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INTRODUCTION

Thermodynamic characteristics that can be deter-
mined from the dependence of the work of molecular
aggregate formation in surfactant solution on the aggre-
gation number (the number of surfactant molecules in
aggregate) and the concentration of surfactant mono-
mers in solution were significant for studying the kinet-
ics of micellization in surfactant solution [1–5]. These
characteristics as the functions of monomer concentra-
tion are: the positions of potential barrier and potential
well of the work on the aggregation number axis, the
half-widths of potential barrier and potential well on
the aggregation number axis, the height of potential
barrier, and the depth of potential well.

The problem of the dependence of the work of
molecular aggregate formation in surfactant solution on
the aggregation number and the concentration of sur-
factant monomers in solution was in general solved
within the framework of the droplet [6–14] and quasi-
droplet [15] models of surfactant molecular aggregates.
Both models result in different (albeit qualitatively cor-
rect) dependences of the work of molecular aggregate
formation in surfactant solution on the aggregation
number and the concentration of surfactant monomers.
At the same time, simplified assumptions (used of
necessity in models) concerning both the structure of
molecular aggregates and the procedures accounting
for basic interactions of surfactant molecules constitut-
ing aggregate introduce indefiniteness to the quantita-
tive data obtained by using these models. It seems nat-
ural to interpret this indefiniteness as resulted from the
insufficiently correct understanding of the initial

parameters of the models of molecular aggregates. The
predictive force of the models can be increased by
introducing representative experimental characteristics
of micellization, provided that interrelations between
the initial parameters of models and the observable val-
ues are understood in this case as exact quantities.

By now, relatively reliable experimental data on the
position of the potential well of the work of surfactant
molecular aggregate formation on the aggregation
number axis (on the mean micelle size), as well as on
the half-width of this well (the average statistical scatter
of micelle sizes) for various micellar solutions are
available in published literature [6, 16, 17]. These data
can be refined in the course of further experimental
study of the equilibrium distribution over the micelle
aggregation numbers. The main aim of this work is to
demonstrate how, knowing the experimental position
and half-width of potential well, one can find all other
thermodynamic characteristics of micellization, in par-
ticular, those referring to molecular aggregates in
premicellar region of their sizes and that are not easily
accessible in experiment. Special interest to such
aggregates is explained by the fact that it is these aggre-
gates that, as was shown in [16, 17], play the key role in
the relaxation processes of micellization.

The formulas for thermodynamic characteristics of
micellization proposed in this work are based on the
droplet model of molecular aggregates (studied in [14])
and quasi-droplet model of surfactant molecular aggre-
gates (proposed and studied in [15]). The formula
derived in [14] seems to be significant irrespective of
the simulation of molecular aggregates. This formula
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relates [at the critical micellization concentration
(CMC)] the depth of potential well to its position and
half-width, as well as to the critical degree of micelliza-
tion.

In their physical meaning, the initial parameters of
droplet and quasi-droplet models of molecular aggre-
gates cannot be determined directly from the experi-
ment or by molecular simulation. At high sensitivity of
thermodynamic characteristics of micellization to these
parameters demonstrated in [14, 15], it is more conve-
nient to initially take into account in the theory the posi-
tion and half-width of the potential well of aggregation
work that can be found quite exactly from the experi-
mental observation of equilibrium micelle distribution
over their aggregation numbers, just as proposed in this
work. As a result, this allows us to relate theory to
experiment, moreover, as applied to specific micellar
solutions.

It will be shown here that the thermodynamic char-
acteristics of micellization expressed via the position
and half-width of the potential well are rather similar in
the droplet and quasi-droplet models of molecular
aggregates despite a quite different dependence of the
work of aggregate formation on the aggregation num-
bers in these models. This argues in favor of the plausi-
bility of the droplet and quasi-droplet models in micel-
lization and thereby allows us to perform also quantita-
tive comparison of these models.

The secondary result of this work will be the eluci-
dation of the analytical dependence (at the CMC) of the
thermodynamic characteristics of micellization on the
initial parameters of the droplet and quasi-droplet mod-
els of molecular aggregates.

Formulas for the thermodynamic characteristics of
micellization in the droplet and quasi-droplet models
will be derived not only at the CMC but also at higher
concentrations of micellar solution (that are of interest
to experimenters) at which micelles can incorporate
almost the entire surfactant.

An important role will be played by typical, by the
order of magnitudes according to [6, 16, 17], estimates
of the position and half-width of the potential well of
aggregation work on the aggregation number axis and
the existence of rather small parameter (resulted from
these estimates) set by the squared ratio of the half-
width of potential well to its position.

1. GENERAL CONCEPTS OF THE WORK 
OF MOLECULAR AGGREGATE FORMATION

Let us formulate general concepts of the properties
of the work of surfactant molecular aggregate forma-
tion needed for further discussion. We use notations
accepted in [1–5]. The aggregation number of molecu-
lar aggregate in micellar solution is denoted by 

 

n

 

. The
work of aggregate formation is expressed in thermal
energy units 

 

kT

 

 (

 

k

 

 is Boltzmann’s constant and 

 

T

 

 is the
solution temperature) and denoted by 

 

W

 

n

 

. At 

 

n

 

 = 1,

aggregates are represented by surfactant monomers.
Their concentration (the number per solution unit vol-
ume) is denoted by 

 

c

 

1

 

. Positions of maximum and min-
imum of work 

 

W

 

n

 

 on the 

 

n

 

 axis, i.e., the aggregation
numbers of critical and stable molecular aggregates, are
denoted by 

 

n

 

c

 

 and 

 

n

 

s

 

, respectively. Then, we have

 

(1.1)

 

Maximum and minimum of work 

 

W

 

n

 

, i.e., the height of
potential barrier and the depth of potential well of work

 

W

 

n

 

, are denoted by 

 

W

 

c

 

 

 

≡ 

 

 and 

 

W

 

s

 

 

 

≡ 

 

,

respectively. The inflection point of work 

 

W

 

n

 

 on the
aggregation number axis we denote by 

 

n

 

0

 

. Hence

 

(1.2)

 

The monomer concentration corresponding to the
appearance of barrier and well of work 

 

W

 

n

 

 is denoted by

 

c

 

10

 

. Subscript 

 

m

 

 refers to the values at the CMC. It is
evident that 

 

c

 

1
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 > 
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. We are interested in the 
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region where the barrier and well are markedly pro-
nounced. At 

 

c

 

1

 

 = 

 

c

 

10

 

, the maximum and minimum of
work 

 

W

 

n

 

 are merged in the inflection point 

 

n

 

0

 

. Then, it
follows from Eq. (1.1) that

 

(1.3)

 

In accordance with the equality (1.12) in [1] fol-
lowed from the law of mass action, work 

 

W

 

n

 

 satisfies
the relation

 

(1.4)

 

In view of definitions 
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≡ 

 

 

 

and
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and equalities (1.1), relation (1.4) secures also the ful-
fillment of relations

 

(1.5)

 

Half-widths of potential barrier and potential well of
work 

 

W

 

n

 

 on the 

 

n

 

 axis determined by equalities

 

(1.6)

 

are significant in the theory developed in [2–5].
Writing Taylor’s series expansion of 

 

W

 

n

 

 = 

 

W

 

s

 

 +

 + …

 

 with allowance for the second equalities

of Eqs. (1.1) and (1.6), we see that, according to Boltz-
mann’s principle for solution equilibrium, the follow-
ing distribution

 

(1.7)

 

is valid for the concentration 
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 of aggregates with
aggregation number 

 

n

 

 within the 
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the potential well of work Wn where the micelles are
accumulated (concentrations cn are understood as the
number of aggregates per solution unit volume). Distri-
bution (1.7) demonstrates that the ns and Δns values set-
ting the position and half-width of potential well of
aggregation work determine the average value and
average statistical scatter of micelle aggregation num-
bers in equilibrium solution.

Equilibrium distribution of micelles is observed in
experiment. Being the most direct characteristics of
equilibrium distribution (1.7), the ns and Δns values are
accessible for experimental determination [6, 16, 17].
Note that, according to [16], the Δns value can be found
experimentally by measuring the time of fast relaxation
of micellar solution.

The ns and Δns values can be easily measured exper-
imentally, because, as was shown by the discussion of
experiment [16, 17] and will be confirmed by equali-
ties (6.1) in Section 6, they undergo [in contrast to
exponent exp(–Ws) in (1.7)] only relatively small
changes of concentration c1 within the entire region
c1 ≥ c1m (which is of interest to us), beginning with the
CMC where the surfactant starts to be accumulated in
micelles and ending with the concentrations at which
almost the whole of surfactant is accumulated in
micelles. As c1 increases from c1m at the CMC, expo-
nent exp(–Ws) rapidly rises in view of the second rela-
tion of Eq. (1.5) and ns � 1 that makes distribution cn in
Eq. (1.7) extremely sensitive to the ns and Δns values,
thereby decreasing the error of experimental determi-
nation of these values using Eq. (1.7).

Let us denote by cM the micelle total concentration
in the region of potential well of work Wn upon solution
equilibrium. Recognizing concentration cn as the num-
ber of micelles with aggregation number n per solution
unit volume and integrating distribution (1.7) over the
region of potential well of work Wn (the infinite limits
can be set for n upon integration due to a fast decrease
of integrand function), we obtain

(1.8)

From Eq. (1.8) and the second of relations in Eq. (1.5),
we arrive (neglecting the weak dependence of half-
width Δns on c1) at useful relation

(1.9)

which makes it possible to experimentally find the ns
value, provided that the dependence of cM on c1 is
known.

At the bimodal distribution of monomers and
micelles in solution, we have [6]

(1.10)

where c is the overall surfactant concentration (the total
number of surfactant molecules per solution unit vol-
ume).

cM π1/2c1Δnse
Ws–

.=

∂ cM/∂c1ln ns/c1,=

c1 nscM+ c,=

According to [6], let us introduce the degree of
micellization α

(1.11)

From Eqs. (1.10) and (1.11), we have

(1.12)

Substituting Eq. (1.8) into Eq. (1.12) and taking the
logarithm, we arrive at the following relation:

(1.13)

Typical for the CMC is the fact (see [6]) that, at the
CMC, the amount of substance nscM in micelles is still
small compared with the amount of substance c1 in
monomers; however, it is still so notable that even the
amount of substance nscM in micelles at solution con-
centration slightly higher than the CMC will already
exceed the amount of substance ns � 1 in monomers in
view of Eq. (1.8) and extremely sharp dependence of
exp(–Ws) on c1 at ns � 1 resulted from the second of
relations (1.5). Hence, at the CMC, the role of potential
well of work Wn where the micelles are accumulated
becomes significant. Then, bimodal formula (1.10)
becomes also significant.

Critical degree of micellization αm corresponding to
the CMC is estimated, according to [6], as αm ≈ 0.1.
Then, according to Eq. (1.12), we have nsmcMm/c1m ≈ 1/9
so that the relative amount of substance in micelles at
the CMC is still small, although it is already noticeable.
In order to increase nscM/c1 ratio approximately tenfold
and, hence, the relative amount of substance in micelles
to exceed unity upon an increase in concentration c1

from c1m by Δc1 (small compared to c1m), it is necessary,
as is seen from Eq. (1.8) and extremely sharp dependence
of exp(–Ws) on c1 at ns � 1 resulted from relations (1.5),
that Δc1/c1m ≈ ln(10)/(nsm – 1). Thus, at nsm � 1, an
increase in concentration c1 even by fairly small (com-
pared to c1m) value Δc1 is already sufficient. Note that,
as we will see from Eqs. (2.11), (2.12), and (4.11),
(4.12), the Δc1 value turned out also to be small com-
pared with an increase c1m – c10 in concentration c1

required to achieve the CMC after the appearance of
potential barrier and potential well of work Wn. This is
supported by the approximate value αm ≈ 0.1 of the crit-
ical degree of micellization and corresponding approx-
imate CMC value accepted in [6].

According to Eq. (1.13)

(1.14)

Possible small deviations of the αm value from αm ≈ 0.1
are slightly manifested in Eq. (1.14) due to the low
sensitivity of logarithm in Eq. (1.14) to its argument at
nsmΔnsm � 1. Then, the αm value in Eq. (1.14) can be
considered as virtually preset coinciding with its

α nscM/c.=

nscM/c1 α/ 1 α–( ).=

Ws π1/21 α–
α

------------nsΔns⎝ ⎠
⎛ ⎞ .ln=

Wsm π1/21 αm–
αm

---------------nsmΔnsm⎝ ⎠
⎛ ⎞ αm 0.1≈( ).ln=
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approximate value αm ≈ 0.1. This very significant cir-
cumstance simplifies further study.

Formula (1.14) derived by us in [14] gives the for-
mation work of stable surfactant molecular aggregate at
the CMC irrespective of the simulation of molecular
aggregates. We reproduced briefly the derivation of
Eq. (1.14) described in [14] and reminded, in accor-
dance with [6], the complex meaning of concepts of the
CMC and critical degree of micellization, in order to
show that formula (1.14) allows us to adequately intro-
duce these concepts into the theory of micellization.

Formula (1.14) represents, at the CMC, the depth
Wsm of the potential well of aggregation work via the
experimentally set position nsm and half-width Δnsm of
this well on the aggregation number axis.

2. THERMODYNAMIC CHARACTERISTICS
OF MICELLIZATION AT THE CMC 

AS A FUNCTION OF THE POSITION 
AND HALF-WIDTH OF POTENTIAL WELL 

OF AGGREGATION WORK IN THE DROPLET 
MODEL OF MOLECULAR AGGREGATES

In the droplet model of molecular aggregates stud-
ied in [14], we derived, at n � 1, the following expres-
sion:

(2.1)

(expression (3.12) in [14]). It will be significant that
parameters b1 and b3 will be positive and independent of
n and c1. Physical meaning of these parameters eluci-
dated in [14] that allows us to find them only approxi-
mately from the available rough quantitative data on
micellization will not be significant for further discus-
sion.

According to Eqs. (1.2) and (2.1), we have

(2.2)

showing that n0 is independent of concentration c1.
Expressions (2.1) and (2.2) secure the fulfillment of
equality (1.3). In the n � 1 region, expression (2.1) sat-
isfies relations (1.4) and (1.5).

The second equalities of Eqs. (1.1) and (1.6) and
relation (1.14) form, together with Eq. (2.1) and Wsm ≡

, three transcendental equations that

allow to analytically express three values b1, b3, and
ln(c1m/c10) via nsm, Δnsm, and αm. Solving thee equa-
tions, we obtain

(2.3)

(2.4)

(2.5)

Wn b1n4/3=

– c1/c10( )ln
4
3
--- 2b1b3( )1/2+ n b3n2/3+

n0 b3/2b1( )3/2,=

Wn c1 c1m= n, nsm=

b1 9nsm
2/3 Δnsm( ) 2– 1 �+( ),=

b3 9nsm
4/3 Δnsm( ) 2– 1 2�+( ),=

c1m/c10( )ln 1.1nsm Δnsm( ) 2– 1 1.3�–( ),=

where the � value dependent on nsm, Δnsm, and αm is set
by the equality

(2.6)

At αm ≈ 0.1 and typical (by the order of magnitude) esti-
mates of nsm ~ 102 and Δnsm ~ 10, we have from Eq. (2.6)

(2.7)

so that the � value can be considered as small compared
to unity. Hence, we account only for the principal (lin-
ear with respect to �) correction, ignoring quadratic and
higher-order corrections with respect to �. We empha-
size that the existence of fairly small parameter
(Δnsm/nsm)2 is responsible for strong inequality � � 1.
Note that Eqs. (2.3) and (2.4) are not related to con-
straint � � 1.

Using Eqs. (2.1) and (2.3)–(2.5), we find the analyt-
ical dependence of the ncm, Δncm, and Wcm values on nsm,
Δnsm, and αm. Taking into account only the first equali-
ties of Eqs. (1.1) and (1.6), as well as Wcm ≡

, we arrive at

(2.8)

(2.9)

(2.10)

Formulas (1.14), (2.5), (2.6), and (2.8)–(2.10)
express thermodynamic characteristics of micellization
at the CMC via nsm, Δnsm, and αm in the droplet model
of molecular aggregates. Formula (2.5), together with
Eq. (3.15) derived in [14] for concentration c10, allows
us to find experimentally measurable concentration c1m.

According to Eqs. (2.8) and (2.9), inequalities Δncm <
Δnsm and Δncm/ncm > Δnsm/nsm are valid. Hence, the
absolute value of the scatter of aggregation numbers in
the region of potential barrier of work Wn is smaller
than that of aggregation numbers in the region of poten-
tial well of work Wn. However, the relative scatter of
aggregation numbers in the region of potential barrier is
larger than that of aggregation numbers in the region of
potential well.

Formula (2.10) demonstrates fairly strong [approxi-
mately proportional to (9/16)(nsm/Δnsm)2] dependence
of the Wcm value on large parameter (nsm/Δnsm)2. Even
stronger is the dependence of exponential value
exp(Wcm) on the same parameter. According to [16, 17]
and [5], this exponential value determines experimen-
tally significant time of slow relaxation of micellar
solution.

Let us illustrate the preceding by simple numerical
calculations. For comparison, we cover two typical

�
1
3
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Δnsm

nsm

-----------⎝ ⎠
⎛ ⎞

2

π1/21 αm–
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---------------nsmΔnsm⎝ ⎠
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ncm

nsm
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Δncm

Δnsm

21/22
----------- 1
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cases where nsm = 100, Δnsm = 15, and 20 (for simplic-
ity, we vary only Δnsm out of two parameters, nsm and
Δnsm). From Eqs. (1.14) and (2.3)–(2.5) with allowance
for Eq. (2.6), at nsm = 100 and Δnsm = 15 we can easily
find

(2.11)

for nsm = 100 and Δnsm = 20

(2.12)

Further, from Eqs. (2.8)–(2.10) with allowance for
Eq. (2.6) at nsm = 100 and Δnsm = 15, we can easily
obtain

(2.13)

and for nsm = 100 and Δnsm = 20,

(2.14)

Relations (2.11)–(2.14), as well as nsm = 100, Δnsm = 15
and 20 values used in these relations, are quite realistic
and, hence, testify the plausibility of the droplet model
of molecular aggregates.

Relations (2.11) and (2.12) show the high sensitivity
of parameters b1 and b3 to parameter Δnsm.

3. DEPENDENCE (AT THE CMC) 
OF THERMODYNAMIC CHARACTERISTICS 

OF MICELLIZATION ON THE INITIAL 
PARAMETERS OF THE DROPLET MODEL 

OF MOLECULAR AGGREGATES

Let us elucidate the dependence (at the CMC) of the
thermodynamic characteristics of micellization on ini-
tial parameters b1 and b3 of Eq. (2.1) of the droplet
model of molecular aggregates. Now it can be easily
done, returning in formulas of Section 2 from parame-
ters nsm and Δnsm [which were used in expression (1.14)
and, correspondingly, were introduced into the concep-
tual theory of the CMC and critical degree of micelliza-
tion] to the initial parameters b1 and b3 of Eq. (2.1) of
the droplet model of molecular aggregates.

Expressing [with the aid of Eqs. (2.3), (2.4), and (2.6)]
parameters nsm and Δnsm via parameters b1 and b3 by the
perturbation method at � � 1, we obtain

(3.1)

(3.2)

where

(3.3)

Wsm 10.1 αm 0.1≈( ), b1 0.926,= =

b3 21.4, c1m/c10 1.61,= =

Wsm 10.4 αm 0.1≈( ), b1 0.552,= =

b3 13.3, c1m/c10 1.30.= =

ncm 15.3, Δncm 5.90, Wcm 31.9= = =

ncm 17.7, Δncm 8.54, Wcm 21.2.= = =

nsm

b3

b1
-----⎝ ⎠

⎛ ⎞
3/2

1
3
2
---ε–⎝ ⎠

⎛ ⎞ ,=

Δnsm 3b3
1/2/b1,=

� 3
b1

b3
2

----- 3π1/21 αm–
αm

---------------
b3

2

b1
5/2

--------
⎝ ⎠
⎜ ⎟
⎛ ⎞

.ln=

High sensitivity of parameter nsm and lower sensitivity
of parameter Δnsm to parameters b1 and b3 is evident. In
order for Eqs. (3.1) and (3.2) to secure the realistic esti-
mates of Δnsm ~ 102 and Δnsm ~ 10, and correspond-
ingly, in order for Eq. (3.3) to secure inequality � � 1,
the values of initial parameters b1 and b3 of the droplet
model should satisfy rather severe constraints, which
are assumed to be fulfilled.

Formulas (3.1)–(3.3), together with formulas (1.14),
(2.5), and (2.8)–(2.10), determine (in an analytical
form) the desired dependence (at the CMC) of all ther-
modynamic characteristics of micellization on parame-
ters b1 and b3 of the droplet model of molecular aggre-
gates.

In particular, for thermodynamic characteristics nsm
and ncm, ignoring correction factor �, we obtain the fol-
lowing approximate expressions:

(3.4)

(3.5)

From Eqs. (2.2), (3.4), and (3.5), we have the following
approximate relations:

(3.6)

indicating the relative positions (that are independent of
parameters b1 and b3) of points of maximum, inflection,
and minimum of work Wn on the aggregation number
axis in the droplet model of molecular aggregates.

4. THERMODYNAMIC CHARACTERISTICS 
OF MICELLIZATION AT THE CMC 

AS A FUNCTION OF THE POSITION
AND HALF-WIDTH OF THE POTENTIAL WELL 

OF AGGREGATION WORK 
IN THE QUASI-DROPLET MODEL 
OF MOLECULAR AGGREGATES

Lets us extend the results obtained in Section 2 to
the quasi-droplet model of molecular aggregates pro-
posed and studied in [15]. In this model, the expression

(4.1)

is valid at n � 1. Equation (3.23) derived in [15] is
reduced to Eq. (4.1) after the renotation of its parame-
ters. It will be significant that parameters a1 and a3 will
be positive and independent of n and c1. However, the
physical meaning of these parameters that was revealed
in [15] and allowed to find (so far rather approximately)
these parameters using available rough quantitative
data on the micellization will not be significant for fur-
ther discussion.

Let us mention the formal difference between
approximate expression (2.1) and similar approximate
expression (4.1). In Eq. (2.1), the work of molecular

nsm b3/b1( )3/2,≈

ncm
1
8
--- b3/b1( )3/2.≈

ncm/n0 1/23/2, nsm/n0 23/2,≈ ≈

Wn a1n2 a3n3/2– c1/c10( )ln
9a3

2

32a1
-----------– n–=
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aggregate formation was represented as an expansion in
powers of cubic root of aggregation number, whereas,
in Eq. (4.1), it was expressed in powers of quadratic
root of aggregation number. This can be considered as
the reflection of almost two-dimensional structure of
the molecular aggregate composed of surfactant mole-
cules in the quasi-droplet model of aggregate, the struc-
ture being similar to that of folded monolayer com-
posed of surfactant molecules.

According to Eqs. (1.2) and (4.1), we have

(4.2)

so that n0 is independent of concentration c1. Expres-
sions (4.1) and (4.2) secure the fulfillment of equal-
ity (1.3). In the n � 1 region, expression (4.1) satisfies
relations (1.4) and (1.5).

The second equalities of Eqs. (1.1) and (1.6) and
relation (1.14), together with Eq. (4.1) and Wsm ≡

, form three transcendental equations

enabling us to analytically express three a1, a3, and
ln(c1m/c10) values via nsm, Δnsm, and αm. Solving these
equations, we obtain

(4.3)

(4.4)

(4.5)

where the � value dependent on nsm, Δnsm, and αm is
given by the equality

(4.6)

At αm ≈ 0.1 and typical (by the order of magnitude) esti-
mates of nsm ~ 102 and Δnsm ~ 10, it follows from Eq. (4.6)
that

(4.7)

so that the � value can be considered as small compared
to unity. Therefore, we take into account only the prin-
cipal (linear with respect to �) correction ignoring qua-
dratic and higher-order corrections with respect to �. As
in the droplet model of molecular aggregates, rather
small parameter (Δnsm/nsm)2 is responsible for strong
inequality � � 1. Note that Eqs. (4.3) and (4.4) are not
related to constraint � � 1.

Using Eqs. (4.1) and (4.3)–(4.5), we find analyti-
cally the dependence of ncm, Δncm, and Wcm on nsm, Δnsm,
and αm. Accounting for the first equalities of Eqs. (1.1)
and (1.6), as well as for Wcm ≡ , we have

(4.8)

n0 9a3
2/64a1

2,=

Wn c1 c1m n, nsm= =

a1 4 Δnsm( ) 2– 1 �+( ),=

a3 8nsm
1/2 Δnsm( ) 2– 1

4
3
---�+⎝ ⎠

⎛ ⎞ ,=

c1m/c10( )ln
1
2
---nsm Δnsm( ) 2– 1 �–( ),=

�
3
4
---

Δnsm

nsm

-----------⎝ ⎠
⎛ ⎞

2

π1/21 αm–
αm

---------------nsmΔnsm⎝ ⎠
⎛ ⎞ .ln=

� 0.07 αm 0.1, nsm 102, Δnsm 10∼ ∼≈( ),∼

Wn c1 c1m n, ncm= =

ncm

nsm

4
------- 1 2�+( ),=

(4.9)

(4.10)

Formulas (1.14), (4.5), (4.6), and (4.8)–(4.10)
express the thermodynamic characteristics of micelli-
zation at the CMC via nsm, Δnsm, and αm in the quasi-
droplet model of molecular aggregates. Formula (4.5),
together with formula (3.24) derived in [15] for concen-
tration c10, allows us to find experimentally measurable
concentration c1m.

The fact that the structure of obtained results is
fairly similar to their analogs in the droplet model of
molecular aggregates found in Section 2 argues for the
droplet and quasi-droplet models of molecular aggre-
gates, thereby allowing also to quantitatively compare
these models.

Let us perform this comparison. According to
Eqs. (4.8) and (4.9), inequalities Δncm < Δnsm and
Δncm/ncm > Δnsm/nsm are still valid in the quasi-droplet
model. According to Eq. (4.10), fairly strong depen-
dence of the Wcm value on large parameter (nsm/Δnsm)2

still exists. However, as is now seen from comparison of
Eqs. (4.10) and (2.10), this dependence is approximately
by 9/4 times weaker than in the droplet model of molecu-
lar aggregates. Correspondingly, the extremely strong
dependence of exponential value exp[(5/16)(nsm/Δnsm)2],
determining, as was already mentioned, experimentally
significant time of slow relaxation of micellar solution,
on large parameter (nsm/Δnsm)2 becomes now weaker
approximately by many times of exp(Wcm). Thus, it can
be expected that, for micellar solutions where this time
is not so long and, hence, the exp(Wcm) value is not very
large, the quasi-droplet model of molecular aggregates
securing estimate exp(Wcm) ~ exp[(1/4)(nsm/Δnsm)2]
seems to be preferable. On the contrary, for micellar
solutions where this time is very large and, hence, the
exp(Wcm) value is also very large, the droplet model of
molecular aggregates securing estimate exp(Wcm) ~
exp[(9/16)(nsm/Δnsm)2] seems to be preferable. Note also
that, in the quasi-droplet model at the same values of
parameters nsm and Δncm, the ncm and Δncm values, as is
seen from comparison of Eqs. (4.8) and (4.9) with
Eqs. (2.8) and (2.9), will be approximately twice as
large and, on the contrary, the ln(c1m/c10) value, as is
seen from comparison of Eqs. (4.5) and (2.5), will be
approximately twice as small as in the droplet model.

Let us illustrate the preceding by simple numerical
calculations. For comparison, we cover two typical
cases where it is set that nsm = 100, Δnsm = 10, and 15
(for simplicity, only parameter Δnsm is varied out of two
parameters, nsm and Δnsm). From Eqs. (1.14), (4.3)–(4.5)
with allowance for Eq. (4.6) at nsm = 100 and Δnsm = 10,
we easily find

Δncm

Δnsm

21/2
----------- 1

1
2
---�+⎝ ⎠

⎛ ⎞ ,=

Wcm
1
4
---

nsm

Δnsm

-----------⎝ ⎠
⎛ ⎞

2

1
11
3
------�+⎝ ⎠

⎛ ⎞ .=
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(4.11)

at nsm = 100 and Δnsm = 15

(4.12)

Further, from Eqs. (4.8)–(4.10) with allowance for
Eq. (4.6) at nsm = 100 and Δnsm = 10, we easily obtain

(4.13)

at nsm = 100 and Δnsm = 15

(4.14)

Relations (4.11)–(4.14), as well as nsm = 100, Δnsm =
10 and 15 accepted in these relations, are quite realistic
and, hence, support the plausibility of the quasi-droplet
model of molecular aggregates.

Relations (4.11) and (4.12) show high sensitivity of
parameters a1 and a3 to parameter Δnsm.

5. DEPENDENCE (AT THE CMC) 
OF THERMODYNAMIC CHARACTERISTICS 

OF MICELLIZATION ON THE INITIAL 
PARAMETERS OF THE QUASI-DROPLET 
MODEL OF MOLECULAR AGGREGATES

Let us extend the results obtained in Section 3 to the
quasi-droplet model of molecular aggregates.

From Eqs. (4.3), (4.4), and (4.6), by the perturbation
method at � � 1, we obtain

(5.1)

(5.2)

where

(5.3)

High sensitivity of the nsm parameter to parameters a1

and a3 and lower sensitivity of the Δnsm parameter to
parameter a1 are seen. In order for Eqs. (5.1) and (5.2)
to secure realistic estimates nsm ~ 102 and Δnsm ~ 10,
and, correspondingly, for Eq. (5.3) to secure inequality
� � 1, the values of initial parameters a1 and a3 of the
quasi-droplet model should satisfy rather severe con-
straints, which are considered as fulfilled.

Formulas (5.1)–(5.3), together with formulas (1.14),
(4.5), and (4.8)–(4.10) determine (in the analytical
form) the desired dependence (at the CMC) of all ther-
modynamic characteristics of micellization on parame-
ters a1 and a3 of the quasi-droplet model of molecular
aggregates.

Wsm 9.68 αm 0.1≈( ), a1 0.0429,= =

a3 0.877, c1m/c10 1.59,= =

Wsm 10.1 αm 0.1≈( ), a1 0.0208,= =

a3 0.436, c1m/c10 1.20.= =

ncm 28.6, Δncm 7.33, Wcm 31.7,= = =

ncm 33.5, Δncm 11.5, Wcm 18.0.= = =

nsm

a3

2a1
--------⎝ ⎠

⎛ ⎞
2

1
2
3
---�–⎝ ⎠

⎛ ⎞ ,=

Δnsm
2

a1
1/2

-------- 1
1
2
---�+⎝ ⎠

⎛ ⎞ ,=

� 3 24a1
3

a3
4

----- π1/2

2
--------

1 αm–
αm

---------------
a3

2

a1
5/2

--------
⎝ ⎠
⎜ ⎟
⎛ ⎞

.ln×=

In particular, for thermodynamic characteristics nsm
and ncm with the neglect of correction parameter �, we
have approximate expressions

(5.4)

(5.5)

From Eqs. (4.2), (5.4), and (5.5), we obtain approxi-
mate relations

(5.6)

indicating the relative positions (independent of param-
eters a1 and a3) of the points of maximum, inflection,
and minimum of work Wn on the aggregation number
axis in the quasi-droplet model of molecular aggre-
gates.

6. THERMODYNAMIC CHARACTERISTICS 
OF MICELLIZATION IN THE CONCENTRATION 

REGION ABOVE THE CMC

Let us derive formulas for the thermodynamic char-
acteristics of micellization in the region c1 > c1m of
monomer concentration c1 above the CMC that are
valid in the droplet and quasi-droplet models of molec-
ular aggregates. It is natural that, within the framework
of the models in question, all conclusions will be
referred only to the Ò1 region where micelles still retain
their spherical shape.

As we will be assured below using Eqs. (6.8)–(6.11)
and (6.13)–(6.16), this concentration region can be con-
sidered, even upon the accumulation (in micelles) of
almost the entire surfactant in micellar solution (when
the degree of micellization is close to unity and overall
surfactant concentration is much higher than the CMC
[18]), as so narrow that equalities

(6.1)

are fulfilled in this region with a high accuracy when
the error does not exceed several percents. Then, inte-
grating (with respect to c1) relations (1.5) that are valid
at nc � 1 and ns � 1 in the droplet and quasi-droplet
models of molecular aggregates, we obtain with the
same high accuracy the following relations:

(6.2)

(6.3)

in view of Eq. (1.8), we also obtain

(6.4)

Note that Eq. (6.4) can also be derived from the law of
mass action in a quasi-chemical approach when the
aggregation number is assumed to be constant [6].

Since parameter nsm is rather large, nsm ~ 102, it fol-
lows from Eq. (6.4) that, even at

nsm a3/2a1( )2,≈

ncm a3/4a1( )2.≈

ncm/n0 2/3( )2, nsm/n0 4/3( )2,≈ ≈

nc ncm, ns nsm, Δnc Δncm, Δns Δnsm≈ ≈ ≈ ≈

Wc( )/ Wcm( )expexp c1m/c1( )
ncm 1–

,≈

Ws( )/ Wsm( )expexp c1m/c1( )
nsm 1–

,≈

c1/c1m cM/cMm( )
1/nsm.≈
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(6.5)

the inequality

(6.6)

is valid.

According to Eq. (1.12), at the upper limit of ine-
qualities (6.5) and (6.6), we have α � 0.99 for the
degree of micellization α and αm � 0.1 that means that
micelles already accumulate the main part of the entire
surfactant in micellar solution. Hereafter, we consider
constraints (6.5) and (6.6) denoting the narrowness of
concentration region c1 > c1m as being fulfilled.

In the case of droplet model of molecular aggre-
gates, we find (moreover, even in the analytical form)
the dependence of nc, ns, Δnc, and Δns values on concen-
tration c1 via ln(c1/c10), using Eqs. (1.1) and (1.6), as
well as model formula (2.1). According to Eq. (2.5), at
the upper limit of constraint (6.6), relation

(6.7)

is valid. In this equation, we ignore (for the simplicity)
correction term �. From Eq. (6.7) and at (Δnsm/nsm)2 ~
10–2, we see that the deviation of the ln(c1/c10) value
from its magnitude at the CMC is relatively small.
Then, retaining principal (with respect to this devia-
tion) contributions to the dependences of nc, ns, Δnc,
and Δns on ln(c1/c10) and taking into account Eqs. (2.3)–
(2.6), (2.8), (2.9), and (6.7), we obtain

(6.8)

(6.9)

(6.10)

(6.11)

[as in Eq. (6.7), correction term � is ignored in Eqs. (6.8)–
(6.10)].

Even in the case of the quasi-droplet model of
molecular aggregates, we find (moreover, again in the
analytical form) the dependences of nc, ns, Δnc, and Δns
values on concentration c1 via ln(c1/c10), using Eqs. (1.1),
(1.6), and model formula (4.1). According to Eq. (4.5),
at the upper limit of constraint (6.6), the relation

cM/cMm � 103,

c1/c1m � 1 6.91/nsm+

c1/c10( )ln c1m/c10( )ln–
c1m/c10( )ln
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Δnsm

nsm

-----------⎝ ⎠
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2

nc � ncm 1 3.45
Δnsm

nsm

-----------⎝ ⎠
⎛ ⎞

2

– ,

ns � nsm 1 3.45
Δnsm

nsm

-----------⎝ ⎠
⎛ ⎞

2

+ ,

Δnc � Δncm 1 3.45
Δnsm

nsm

-----------⎝ ⎠
⎛ ⎞

2

– ,

Δns � Δnsm 1 0.77 π1/21 αm–
αm

---------------nsmΔnsm⎝ ⎠
⎛ ⎞ln–

⎩
⎨
⎧

---– 2.65
Δnsm

nsm

-----------⎝ ⎠
⎛ ⎞

4

⎭
⎬
⎫

(6.12)

is valid, where the correction term � is ignored for sim-
plicity. From Eq. (6.12) and at (Δnsm/nsm)2 ~ 10–2, we
see that the deviation of ln(c1/c10) from its value at the
CMC is still relatively small. Then, retaining principal
(with respect to this deviation) contributions to the
dependences of nc, ns, Δnc, and Δns on ln(c1/c10), taking
Eqs. (4.3)–(4.5), (4.8), (4.9), and (6.12), into account,
and ignoring, as in Eq. (6.12) by correction term �, we
obtain

(6.13)

(6.14)

(6.15)

(6.16)

It follows from Eqs. (6.8)–(6.11) and (6.13)–(6.16)
at (Δnsm/nsm)2 ~ 10–2 that equalities (6.1) are fulfilled
with high accuracy at the upper limit of constraint (6.6).
Evidently, this statement is valid throughout the c1 > c1m
concentration region admitted by constraint (6.6). The
existence of small parameter (Δnsm/nsm)2 is responsible
for the fulfillment of equalities (6.1) in the droplet and
quasi-droplet models of molecular aggregates. Remind
that, in these models, this parameter secures the small-
ness of correction term � and the smallness of maximal
deviation of ln(c1/c10) from its value at the CMC admit-
ted by constraint (6.6).

Terms of higher orders with respect to small param-
eter (Δnsm/nsm)2 could also be accounted for in
Eqs.  (6.8)–(6.11), (6.13)–(6.16), retaining correction
term � and the correction contributions with respect to
the deviation of ln(c1/c10) from its value at the CMC. In
particular, setting nsm = 100 and Δnsm = 15, according to
Eq. (2.13), we have in the droplet model of molecular
aggregates ncm = 15.3 and Δncm = 5.90 and, with allow-
ances for all corrections, we find nc = 14.2, ns = 107.8,
Δnc = 5.47, and Δns = 14.96 at the upper limit of ine-
quality (6.6). Similarly, in the quasi-droplet model of
molecular aggregates at nsm = 100 and Δnsm = 15,
according to Eq. (4.14), we have nsm = 33.5, Δncm = 33.5
and Δncm = 11.5 and, with allowances for all correc-
tions, we find nc = 29.79, ns = 107.3, Δnc = 10.3, and
Δns = 14.11 at the upper limit of inequality (6.6).

Equalities (6.1)–(6.3) yield (in the analytical form),
together with formulas for the thermodynamic charac-
teristics of micellization at the CMC derived in Sec-
tions 1–5, the thermodynamic characteristics of micel-
lization in the concentration region above the CMC. In

c1/c10( )ln c1m/c10( )ln–
c1m/c10( )ln

---------------------------------------------------------  � 13.8
Δnsm

nsm

-----------⎝ ⎠
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2

nc � ncm 1 6.91
Δnsm

nsm

-----------⎝ ⎠
⎛ ⎞

2

– ,

ns � nsm 1 3.45
Δnsm

nsm

-----------⎝ ⎠
⎛ ⎞

2

+ ,

Δnc � Δncm 1 5.18
Δnsm

nsm
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⎛ ⎞

2

– ,

Δns � Δnsm 1 2.59
Δnsm

nsm
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⎛ ⎞

2

– .
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this case, both the droplet and quasi-droplet models of
molecular aggregates are covered.

From Eqs. (6.2)–(6.4), at ncm ~ 10 and nsm ~ 102, fol-
low that the exp(Ws) value cannot become smaller too
much, provided that constraints (6.5) and (6.6) are ful-
filled in the c1 > c1m region; however, the exp(Ws) value
can decrease, even by a fairly large factor.

Let us now estimate the time tr of slow relaxation of
micellar solution. According to formula (4.3) [5] that is
valid irrespective of the simulation of molecular aggre-
gates, we have

(6.17)

where v is the parameter characterizing the rate of
monomer absorption from solution on the surface of
molecular aggregate and Rc is the radius of critical
molecular aggregate (assumed here as spherical). In
accordance with estimates (4.4) of [5] and experimental
data of [17], we set approximately

c1 ~ 1017 cm–3, v ~ 1 cm s–1, Rc ~ 10–7 cm. (6.18)

At the upper limit of constraint (6.5), it follows from
Eqs. (6.2) and (6.4)

(6.19)

Substituting Eqs. (6.18) and (6.19) into Eq. (6.17), we
obtain

(6.20)

where, in view of Eq. (6.1), it is set that ns � nsm and
Δnc � Δncm. In accordance with the discussion in Sec-
tions 2 and 4, demonstrated by relation (6.20) strong
dependence of the time of slow relaxation on the height
Wcm of activation barrier of micellization at the CMC
results in a considerable constraint to the possible val-
ues of the nsm and Δnsm in the droplet and quasi-droplet
models of molecular aggregates. In the case of the
droplet model of molecular aggregates, we assume that
nsm = 100 and Δnsm = 20. Then, substituting Eq. (2.14)
into Eq. (6.20), we find tr ~ 60 s that is quite realistic
value according to experimental data [16, 17] on the
time of slow relaxation of micellar solution. In the case
of the quasi-droplet model of molecular aggregates, we
assume that nsm = 100 and Δnsm = 15. Then, substituting
Eq. (4.14) into Eq. (6.20), we find tr ~ 1 s that is also quite
realistic value according to experimental data [16, 17].

Note also the following circumstance. According to
Eq. (6.6), a relative increase in monomer concentration
c1 that is needed to accumulate almost the whole of sur-
factant in micelles after reaching the CMC turned out to
be still markedly lower than relative increase in mono-
mer concentration c1 estimated by relations (2.11),
(2.12) and (4.11), (4.12) that is necessary to reach the
CMC after the appearance of the potential barrier and

tr � 
Δnc

4π1/2ns
2c1vRc

2
---------------------------------e

Wc,

e
Wc � 10

3 ncm 1–( )/nsm–
e

Wcm.

tr
10 3–

4π1/2
-----------10

3 ncm 1–( )/nsm– Δncm

nsm
2

-----------e
Wcm,∼

potential well of work Wn. This confirms all what have
been said in Section 1 on the physical meaning of the
CMC.

The fact that, within the entire region (6.6) of con-
centration c1, the ns and Δns values, in accordance with
Eq. (6.1), coincide with their values at the CMC, makes
it possible to assume that ns and Δns in equilibrium
micelle distribution (1.7) are virtually constant in the
entire region (6.6) (note that this fact is the essence of
quasi-chemical approximation in the theory of micelli-
zation [6]). Hence, it is the distribution (1.7) that can be
used to experimentally determine virtually constant ns
and Δns values throughout the region (6.6) of solution
concentration, but not only at the CMC. Because, in
region (6.6), exponent exp(–Ws) can be, in view of
Eq. (6.3), not so small (as at the CMC), then, in accor-
dance with Section 1, the sensitivity of distribution (1.7) to
ns and Δns values becomes extremely high. Hence, this
allows us to significantly decrease the error of experi-
mental determination [with the aid of distribution (1.7)]
of the ns and Δns values, which in region (6.6) are virtually
equal to the nsm and Δnsm values.
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