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The diffusion problem is often considered in the the-
ory of phase transitions for describing the evolution of
the concentration field of a metastable phase in the
presence of a growing particle of the new phase [1]. For
definiteness, let us consider a vapor–liquid phase tran-
sition that takes place as the excess vapor condenses on
a spherical droplet. The principal aim of this paper is to
construct such a solution to the diffusion problem for
the vapor concentration field in the presence of a drop-
let growing in it that the number of droplet-constituting
molecules would increase in agreement with the
decrease in the number of vapor molecules in the drop-
let surroundings. The necessity of reaching such an
agreement indeed exists, as is shown below.

Let us place the origin of the spherical coordinate
system in the center of the growing droplet and denote
its radius by 

 

R

 

. Let 

 

n

 

(

 

r

 

, 

 

t

 

)

 

 be the number density of
vapor molecules (vapor concentration) at distance 

 

r

 

 > 

 

R

 

from the center of the growing droplet at moment 

 

t

 

 after
the instantaneous creation of a vapor supersaturation
with a uniform initial concentration 

 

n

 

(0)

 

 around the
droplet. The radius 

 

R

 

 is assumed to be much greater
than the mean free path of vapor molecules. Under this
condition, the evolution of the number density 

 

n

 

(

 

r

 

, 

 

t

 

)

 

 of
vapor molecules in the ambient space of the growing
droplet adheres to the diffusion equation

 

(1)

 

where 

 

D

 

 is the diffusion coefficient. If we assume that
a local vapor–droplet equilibrium is quickly established
at the surface of the growing droplet, the boundary con-
dition at this surface is 

 

n
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t
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|

 

r

 

 = 

 

R

 

 = 

 

n

 

R

 

. For a vapor in
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equilibrium with a droplet of radius 

 

n

 

R

 

, the number den-
sity 

 

R

 

 of its molecules depends on 

 

R

 

. However, this
dependence is such that the 

 

R

 

 value becomes constant
(and equal to the concentration 

 

n

 

R

 

 of saturated vapor
over a plane surface of the liquid phase) starting from
very small 

 

n

 

∞

 

 values. For this reason, the actually used
boundary condition at the droplet surface is

 

(2)

 

Since the droplet growth is due to absorption of
excess vapor molecules, the droplet radius at the cur-
rent moment 

 

t

 

 changes with a rate equal to

 

(3)

 

where 

 

v

 

l

 

 is the volume per molecule in the liquid phase.
The 

 

v

 

l

 

 volume is a quantity reciprocal to the number
density of molecules in the liquid phase. Differentiating
the right-hand part of Eq. (3) and cancelling equal mul-
tipliers in both parts, we arrive at

 

(4)

 

The existence of a relationship between the radius of
the growing droplet and the vapor concentration makes
our problem nonlinear.

In applied studies, a consistent solution of the diffu-
sion equation (1) and determination of the current size
of the growing droplet according to Eq. (4) is achieved
in two stages [1]. The first stage consists in determining
the vapor concentration field 

 

n

 

(

 

r

 

, 

 

t

 

)

 

 in the vicinity of a
droplet with a fixed radius 

 

R

 

 and in calculating the dif-
fusion flux of matter onto the droplet. The second stage
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Abstract

 

—As is shown, the solution to the diffusion equation for the concentration of vapor in the presence of
a droplet growing in it, derived for the usual initial condition and equilibrium boundary conditions at the droplet
surface, fails to ensure an equality between the numbers of molecules that have left the vapor due to diffusion
by the current moment and those that have been included in the growing droplet. The difference between the
total numbers of vapor molecules at the initial moment (when the vapor had a given uniform concentration) and
at the current moment (when the size of the growing droplet is much larger than its initial size) differs from the
total number of molecules in the droplet by a factor of 3/2. By substituting the usual boundary condition at the
droplet surface by a time-dependent boundary condition at the surface of a constant-radius sphere with the cen-
ter in the center of the growing droplet, a solution to the diffusion problem for the vapor concentration is
derived. This solution describes the evolution of the vapor concentration field, which agrees with the rate of the
vapor absorption by the growing droplet and with the law of the conservation of matter.



 

COLLOID JOURNAL

 

      

 

Vol. 65

 

     

 

No. 6

 

      

 

2003

 

DIFFUSION OF VAPOR IN THE PRESENCE OF A GROWING DROPLET 741

 

consists in determining the rate of the change in the
radius 

 

R

 

 according to the diffusion flux and in finding
the radius itself as a function of time 

 

t

 

. A solution for
the vapor concentration 

 

n

 

(

 

r

 

, 

 

t

 

)

 

 with the fixed radius sub-
stituted by the current droplet radius 

 

R

 

(

 

t

 

)

 

 found at the
second stage is regarded as a good approximation to the
exact solution of the problem.

The possibility of solving the problem in such a suc-
cession is based on the existence of a small physical
parameter

 

(5)

 

under characteristic conditions. This parameter is equal
to the square root of the double density ratio of the
excess vapor and condensed phase (the 

 

v

 

l

 

 volume is a
quantity reciprocal to the number density of molecules
in the liquid phase). Since the vapor density (far from
the critical point) is several orders of magnitude lower
than the liquid density, we have

 

(6)

 

For a homogeneous condensation of water vapor at 

 

T

 

 

 

≅

 

273 

 

K, we obtain 

 

α

 

 ~ 5 

 

×

 

 10

 

–3

 

. Hence, the condensation
of a significant (from the diffusion standpoint) amount
of vapor changes the radius of a growing droplet to a
relatively small extent. Therefore, it is assumed that the
solution to Eq. (1) found at 

 

R

 

 = const under boundary
condition (2) and initial condition

 

(7)

 

may be used for the vapor concentration field 

 

n

 

(

 

r

 

, 

 

t

 

)

 

.
Such a solution has a well-known form [1]

 

(8)

 

where 

 

Φ

 

 is the Laplacian probability integral,

defined as

 

(9)

 

Substituting solution (8) into (4), we obtain an equation
for 

 

R

 

(

 

t

 

):

(10)

where

(11)

hence,

(12)

Let us assume R(t)/(Dt)1/2 ! 1, as is confirmed
below. Then Eq. (10) is reduced to dR2/dt = β2 and its

α 2v l n 0( ) n∞–( )[ ] 1/2≡
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solution is R2(t) = β2t + R2(0), where R(0) is the droplet
radius at the initial moment, when the diffusion regime
of the droplet growth is activated. Let us assume
R2(0) ~ λ2 and

(13)

where λ is the mean free path of vapor molecules in the
vapor–gas medium. Then at

(14)

when the droplet grows in the diffusion regime, the
resultant solution R2(t) = β2t + R2(0) is transformed into

(15)

With allowance for Eq. (12), Eq. (15) yields R(t)/(Dt)1/2 =
α, confirming the assumption R(t)/(Dt)1/2 ! 1 in view of
Eq. (6). Range (14) is expressed using Eqs. (15) and (12)
as t @ λ2/Dα2. At λ ~ 10–4 cm, α ~ 5 × 10–3, and D ~
1 cm2 s–1, the time constraint is reduced to t @ 10–3 s.

Allowing for the smallness of the α parameter and
thus assuming that the vapor concentration field adjusts
itself to the current size of the growing droplet (in the
spatial region that is representative for problems using
this field) much faster than the droplet radius changes,
we can write the solution for n(r, t) in the form (8) with
radius R from Eq. (15) substituted instead of the con-
stant R(t).

However, the concentration field n(r, t) constructed
using the concepts of the space and time scale hierarchy
has one significant fault. To reveal it, let us calculate
and compare two quantities. One of them is the differ-
ence between the total numbers of vapor molecules at
the initial moment t = 0, when condition (7) is true, and
at the current moment t, when the droplet radius R(t)
satisfies constraint (13). The other quantity is the total
number of molecules constituting a droplet of radius
R(t). If inequality (13) is true, this number of molecules
have virtually completely condensed in the droplet
under the conditions where its radius grows with time
according to Eq. (15). Let us denote the first and second
quantities by N(t) and ν(t), respectively. In principle,
one should not expect that these quantities will be equal
(as is required by the law of the conservation of matter),
because the formulated solution is approximate. How-
ever, their significant difference is also unacceptable.
Allowing for the initial condition (7), we obtain the N(t)
value as

(16)

Substituting solution (8) into Eq. (16) and performing
the integration, we arrive at

(17)

R2 t( ) @ R2 0( ),

R t( ) @ λ ,

R t( ) βt1/2.=

N t( ) 4π r2 n 0( ) n r t,( )–( ) rd

R

∞
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 
 

R R t( )=

.=

N t( ) 4πR t( ) n 0( ) n∞–( )Dt=

+ 8π1/2R2 t( ) n 0( ) n∞–( ) Dt( )1/2.
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Let us use Eqs. (15) and (11) and write Eq. (17) in the
form

(18)

The second term in the right-hand part of Eq. (18)
should be discarded, because it has the first order of
smallness with respect to the α parameter by virtue of
Eq. (5). Let us write

(19)

The ν(t) value, i.e., the number of molecules constitut-
ing a droplet of radius R(t), is found as

(20)

Comparing Eqs. (19) and (20), we can see that

(21)

Thus, if we consider the law of the conservation of mat-
ter, the use of solution (8) at the moment t and boundary
surface radius R = R(t) is not a good approximation to
the exact solution of the problem of vapor distribution
in the vicinity of a droplet growing because of vapor
condensation. Meanwhile, the droplet radius growth
law (15), which is determined by the local structure of
the vapor concentration field near the droplet surface, is
representative enough.

Note that the problem of considering the displace-
ment of the boundary and the time dependence of the
boundary concentration in solving the diffusion prob-
lem has been considered earlier, e.g., in the problem of
diffusion kinetics of adsorption [2–5], where the bal-
ance of matter also plays an important role. However,
those studies considered diffusion in liquid solutions,
i.e., in media without small parameter (5), and model
adsorption isotherms played a significant role in the
closure of the equation for the boundary concentration.

Let us consider the principal aim of our communica-
tion: constructing a solution to Eq. (1) in which the evo-
lution of the vapor concentration field would be consis-
tent with the rate of the vapor adsorption by the droplet
growing in this vapor and which would agree with the
law of the conservation of matter in systems with small
parameter (5).

The main element of the proposed solution is the
boundary condition at the spherical surface of a given
radius r0 with the center in the center of the growing
droplet. This condition is written as

(22)

If we put r0 = R(t) in Eq. (22), it will be transformed,
with allowance for Eq. (15), into boundary condition (2).

N t( ) = 2πR3 t( )
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π
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 
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N t( ) 2πR3 t( )
v l
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ν t( ) 4πR3 t( )
3v l

-------------------.=

N t( )
ν t( )
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2
---.≅

n r t,( ) r r0= n 0( ) n 0( ) n∞–[ ] βt1/2

r0
----------.–=

Boundary condition (22) is evidently compatible with
the initial condition to the diffusion equation (1) in the
form

(23)

The main argument in favor of boundary condi-
tion (22) is that its use produces a solution to Eq. (1)
that possesses properties expressed below by Eqs. (29)
and (31). Meanwhile, some suggestive qualitative ideas
have prompted the form of boundary condition (22).
These ideas are based on the smallness of the α param-
eter introduced by Eq. (5) and may be briefly described
as follows. The boundary surface of radius r0 formally
divides the space around the growing droplet into two
regions. Boundary condition (22) refers to the diffusion
equation (1) in the r > r0 region. The number of vapor mol-
ecules leaving this region because of diffusion through
the boundary surface of radius r0 per unit time depends
on the boundary condition maintained at this surface. In
turn, the number of vapor molecules absorbed by the
droplet located inside a sphere of radius r0 per unit time
depends on radius R(t) of the growing droplet. To
ensure an equality between the numbers of vapor mol-
ecules that have left the r > r0 region because of diffu-
sion and those that have condensed in the droplet, the
boundary condition at r = r0 must be related to the
radius of the growing droplet. If we assume (as is justi-
fied below) that the vapor concentration field in the
R(t) < r < r0 region with boundary condition (2) at the
surface of the growing droplet is quasi-steady-state, the
condensation of vapor on the droplet must cause its
radius R(t) to increase according to Eq. (15) and the
vapor concentration at the r = r0 surface must adhere to
Eq. (22). Since the quasi-steady state of the vapor con-
centration field actually extends beyond the r < r0
region, one can expect [under condition (22)] the afore-
mentioned equality between the number of vapor mol-
ecules leaving the r > r0 region due to diffusion through
the boundary surface of radius r0 per unit time and the
number of vapor molecules absorbed by the droplet
located inside a sphere of radius r0 per unit time. Thus,
if we solve the diffusion equation (1) using boundary
condition (22) and initial condition (23) with the fixed
boundary-surface radius r0 at the current moment sub-
stituted by the radius R(t) = βt1/2 of the droplet growing
due to vapor absorption, the resultant solution must dis-
play a better agreement with the law of the conservation
of matter than solution (8). The assumption that the
vapor concentration field in the R(t) < r < r0 region is
quasi-steady-state, which was used in the above reason-
ing, may be regarded as justified if the time (estimated

as /D) required for the establishment of a quasi-
steady-state concentration field in this region is much
shorter than the time required for the radius of the
growing droplet to reach r0. With allowance for
Eq. (15), the latter time may be assumed to be equal to

n r t,( ) t 0= n 0( ) r r0≥( ).=

r0
2
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/β2. Accordingly, for the required time ratio to be ful-
filled, inequality β2/D ! 1 must be true. In view of
Eq. (12), this condition is reduced to α2 ! 1 and sug-
gests the smallness of the α parameter. The above rea-
soning also prompts that, instead of Eq. (22), the
boundary condition for Eq. (1) may be the condition of
flux matching at the boundary surface with r = r0. How-
ever, this approach leads to overly complicated mathe-
matical constructions.

The general solution of Eq. (1) with the initial and
boundary conditions similar to Eqs. (22) and (23),
respectively, is contained, for example, in [6]. For the
given actual implementation of these conditions, the
solution has the form

(24)

where

(25)

The right-hand part of condition (22) at a fixed r0 is
time-dependent, whereas the right-hand part of condi-
tion (2) at a fixed R is not. This is the reason for the dif-
ference between solutions (24) and (8). This difference
makes it possible to establish that solution (24) with
r0 = R(t) in the notation of Eq. (25) agrees with the law
of the conservation of matter.

Solution (24) has two important properties. To for-
mulate the first of them, let us calculate the number j(t)
of vapor molecules carried inside the boundary surface
of radius r0 = R(t) by the diffusion flux per unit time,
using Eq. (15) for R(t). By definition, we have

(26)

Using solution (24) in Eq. (26), assuming r0 = R(t) in it,
and performing the necessary calculations, we arrive at

(27)

with allowance made for

(28)

In accordance with Eqs. (15), (12), and (6), we obtain
R(t)/(Dt)1/2 = α ! 1. Then Eq. (27) yields

(29)

In view of Eqs. (11), (15), and (20), equality (29)
implies that the number of vapor molecules (in the prin-
cipal order by the small parameter α) carried by the dif-

r0
2
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2βt1/2 n 0( ) n∞–( )

rπ1/2
------------------------------------------–=
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z

∞

∫

z
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2 Dt( )1/2
-------------------.=

j t( ) 4πr2D∂n r t,( )
∂r

------------------
r R t( )=

.=

j t( ) 4πβt1/2D n 0( ) n∞–( ) 1 R t( )/ Dt( )1/2+[ ] ,=

2

π1/2
--------z

τ2–( )exp

τ τ 2 z2–( )1/2
---------------------------- τd

z

∞

∫z 0→
lim π1/2.=

j t( ) 4πβt1/2D n 0( ) n∞–( ).≅

fusion flux per unit time inside a sphere with the droplet
radius R(t), which depends on t according to Eq. (15),
is equal to the number of molecules that must be
attached to the droplet inside the sphere per unit time so
that Eq. (15) would be true. This statement, which is
based on the proposed solution (24), thus agrees with the
result obtained on the basis of solution (8). The second
property of solution (24) declared in this paragraph will
show its serious advantage compared to solution (8).

Let us calculate the N(t) value defined by Eq. (16)
using solution (24) with r0 = R(t) in that equation. We
obtain

(30)

with allowance made for notation (25), where r0 = R(t).
Let us consider Eqs. (15) and (12) and the numerical
values of the integrals

We arrive at

(31)

Comparing Eqs. (31) and (20), we see that, in the prin-
cipal order by the small parameter α, the difference N(t)
between the total numbers of vapor molecules at the
initial moment t = 0, when Eq. (23) is true, and at the
current moment t, when the droplet radius R(t) satisfies
constraint (13), turns out to be equal to the total number
ν(t) of molecules in a droplet of radius R(t).

Thus, solution (24), in contrast to solution (8),
shows a virtually exact agreement with the law of the
conservation of matter. This property of solution (24) is
not only important in principle but may also have a
great significance for some problems of the nucleation
theory [7] and adsorption from the gaseous phase,
where the vapor concentration field in the presence of a
growing droplet should be described with a sufficiently
high accuracy.

The quantitative difference between the vapor con-
centration fields in the presence of a growing droplet
constructed using solutions (8) and (24) depends on the
α parameter value. To estimate this difference, it is con-
venient to consider the relative decrease ϕ(r, t) in the
vapor supersaturation, defined as

N t( ) 16π1/2βtD1/2 n 0( ) n∞–( )=

× 2 Dt( )1/2z R t( )+[ ] z 1 z2

τ2
----– 
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∫d

0

∞

∫

2

π1/2
-------- z z 1 z2
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1/2
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z

∞

∫d

0

∞

∫ 1
6
---,=

2

π1/2
-------- z 1 z2
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∞
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(32)

If the r distance is measured in units of the current
radius R(t) = βt1/2 of the growing droplet, it is easily
seen that the relative decrease ϕ(r, t) in the vapor super-
saturation does not directly depend on time, no matter
whether it is determined using solution (8) or (24). The
plots in the figure show the difference ∆ϕ between the
values of the ϕ(r, t) function found using solutions (8)
and (24), respectively. Curves 1, 2, and 3 correspond to
α = 0.1, 0.05, and 0.01, respectively. The curves dem-
onstrate a minor discrepancy between the two solu-
tions, and the imbalance [expressed by Eq. (21) based
on solution (8)] between the substance carried from the
vapor actually by diffusion and the substance that has
formed the droplet grown in the vapor is accumulated
as a result of integration over the vapor volume.
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