactant monomer concentration by the order of
magnitudes lies in the vicinity of 10

 

5

 

 where almost the
whole dissolved surfactant is accumulated in cylindri-
cal micelles, but disc micelles and extended bilayers are
still not formed in the solution. The study reported in
this paper is not related to whether the height of the sec-
ond barrier of aggregation work is lower (in accordance
with [13]) or higher than that of its first barrier. Moreover,
the study and relevant determination of the second CMC
are not related even to the fact whether the second barrier
of the aggregation work really exists or not.

1. THE WORK OF CYLINRDICAL MICELLE 
FORMATION IN SURFACTANT SOLUTION

The aggregation number (the number of surfactant
molecules in an aggregate) is denoted by 

 

n

 

. The con-
centration of molecular aggregates with aggregation
number 

 

n

 

 (the number of aggregates in solution unit
volume) is denoted by 

 

c

 

n

 

. At 

 

n

 

 =1, the aggregates are
nothing other than surfactant monomers. Correspond-
ingly, 

 

c

 

1

 

 is the monomer concentration. Overall surfac-
tant concentration (the total number of surfactant mol-
ecules in solution unit volume) is denoted by 

 

c

 

.

The represented in the figure dependence of the
work of molecular aggregate formation in a solution on
the aggregation numbers at the monomer concentra-
tion, at which the fraction of a substance accumulated
in cylindrical micelles becomes significant, is a gener-
alization of the known experimental and theoretical
data [13–16]. The 

 

W

 

n

 

 is understood as the formation
work of molecular aggregate with aggregation number

 

n

 

 expressed in thermal units 

 

kT

 

 (

 

k

 

 is Boltzmann’s con-
stant and 

 

T

 

 is the absolute temperature) (for brevity,
hereafter we call the 

 

W

 

n

 

 value the work of aggregation)

 

(1.1)
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of its first maximum on the aggregation number
axis determines the height of the activation barrier of
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The work of aggregation 
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 as a function of aggregation
number 

 

n

 

 at the simultaneous existence of spherical and
cylindrical micelle modifications at the overall surfactant
concentration in a solution above the second CMC.
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imum characterizes the depth of the potential well
where the spherical micelles are accumulated; and the

 

 

 

value of the work of aggregation in point 

 

n

 

 

 

=

 

 
of its second maximum defines the height of the activa-
tion barrier needed for the formation of cylindrical
micelles. If there is no second barrier of the work of
aggregation (the formation of cylindrical micelles from

cylindrical ones is a barrierless process), the 

 

 

 

and

 

 

 

values are absent. The 

 

W

 

0

 

 value of the work of
aggregation is taken in point 

 

n

 

 = 

 

n

 

0

 

 corresponding to the
left-hand boundary of the region of aggregation num-
bers where the dependence of 

 

W

 

n

 

 on 

 

n

 

 is already linear.
The right-hand boundary of this region is set by point

 

n

 

 = 

 

n

 

1

 

; as we approach this point, the equilibrium concen-
tration of cylindrical micelles [proportional to 

 

exp(–

 

W

 

n

 

)

 

]
decreases rapidly. Thus, the region of aggregation num-
bers 

 

n

 

 > 

 

n

 

1

 

 is no longer of interest.

In the 

 

n

 

 

 

≤

 

 

 

n

 

 

 

≤

 

 

 

n

 

1

 

 range, the micelle core is an elon-
gated cylindrical body with identical ends in the form
of hemispheres or quasi-hemispheres. Such a shape of
considered micelle modification is responsible for their
second name as spherocylindrical micelles. Because
the limiting state of the packing of the hydrophobic por-
tions of surfactant monomers into spherical molecular
aggregate corresponds to hemispherical ends, the addi-
tion of a monomer to such a micelle does not cause the
rearrangement of its ends but increases only the length
of its cylindrical portion. As a result, the length and,
hence, the surface area and volume of a micelle become
linearly connected with aggregation number 

 

n

 

. Within
the framework of the droplet and quasi-droplet models
of a micelle [2, 3, 9–11], the work of aggregation
involves the hydrophobic (due to the gain in the work
of the transfer of hydrophobic parts of surfactant mono-
mers from the solution to the micelle core), surface
(related to the surface tension of the micelle core), elec-
trical (due to the electrical double layer formed on the
micelle surface by the hydrophilic parts of surfactant
monomers), and concentration (due to the difference in
monomer concentrations in the solution and micelle)
contributions. As for spherical micelles, hydrophobic
and concentration contributions to the work of aggrega-
tion of cylindrical micelle are proportional (in the prin-
cipal order) to aggregation number 

 

n

 

. At the already
mentioned linear dependence of 

 

n

 

 on the surface area of
cylindrical micelle, the surface and electrical contribu-
tions to the work of aggregation 

 

W

 

n

 

 of cylindrical
micelle are also linear functions of 

 

n

 

. The preceding
explains the linear dependence of the total work of
aggregation 

 

W

 

n

 

 on the aggregation number in the 

 

n

 

0

 

 

 

≤

 

n

 

 

 

≤

 

 

 

n

 

1

 

 range shown in the figure and used in further dis-
cussion. The knowledge of the specific properties of
surfactant monomers is not needed for finding the
parameters of this dependence.

Since the concentration contribution to the work of
aggregation has universal (independent of the choice of

Wc
2( ) nc

2( )

nc
2( )

Wc
2( )

model of molecular aggregate or specific polymor-
phous shape of micelles) pattern, and, as is known [4],
for the case of dilute surfactant solutions depends on
concentration c1 of surfactant monomers in the solution
via term –(n – 1)lnc1, we have

(1.2)

With allowance for what have been said above on
the dependence of the work of aggregation Wn on
monomer concentration c1 and aggregation number n, it
is convenient to express the relation for Wn within the
n0 ≤ n ≤ n1 aggregation number range as

(1.3)

where b and c1c are positive values independent of solu-
tion concentration c1 and b – ln(c1/c1c) is the coefficient
of the linear dependence of work Wn on n. Physical
meaning of the c1c value will be elucidated in Section 3.
Evidently, the b + ln(c1c) sum can be explicitly
expressed via the parameters of hydrophobic, surface,
and electrical contributions to the work of aggregation
within the framework of the droplet model of a micelle;
therefore, the b and c1c values appeared to be interre-
lated; furthermore, the c1c value acts as a certain char-
acteristic monomer concentration in the solution. Here-
after, we assume that the c1 c concentration is so low (in
the situation that is of interest to us) that inequality b –
 ln(c1/c1c) > 0 (accounted for in the figure) takes place.
As this inequality is violated, the work Wn of cylindrical
micelle formation would decrease with n, and the ava-
lanche-like increase in the amount of substance in
cylindrical micelles would occur.

Along with the b value, it is also convenient to deal
with parameter β which is related to b by the equality

(1.4)

As we will see below in Section 4, in the experimen-
tally important region of the values of overall surfactant
solution concentration c where c/c1 ~ 105 is valid by the
order of magnitude, as well as at estimate n1/n0 ~ 103

[15] typical of many surfactants, we arrive at the
approximate (but not estimating) relation

β . 2, (1.5)

ensuring positive b values. Under the same conditions,
we find the b – ln(c1/c1c) value of Eq. (1.3) in Section 4.

2. CONCENTRATION OF CYLINDRICAL 
MICELLES IN SURFACTANT SOLUTION

It is natural that the most of micelle numbers will be
in the ranges of the sizes belonging to the potential

wells (shown in the figure) at  + ∆  < n <  –

∆  and  + ∆  < n < n1, where ∆  and ∆
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are the half-widths of the first and second barrier of the

work of aggregation on the n axis, respectively; at  +

∆  < n <  – ∆ , in the form of spherical

micelles; and at  + ∆  < n < n1, in the form of
cylindrical micelles.

The large excess of micelles in regions  + ∆  <

n <  – ∆  and  + ∆  < n < n1 allows us to
assume that, even in the solution nonequilibrium state,
micelle concentrations in these regions are maintained
separately as quasi-equilibrium quantities, regardless
of the variations in the number of micelles through the
fluxes over the potential barrier of the work of aggrega-
tion Wn. Let us introduce the notation:

(2.1)

Then, according to Boltzmann’s principle and the defi-
nition of work W0 in Eq. (1.1), the quasi-equilibrium

distribution of cylindrical micelles at  + ∆  < n <
n1 can be written as

(2.2)

and, at n0 < n < n1, it can be written, with allowance for
Eq. (1.3), as

(2.3)

where

(2.4)

At the equilibrium state of surfactant solution covering
all the aggregation numbers, from Eq. (2.1) and the def-
inition of work W0 in Eq. (1.1), according to Boltz-
mann’s principle, we have

(2.5)

As was demonstrated in [5], at the equilibrium state
of surfactant solution, the total concentration cM of

spherical micelles in the  + ∆  < n <  – ∆
range is related to the concentration of surfactant
monomers in solution by the expression

(2.6)

where ∆  is the half-width of the potential well of
work Wn on the aggregation number axis for spherical
micelles.

According to [5], the condition

(2.7)

should be fulfilled for the applicability of relation (2.6).
Let us assume that conditions
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(2.8)

should also be satisfied.

We also accept the estimates of , ∆ , n0, and
n1 values

(2.9)

that satisfy conditions (2.7) and (2.8) and are based on
experiment [1, 9, 15]. These estimates are consistent
with estimate n1/n0 ~ 103 made at the end of Section 1.

Estimates of the  and W0 values related to esti-
mates (2.9) will later be used in Eqs. (3.8) and (4.37).

The estimates of other (shown in the figure) values ,

, , and  will not be needed in this paper.

Up to Section 8, we consider only the equilibrium
states of surfactant solution. Then, Eqs. (2.5) and (2.6)
will be valid. In this case, concentrations cs, cM, as well
as overall concentration c, are determined unambigu-
ously by concentration c1 of surfactant monomers.

Let us denote the total number of surfactant mole-
cules (the total amount of substance) in cylindrical
micelles in solution unit volume by N. Then, we have

(2.10)

The  + ∆  < n < n0 region is fairly narrow com-
pared to the n0 < n < n1 region due to estimates (2.9),
whereas work Wn increases with the deviation of n from

n0 much faster in the  + ∆  < n < n0 region than
in n0 < n < n1 region. Because of this, we replace the
lower limit of integration in Eq. (2.10) by n0. Then, per-
forming integration with the use of relation (2.3), we
obtain

(2.11)

where n1 – n0 in the pre-exponential factor of the second
term is replaced by n1 with a high accuracy due to esti-
mations (2.9).

Let us denote the total concentration of cylindrical
micelles (the total number of cylindrical micelles in
solution unit volume) by g. Then we have
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Replacing, as for the N value, the lower limit of integra-
tion in Eq. (2.12) by n0 and integrating with the use of
relation (2.3), we arrive at

(2.13)

If there is no second barrier for the work of aggrega-

tion, the limit  + ∆  replaces in Eqs. (2.10) and

(2.12) the lower limit of integration  + ∆ ; slightly
above this limit, micelles exist already in the cylindrical
modification. It is significant that this limit can be still
replaced by n0. Indeed, in the absence of the second
barrier, work Wn increases with aggregation number n

from  + ∆ , moreover, much faster at the begin-
ning. Then in view of estimates (2.9), the relative values

of contributions from range  + ∆  < n < n0 to the
total amount N of substance in cylindrical micelles and
to the total concentration g of cylindrical micelles will
be fairly small.

In view of Eqs. (2.2), (2.5), and the first equation of
relations (1.2), we have ∂(cn/c1)∂c1 > 0. Then, accord-
ing to definitions (2.10) and (2.12), inequalities

(2.14)

indicating the important (for further discussion) monot-
onous rise of the total number of surfactant molecules
in cylindrical micelles and the total number of cylindri-
cal micelles relative to monomer concentration with an
increase in the monomer concentration, are fulfilled.

3. THE SECOND CMC AND ITS RELATIONSHIP 
WITH THE FIRST CMC

Let us write the balance equation of the amount of
surfactant in solution for the overall concentration c of
surfactant solution as

(3.1)

where, in view of Eq. (2.7), the second term accounts
for the contribution of spherical micelles and the third
term, that of cylindrical micelles, to the overall solution
concentration.

In accordance with the law of mass action, the
micellization is theoretically possible at any concentra-
tion; however, this is revealed in practice beginning
with the first CMC when some part of a substance is
already accumulated in spherical micelles. The exact
determination of the CMC is rather conditional and
realized in dozens of procedures allowing to estimate
the critical degree of micellization (that is often close to
0.1 by the order of magnitude) [2]. Therefore, it is much
simpler to determine the CMC from the preset numeri-
cal values of the degree of micellization or the ratio
between the amounts of micellar and monomeric forms
of surfactant. We assume that monomer concentration

g
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c1m corresponding to the first CMC satisfies the condi-
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(3.2)

According to Eq. (3.1), definition (3.2) indicates that, at
c1 = c1m, the role of spherical micelles in the balance of
the amount of surfactant is already noticeable. Defini-
tion (3.2) slightly differs from the similar definition
accepted in [12] with the replacement of 1/10 for 1/9.

It was shown [12] that, within a wide interval of the
variations in the total concentration cM of spherical
micelles where cM/c1 ratio varies from about 10–3 to the

value of the order of unity, the  value remains
almost constant. According to [12], it follows from
Eq. (3.2) that

(3.3)

In accordance with Eq. (3.1), equality (3.3) implies

that, at c1 = c1m[1 + (3/ )ln10], the role of spherical
micelles in the balance of the amount of surfactant is
already rather significant.

In formula (1.3), the c1c is taken as the monomer
concentration corresponding to the second CMC. Let
us determine the second CMC as the overall surfactant
concentration at which the ratio between the total
amount of substance in cylindrical micelles to the
amount of substance in monomers is equal to 1/10; i.e.,
in accordance with Eq. (3.1), it is already noticeable in
the balance of surfactant content. Then, we have

(3.4)

We will be convinced in Section 4 that formula (1.3)
ensures a rapid increase in the N/c1 ratio, as concentra-
tion c1 starts to exceed concentration c1c. This and
Eq. (3.4) confirm that the c1c value in Eq. (1.3) really
represents the monomer concentration corresponding
to the second CMC above which the role of cylindrical
micelles in the balance of surfactant content, in accor-
dance with Eq. (3.1), grows fairly fast. Common
approach to definitions (3.2) and (3.4) of the first and
second CMCs used in this work is worth noting.

Let us assume (this assumption will be discussed a
little bit later) that the role of cylindrical micelles in the
balance of surfactant content starts to be noticeable
already when concentration c1c is close to c1m[1 +

(3/ )ln10] and, hence, according to equality (3.3),
the role of spherical micelles in the balance of surfac-
tant content is already fairly large. Thus, we have

. (3.5)

Correspondingly, Eq. (3.3) is written as
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(3.6)

In accordance with Eq. (3.5), concentration c1c is higher
than concentration c1m; however, in view of the first
estimate of (2.9), this excess is small.

From Eq. (3.6) and the first estimate of (2.9), it fol-
lows that

(3.7)

Taking Eqs. (2.6), (2.9), and (3.7) into account, we
obtain

(3.8)

It could be assumed that the role of cylindrical
micelles in the balance of surfactant content starts to be
noticeable when c1c exceeds c1m slightly more than in
Eq. (3.5). For example, instead of Eq. (3.5), we could

use relation c1c . c1m[1 + (4/ )ln10]. Then, the right-
hand sides of relations (3.6) and (3.7) would increase
tenfold and, correspondingly, the key role of spherical
micelles in the balance of surfactant content at c1 = c1c

would be still larger. Further, this will show up only in
a tenfold increase in the second CMC.

4. THE GROWTH OF THE AMOUNT 
OF SURFACTANT IN CYLINDRICAL MICELLES 

AND THE NUMBER OF CYLINDRICAL 
MICELLES WITH THE MONOMER 

CONCENTRATION

Let us consider the behavior of the total amount of
surfactant in micelles and the total number of micelles
at surfactant monomer concentrations in solution
slightly exceeding concentration c1c. Let us represent
positive value a determined at these concentrations by
relation (2.4) as

(4.1)

where α is the parameter satisfying double inequality

(4.2)

Somewhat below we obtain, using Eq. (1.5), constraint
α < 2 refining the upper limit in relation (4.2). From
Eqs. (1.4) and (4.1), we have

(4.3)

and, correspondingly

(4.4)

According to Eqs. (2.4), (4.1), and (4.2), concentra-
tions c1 of surfactant monomers (which are of interest
to us) slightly exceeding concentration c1c are
expressed via parameter α, using relation

ns
1( )cM

c1
--------------

c1 c1c=

 . 102.

cM

c1
------

c1 c1c=

1.∼

Ws
1( )

c1 c1c=  . 3.3.

ns
1( )

a α /n0( ) 10,ln≡

0 α /n0( ) 10 ! 1.ln≤

a b– α β–( )/n0[ ] 10ln=

e
a b–( )n1 10

α β–( )n1/n0.=

(4.5)

At such concentrations, for the work of aggregation at
n = n0, from relations (1.2), (2.9), and (4.5), we have

(4.6)

where

(4.7)

From Eq. (4.6), we obtain

(4.8)

It is convenient to represent n1/n0 ratio as

(4.9)

where parameter γ, as follows from estimates (2.9), sat-
isfies approximate (albeit not estimated) relation γ . 3.
Hereafter, we assume that, at monomer concentrations
(which are of interest to us) slightly exceeding concen-
tration c1c, relations

(4.10)

or, in view of Eq. (4.3)

(4.11)

are fulfilled.
Inequalities (4.10) and (4.11) are significant,

because the avalanche-like increase in the amount of
substance in cylindrical micelles occurs almost imme-
diately upon their violation. Note that Eq. (4.11)
ensures inequality b – ln(c1/c1c) > 0 mentioned in Sec-
tion 1.

Based on Eqs. (4.9) and (4.11), we find

(4.12)

It is seen from (2.9) and (4.12) that relations (2.11) and
(2.13) for the total amount N of surfactant molecules in
cylindrical micelles in solution unit volume and at the
total concentration g of cylindrical micelles with a high
accuracy can be reduced to:

(4.13)

(4.14)

Let us consider the relative role of monomers, as
well as spherical and cylindrical micelles, at surfactant
monomer concentrations in solution satisfying rela-
tions (4.2), (4.5), and (4.11). From Eqs. (4.13) and
(4.14) with allowance for Eqs. (2.5), (4.3), (4.5), and
(4.8), we find

c1 c1c 1 α /n0( ) 10ln+[ ] .=

W0 W0
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e W
0– e

W0
0–
10α .=

n1/n0 10γ,≡

β α γ 1+( )n0/n1≥–

b a– γ 1+( )/n1[ ] 10ln≥

e
a b–( ) n1 n0–( ) n0

10n1
----------- ! 

n0

n1
-----.≤

N
csn0

b a–
-----------

cs

b a–( )2
------------------,+=

g
cs

b a–
-----------.=



180

COLLOID JOURNAL      Vol. 66     No. 2      2004

KUNI et al.

(4.15)

(4.16)

Using Eqs. (2.6) and (3.6), taking into account that 

and ∆  slightly depend on c1, and, in view of the sec-
ond of relations (1.2), estimates (2.9), and inequality
α ≤ 2 followed from Eqs. (1.5) and (4.10), the relation

is valid, we arrive at

(4.17)

Relations (4.15) and (4.17) demonstrate that, in Eq. (3.1)
of the balance of surfactant content, the role of cylindri-
cal micelles increases and the role of spherical micelles
“freezes” with an increase in surfactant monomer con-
centration above concentration c1c (with an increase in
parameter α). It is evident that estimate (3.7), which
guarantees the diluted state of solution relative to spher-
ical micelles, and estimate (3.8) taken into account in
the figure, remain valid.

In particular, at α = 0, from Eq. (4.15) with allow-
ance for Eq. (1.5), we have

(4.18)

In view of Eq. (3.4), from Eq. (4.18) follows the equality

(4.19)

that is important for further discussion; wherefrom,
with account of Eq. (1.5) and estimate n0 ~ 103 in (2.9),

we find approximate (albeit not estimated) value :

 . 14. Taking in Eq. (4.16) α = 0, we arrive at

(4.20)

N
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e
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0– n0

β 10ln
---------------.=

The account of equality (4.19) yields

(4.21)

Substituting equality (4.19) into relations (4.15) and
(4.16), we have

(4.22)

(4.23)

In particular, at α = 1 that is compatible with Eqs. (1.5)
and (4.10), from Eqs. (4.22) and (4.23) with allowance
for Eq. (1.5), we find

(4.24)

(4.25)

Relations (3.4) and (4.24) confirm that the c1c value
represents the surfactant monomer concentration corre-
sponding to the second CMC above which surfactant is
rapidly accumulated in cylindrical micelles.

Let us choose for parameter α the values α = β – 2(γ +
1)n0/n1 and α = β – (γ + 1)n0/n1 satisfying inequality
(4.10) [the second value satisfies inequality (4.10) only
as the limiting value]. Substituting these values into for-
mula (4.22), accounting for definition (4.9), as well as for
strong inequalities (γ + 1) × 10–γ ! 1 and (β – α) ! 1 that
are also valid at n1/n0 ~ 103 and γ . 3, we obtain

(4.26)

(4.27)

Similarly, substituting α = β – 2(γ + 1)n0/n1 and α = β –
(γ + 1)n0/n1 into Eq. (4.23) and accounting for Eq. (4.9),
we find

(4.28)

(4.29)

It is seen from Eqs. (4.26)–(4.29) that, when param-
eter α approaches up to parameter β from even at a rel-
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atively small increase in parameter α (at a relatively
small increase in surfactant monomer concentration),
the amount of surfactant in cylindrical micelles and the
and the amount of cylindrical micelles with respect to
surfactant monomer concentration increases manifold. 

Let us discuss in more detail an interesting situation
when parameter α approaches up to parameter β. We
assume

(4.30)

that satisfies inequality (4.10) with twofold excess. Such
an excess is sufficient to vary later (in Sections 7 and 8)
parameter α with no violation of inequality (4.10), as well
as to ignore the emergence of disc micelles in surfactant
solution. For simplicity, we neglect the indication that
α-dependent values refer to the value of parameter α
introduced in Eq. (4.30). From Eqs. (4.26) and (4.28)
with allowance for definition (4.9) and the fact that, at
n1/n0 ~ 103, equality γ = 3 is approximately fulfilled,
we have

(4.31)

(4.32)

In the experimentally important region of the values
of overall surfactant solution concentration c, where
c/c1 ~ 105 ratio is valid by the order of magnitude, the
dominant role in Eq. (3.1) for the surfactant amount
balance is played, as is seen from Eq. (4.17), by the
third term of this equation. Then, N = c and it follows
from Eq. (4.31):

(4.33)

that gives the equation for parameter β at the preset
experimental values of c/c1 and n0/n1. Since β × 10β – 1

rather strongly depends on β, Eq. (4.33) allows us to
approximately find parameter β even when the right-
hand side of equation is known only by the order of
magnitude. In the experimentally important region of
the values of overall concentration c of surfactant solu-
tion, where c/c1 ~ 105 ratio is valid by the order of mag-
nitude, as well as at estimate n1/n0 ~ 103 that is typical
of many surfactants, Eq. (4.33) leads to the approxi-
mate (albeit not to estimated) equality (1.5) for param-
eter β.

From relation (4.32) at the found value of β × 10β – 1

with the use of Eq. (4.33), we obtain

(4.34)

At c/c1 ~ 105 and estimate n1 ~ 106 typical of many sur-
factants, this equation leads to estimate g/c1 ~ 2 which
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10,ln=

g
c1
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c
c1
---- 10ln

n1
-----------.=

guarantees the diluted state of solution with respect to
cylindrical micelles. According to Eqs. (4.3) and (4.30)
and already mentioned approximate equality γ = 3, we
have

(4.35)

that determines the b – ln(c1/c1c) coefficient of the linear
dependence of work Wn on n in Eq. (1.3). Using Eqs. (4.8)
and (4.19), accounting that, in view of Eq. (4.30),
parameter α is rather accurately close to parameter β,
and finding then the value of β × 10β – 1 from Eq. (4.33),
we obtain

(4.36)

At c/c1 ~ 105 and n1 ~ 106, formula (4.36) yields the
estimate

(4.37)

according to which W0 . 9.2 is approximately valid that
was taken into account in the figure.

5. RELATIONSHIP BETWEEN THE OVERALL 
CONCENTRATION AND MONOMER 

CONCENTRATION IN SURFACTANT SOLUTION

Relations derived in Sections 3 and 4 illustrating the
accumulation of surfactants in spherical and cylindrical
micelles with an increase in monomer surfactant con-
centration beginning with concentration c1m and ending
with the monomer concentrations slightly exceeding
concentration c1c allow us, together with balance equa-
tion (3.1) of monomer amount, to monitor the relation-
ship between the overall concentration and surfactant
monomer concentration. This relationship is important
for the interpretation of experimental results, because,
in contrast to the overall concentration, the surfactant
monomer concentration can be measured indepen-
dently with a high accuracy only up to the first CMC.

At c1 = c1m (at the monomer concentration corre-
sponding to the first CMC), from Eq. (3.1) with allow-
ance for Eq. (3.2) and equality  = 0, we have

(5.1)

that can easily be verified in experiment. At c1 = c1c (at
the monomer concentration corresponding to the sec-
ond CMC), from Eq. (3.1) with allowance for Eqs. (3.4)
and (3.6), we obtain

(5.2)

According to relation (3.5) and estimate  ~ 102, the
relative difference between concentrations c1c and c1m is
much less than unity. Then, as follows from Eqs. (5.1)
and (5.2), the second CMC exceeds the first CMC by
two orders of magnitude. Further, in order to have val-
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ues cM/c1 ~ 1 and N/c1 ~ 1, provided that Eqs. (3.2)
and (3.4) are satisfied, it is required, according to [12]
and formula (4.24), to have concentrations c1 = c1m[1 +

(1/ )ln10] and c1 = c1c(1/n0)ln10, respectively. At

n0/  ~ 10 , this indicates that the amount of substance
in cylindrical micelles above the second CMC is much
more sensitive to the monomer concentration than the
amount of substance in spherical micelles above the
first CMC.

Although the amount of substance in cylindrical
micelles rapidly increases with monomer concentration
above the c1c value, the relationship between the overall
concentration and monomer concentration first remains
unchanged due to a rather large amount of surfactant
accumulated in spherical micelles. For instance, at c1 =
c1c[1 + (1/n0)ln10] (at concentration c1 only slightly
exceeding concentration c1c), from Eq. (3.1) with
allowance for Eqs. (4.17) and (4.24), we find

(5.3)

If, in accordance with all what have been said at the

end of Section 3, we increased the cM/c1 ratio ten-
fold, then in Eqs. (5.2) and (5.3) we would have 103

instead of 102. As a result, the second CMC would
exceed the first one by three orders of magnitude.

As in Section 4, let us describe in more detail an
interesting situation where parameter α approaches up
to parameter β. Let us assume consecutively α = β – 4(γ +
1)n0/n1, α = β – 2(γ + 1)n0/n1, and α = β – (γ + 1)n0/n1
that agrees with condition (4.10). At these values of
parameter α, from Eqs. (3.1), (4.17), and (4.22) with
allowance for β . 2, n1/n0 ~ 103, and approximate
equality γ = 3, we obtain

(5.4)

(5.5)

(5.6)

Relations (5.4)–(5.6) demonstrate that, as the over-
all solution concentration increases above 104 c1m (that
corresponds to the approach of parameter α up to
parameter β), almost the whole of added surfactant is
transferred to cylindrical micelles. In this case, the
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amount of surfactant in the form of monomers and
spherical micelles remains virtually unchanged pre-
senting a negligible fraction of the total content of sur-
factant in the solution.

6. THE WIDTH OF CYLINDRICAL MICELLE 
DISTRIBUTION OVER THE AGGREGATION 

NUMBERS

Let us represent the b – a value determining coeffi-
cient b – ln(c1/c1c) by the linear dependence of work Wn
on n in Eq. (1.3) via parameters γ and n1 at the monomer
concentration

(6.1)

at which Eq. (4.30) is fulfilled and cylindrical micelles
already play the dominant role in balance equation (3.1) of
surfactant amount. With account of Eqs. (4.3) and (4.30),
we have

(6.2)

Substituting Eq. (6.2) into relation (2.3), for the distri-
bution cn of cylindrical micelles over the aggregation
numbers in the n0 ≤ n ≤ n1 region, we obtain

(6.3)

Let us determine width n2 – n0 of distribution cn set
by relation (6.3) from the condition

(6.4)

stating that the distribution at this width decreases by a
factor of e. Then, we have

(6.5)

where definition (4.9) of parameter γ is taken into
account. It is seen that, with an increase in parameter n1
setting the upper limit of the region of aggregation
numbers, the denominator in Eq. (6.5) increases slower
than the numerator. At n0 = 103 and n1 = 106, concentra-
tions cn of cylindrical micelles in the 103 ≤ n ≤ 105 range
are almost equal to cs. At n * 105, the concentrations
rapidly decrease. In particular, at n = n1, from Eq. (6.3)
we find  = cse–8ln10 = cs × 10–8. Thus, at the cho-

sen values of problem parameters, in accordance with
experimental data, the distribution of cylindrical micelles
is almost uniform in the most part of the wide region of
aggregation numbers and decays exponentially in the
remaining part lying to the right of this region.

From Eqs. (6.3) and (6.5) at γ = 3, we have
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(6.6)

It is seen that the fraction of surfactant contained in
cylindrical micelles in the n2 ≤ n ≤ n1 range is still sig-
nificant, whereas in the n1/2 ≤ n ≤ n1 range it is already
negligibly small. A rather fast decrease in the amount of
surfactant in cylindrical micelles within the n range
from n to n1, occurring as the aggregation number n
approaches up to its limiting value n1, implies that the
limiting value of n1 can be observed experimentally
with a fair accuracy.

7. DEPENDENCE OF THE TOTAL 
CONCENTRATION OF CYLINDRICAL 

MICELLES, MEAN VALUE, AND MEAN 
STATISYICAL SCATTER OF AGGREGATION 

NUMBERS IN A CYLINDRICAL MICELLE ON 
THE OVERALL SURFACTANT 

CONCENTRATION

Together with total concentration g of cylindrical
micelles and total amount N of surfactant molecules in
cylindrical micelles defined by relations (2.10) and
(2.12), we introduce value Q, according to

(7.1)

Replacing, as in the determination of N and g in
Eqs. (2.11) and (2.13), the lower limit of integration in
Eq. (7.1) by n0 and, with allowance for Eq. (2.3), we
reduce relation (7.1) for Q to relation (7.4) at surfactant
monomer concentrations in solution, which are of inter-
est to us, because at these concentrations, in accordance
with Eq. (4.35), the estimate

(7.2)

is valid and, in view of n1/n0 @ 1, strong inequality

(7.3)

is also valid;

(7.4)
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b a–( )n0 ! 1

Q
2cs
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Accounting for Eqs. (2.10), (2.12), and (7.1), let us

determine mean number , mean square , and mean
statistical scatter σ of the aggregation numbers of cylin-
drical micelle as

(7.5)

Substituting relation (4.14), equality

, (7.6)

followed from Eqs. (4.13) and (7.3), as well as rela-
tion (7.4), into Eq. (7.5), we find

(7.7)

In view of relations (5.4)–(5.6), total amount N of
surfactant molecules in cylindrical micelles coincides
with a high accuracy with overall concentration c at the
monomer concentrations which are of interest to us.
Then, it follows from Eq. (7.6)

(7.8)

Substitution of Eq. (7.8) into Eqs. (4.14) and (7.7)
yields

(7.9)

Let us estimate the dependence of concentration cs
on overall concentration c at interesting to us surfactant
monomer concentrations at which relations (7.2) and
(7.3) are fulfilled. Since at these surfactant monomer
concentrations, c . N, the relation

(7.10)

is valid.
Using Eqs. (2.5), (1.2), (7.2), (7.3), and (7.6),

we  have dcs/dc1 = n0exp(–W0) and dN/dc1 ~ 2 3 ×
exp(–W0)/(8ln10)3. According to Eq. (7.10) with allow-
ance for estimates (2.9), we have

(7.11)

that enables us to assume that concentration cs in for-
mulas (7.9) remains almost constant when varying
overall concentration c. Taking in (7.9) cs = const, we
obtain

(7.12)

Direct proportional dependence of the total concentra-
tion of cylindrical micelles, mean value, and mean statis-
tical scatter of the aggregation numbers in a cylindrical
micelle on the square root of overall surfactant concen-
tration demonstrated by relations (7.12) is confirmed by
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the experiment and the other theoretical models of the
formation of cylindrical micelles [3, 13, 15].

8. LINEARIZATION OF THE EQUATION 
OF SUBSTANCE AMOUNT BALANCE 

IN THE VICINITY OF FINAL EQUILIBRIUM 
STATE OF A MATERIALLY ISOLATED 

SURFACTANT SOLUTION

Let us consider Eq. (3.1) of surfactant amount bal-
ance in the vicinity of the final equilibrium state of a
materially isolated solution. In this vicinity, the state of
solution is not equilibrium and, hence, as was men-
tioned in Section 2, Eqs. (2.5) and (2.6) are invalid, and
concentrations cs and cM, as well as overall concentra-
tion c, are not determined unambiguously by the con-
centration c1 of surfactant monomers. Denoting the val-
ues for the final equilibrium state of solution by the
wavy vertical bar, and their deviations from equilibrium
state by symbol δ to the left of the value, we then see
that the relationship of deviations δcs, δcM, and δc with
δc1 is not known in advance. However, Eq. (3.1) of sur-
factant amount balance in a materially isolated solu-
tion, where δc is equal to zero, leads to the relationship
of deviations δc1 and δcs with deviations δcM and δg of
the total concentrations of spherical and cylindrical
micelles available for experimental observations. Let us
elucidative this relationship upon the linearization of
Eq. (3.1) of surfactant amount balance in the vicinity of
the final equilibrium state of a materially isolated sur-
factant solution where, according to Eq. (7.2), the rela-
tion 

(8.1)

takes place.
From Eqs. (2.4), (7.6), and (4.14) with allowance for

the fact that Eq. (2.5) is valid for the final state of a solu-
tion, we obtain

(8.2)

(8.3)

(8.4)

We derive the condition of linearization of N and g
values by deviation δc1, using Eq. (8.3), as a condition
of the neglect of next (quadratic with respect to δc1)
term compared to the second term in the right-hand side
of Eq. (8.3). Then, we have |δc1/ | ! (2/3)(b – ) or,
in view of Eq. (8.1),

(8.5)

From Eq. (8.4), we find
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(8.6)

Substituting (8.6) into the right-hand side of Eq. (8.3),
we obtain

(8.7)

According to the material isolation of solution, we
have from Eq. (3.1) of surfactant amount balance in
solution

(8.8)

where, in view of Eq. (8.5), it is assumed (with a high

accuracy) that  = . Substituting Eq. (8.7) into
(8.8), we arrive at

(8.9)

According to Eqs. (4.37) and (8.1) and at n1 ~ 106,

strong inequality (b – )–3 ~ 1010 @ 1 is valid so
that the first term in the left-hand side of Eq. (8.9) can
be ignored. Then, from Eq. (8.9) we have with a high
accuracy

(8.10)

Canceling [with the aid of Eq. (8.10)] δc1 in the right-
hand side of Eq. (8.6), we find

(8.11)

Equations (8.10) and (8.11) disclose the desired rela-
tionship of deviations δc1 and δcs with deviations δcM
and δg.

It follows from Eqs. (8.7) and (8.10) that

(8.12)

Equation (8.12) expresses the relationship between
deviations δN and δcM for N and cM values available for
experimental observation.

9. THE CASE OF THE ABSENCE
OF SPHERICAL MICELLES

The relations cited above referred to the most com-
plex case when first spherical and then cylindrical
micelles are consecutively formed in the surfactant
solution and the micelles of both types coexist above
the second CMC. However, in practice, a simpler case
is encountered when the spherical shape of a micelle
becomes unrealizable due to the molecular structure
and packing conditions and the micellization starts just
with the formation of cylindrical micelles. In this sec-
tion, we summarize briefly formulas and conclusions
for the case of the isolated existence of cylindrical
micelles.

δcs e W̃
0

– 1
b ã–
-----------δc1– b ã–( )δg.+=

δN e W̃
0

– 1

b ã–( )3
------------------δc1

1
b ã–
-----------δg.+=

δc1 ñs
1( )δcM δN+ + 0,=

ns
1( ) ñs

1( )

δc1 ñs
1( )δcM e W̃

0
– 1

b ã–( )3
------------------δc1

1
b ã–
-----------δg+ + + 0.=

e W̃
0

– ã

δc1 eW̃
0

ñs
1( ) b ã–( )3δcM– eW̃

0

b ã–( )2δg.–=

δcs ñs
1( ) b ã–( )2δcM 2 b ã–( )δg.+=

δN ñs
1( )δcM.–=
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In the case of the absence of spherical micelles, the
reference point in the figure should be displaced for-

mally to the point with coordinates  and . To
the right of this point, the dependence of the work of
molecular aggregate formation in the solution on the
aggregation number at the monomer concentration at
which the fraction of substance accumulated in cylin-
drical micelles is already significant, will be qualita-
tively the same as upon the coexistence of spherical and
cylindrical micelles. Correspondingly, the second bar-
rier of the work of aggregation plays the role of the first
barrier.

In formulas involving cM, we should now assume

cM = 0. (9.1)

There is only the second CMC whose definition (3.4)
persists; the first CMC is absent. Correspondingly, rela-
tion (5.1) is invalid. Now we can independently mea-
sure (with an adequate accuracy) the surfactant mono-
mer concentration up to the second CMC. Instead of
Eqs. (5.2) and (5.3), with allowance for Eq. (4.24), we
now have

(9.2)

(9.3)

Equations (5.4)–(5.6) persist; however, now there is

no need to indicate the value of cM/c1, because, in
accordance with Eq. (9.1), it is equal to zero. Sections 6
and 7 are completely valid. In formulas cited in Section 8,
in accordance with Eq. (9.1), now we should assume
δcM = 0. Instead of final equations (8.10)–(8.12) in Sec-
tion 8, we have

(9.4)

(9.5)

δN = 0. (9.6)
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