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INTRODUCTION

One of the widely recognized and, until present, the
only productive model of a spherical aggregate com-
posed of surfactant molecules is the droplet model of an
aggregate with a liquidlike core formed by the hydro-
phobic fragments of surfactant molecules proposed by
Tanford [1] and elaborated later in [2–8]. Based on this
model, the dependence of the work of molecular aggre-
gate formation on the aggregation number and surfac-
tant monomer concentration in solution that has the key
role for the theory of micellization was studied, and the
model calculations of all thermodynamic characteris-
tics of the kinetics of micellization were performed
within a wide range of solution concentrations includ-
ing the critical micellization concentration (CMC) [9].

At the same time, it is known from experiments and
was admitted in [1] that water molecules can partly
penetrate into the interior of a micelle. In this sense, the
limiting variant of the structure of molecular aggregate
is realized in the droplet model that completely
excludes water penetration into the hydrocarbon core.
It was of interest (and turned out to be possible) to con-
struct the model of surfactant spherical molecular
aggregate allowing for the maximal (in accordance
with packing rules) penetration of water molecules into
the aggregate and, hence, realizing another limiting
variant of the structure of hydrocarbon core. This
model will be named the quasi-droplet model of surfac-
tant spherical molecular aggregate.

Special importance of quantitative data on molecu-
lar aggregates in the premicellar region of their sizes
obtained in model calculations should be particularly
emphasized. It is these aggregates, whose formation

work is the largest and, conversely, the concentration is
the lowest, that play, as was disclosed in [10], the key
role in the relaxation processes of micellization.

1. GEOMETRIC PARAMETERS OF SURFACTANT 
SPHERICAL MOLECULAR AGGREGATE 

IN A QUASI-DROPLET MODEL

Let us consider aqueous nonionic surfactant solu-
tion. The formation of micelles from surfactant mole-
cules begins with the appearance of molecular aggre-
gates of two, three, etc. molecules. In this case, the part
of would-be micelle is occupied by water. As new sur-
factant molecules are added to the aggregate, water is
displaced from the space between molecules; however,
at small aggregation numbers, water can rather deeply
penetrate inside the molecular aggregate.

Let us denote the number of carbon atoms in a
hydrocarbon chain of surfactant molecule by 

 

n

 

ë

 

. The
terminal methyl group has the characteristic volume 

 

v

 

0

 

and methylene group, 

 

v

 

1

 

. The length of methylene
group is denoted by 

 

l

 

1

 

. According to data reported in
[7], at absolute solution temperature 

 

T

 

0

 

 = 298 K we
have 

 

v

 

0

 

 = 54.3 

 

Å

 

3

 

, 

 

v

 

1

 

 = 26.9 

 

Å

 

3

 

, and 

 

l

 

1

 

 = 1.265 

 

Å. Here-
after, we assume that 

 

v

 

0

 

/

 

v

 

1

 

 

 

≈

 

 2

 

. The aggregation num-
ber is denoted by 

 

n

 

.
In the proposed quasi-droplet model of molecular

aggregate shown schematically in Fig. 1, the hydropho-
bic moiety of each molecule constituting aggregate is
represented in the form of two fragments. The first frag-
ment counted from the hydrophilic moiety is still sur-
rounded by water molecules. The second fragment is in
the internal region of molecular aggregate into which
water molecules cannot penetrate. This region is similar
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to the hydrocarbon core in the droplet model of molec-
ular aggregate, that explains the name quasi-droplet
model in the title of this paper. Due to mutual repulsion
of hydrophilic portions, the first fragments of hydro-
phobic portions constituting surfactant molecular
aggregate are located, on the average, on the radii com-
ing out from the aggregate center and uniformly distrib-
uted over the angles in a space. Plane angle 

 

ϕ

 

 formed
by two such radii corresponding to adjacent aggregate
molecules is determined by the aggregation number 

 

n

 

and, at fairly large values of 

 

n

 

 considered in this work,
is given by a simple formula

 

(1.1)

 

By fairly large values are meant, in particular, such 

 

n

 

 val-
ues which can provide inequality 

 

ϕ

 

/2 

 

!

 

 1

 

 that allows, for
example, to replace function 

 

sin(

 

ϕ

 

/2)

 

 by its argument. In
this sense, value 

 

n

 

 = 10 is no longer too small.

The 

 

r

 

α

 

 radius of the internal (free of water mole-
cules) region in the center of molecular aggregate is
determined by the possibility of the arrangement of
water molecule with characteristic diameter 
between the hydrophobic portions of neighbor surfac-
tant molecules with characteristic cross-section diame-
ter 

 

d

 

. This internal region is filled with the second (in
the aforementioned meaning) fragments of the hydro-
phobic portions of molecules constituting aggregate
that came out from aqueous medium. With allowance
for relation (1.1) for radius 

 

r

 

α

 

, we obtain

ϕ 4π/n( )1/2 n @ 1( ).=

dH2O

 

(1.2)

 

where the approximate equality 

 

sin(

 

ϕ

 

/2) 

 

≈ ϕ

 

/2

 

 is used.
As in the droplet model, we assume that the fragments
of hydrophobic portions occupied the internal region of
molecular aggregate interact with each other so that
they seemingly constitute the hydrocarbon phase. The
internal region of molecular aggregate determined as
described above is called its core. We use values 

 

d

 

 = 5.2 

 

Å
[7] and 

 

 = 3.1 

 

Å, provided that numerical estimates
are true.

Let us find the 

 

∆

 

n

 

C

 

 number of hydrocarbon groups
(constituting the aggregate core) of the hydrophobic
portion of each molecule constituting aggregate. Evi-
dently, this number is equal to the number of hydrocar-
bon groups in the second fragments of the hydrophobic
portions of molecules. The volume 

 

∆

 

v

 

C

 

 of each frag-
ment is represented in the form

 

(1.3)

 

where the fact that terminal methyl group has charac-
teristic volume 

 

v

 

0

 

 that is approximately twice as large
as volume 

 

v

 

1

 

 is taken into account. According to pack-
ing rule, we have

 

(1.4)

 

From Eqs. (1.4) and (1.3), we have

 

(1.5)

 

Using Eq. (1.2), we transform Eq. (1.5) into the follow-
ing form

 

(1.6)

 

The determination of 

 

∆

 

n

 

C

 

 number from relation (1.6)
as a continuous quantity suggests that this number is
already fairly large. Let us assume that this condition is
fulfilled, if

 

(1.7)

 

The constraint of such type imposed on 

 

∆

 

n

 

C

 

 will be
needed hereafter for determining chemical potential of
a surfactant molecule in the molecular aggregate. In
view of relation (1.6), all what have been said above
implies the existence of lower bound (

 

n

 

1

 

)

 

(1.8)

 

for the aggregation numbers satisfying the results
obtained with the use of proposed model. From Eqs. (1.6)
and (1.7), we obtain for the 

 

n

 

1

 

 value

rα
d dH2O+

2π1/2
--------------------n1/2,=

dH2O

∆v C v 1 ∆nC 1+( ),=

4
3
---πrα

3 n∆v C.=

∆nC
4
3
---π

rα
3

nv 1
--------- 1.–=

∆nC

d dH2O+( )3n1/2

6π1/2v 1

------------------------------------ 1.–=

∆nC 4–5.>

n n1>

1

2
d

dH2O

r
3

4

rα

ϕ

Fig. 1. Quasi-droplet model of molecular aggregate: (1) the
hydrophilic portion of surfactant molecule, (2) the bound-
ary of water penetration into aggregate, (3) the hydrophobic
portion of surfactant molecule, and (4) the hydrocarbon
core of molecular aggregate. Other designations are
explained in the text.
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(1.9)

On the contrary, condition

(1.10)

introduces the upper bound (n2)

(1.11)

of aggregation number n permissible for the applicabil-
ity of the proposed model. Using Eqs. (1.6) and (1.10),
the n2 value is determined from relation

(1.12)

At the characteristic values of d, , and v 1, we have
an estimate

(1.13)

Let us combine inequalities (1.8) and (1.11). It follows
from Eqs. (1.9) and (1.12) with allowance for esti-
mate (1.13) that the values of aggregation number n
permissible for the applicability of the proposed model
should fit the range

(1.14)

At nC ≥ 12, the range of aggregation number n deter-
mined by inequality (1.14) is already fairly representa-
tive. Note that the lower bound of n in (1.14) agrees with
the constraint introduced in the note to formula (1.1).

Evidently, the first (surrounded by water molecules)
fragments of hydrophobic portions of surfactant mole-
cules constituting aggregate contain (nC–∆nC) hydro-
carbon groups each and have the length (nC–∆nC)l1 .
Adding this length to radius rα , we find radius r of a
sphere with the center in the middle of molecular aggre-
gate; this sphere includes totally the hydrophobic por-
tions of surfactant molecules formed aggregate 

(1.15)

Equations (1.2) and (1.6) are accounted for in this rela-
tion. According to inequality (1.10), r – rα ³ ≥ 0. Intro-
ducing designation

(1.16)

we represent Eq. (1.15) in the form more convenient for
further treatment

n1
1/2 5–6( )

6π1/2v 1

d dH2O+( )3
---------------------------.=

∆nC nC<

n n2<

n2
1/2 nC 1+( )

6π1/2v 1

d dH2O+( )3
---------------------------.=

dH2O

6π1/2v 1

d dH2O+( )3
--------------------------- 1

2
---.≈

5–6( )2/4 n nC 1+( )2/4.< <

r l1 nC 1+( )
d dH2O+

2π1/2
--------------------

d dH2O+( )3l1

6π1/2v 1

-------------------------------– n1/2.+=

α
d dH2O+

2π1/2
--------------------

d dH2O+( )3l1

6π1/2v 1

-------------------------------– l1 nC 1+( )[ ] 1– ,=

(1.17)

Substituting the numerical values of corresponding
parameters into Eq. (1.16), we arrive at the estimate

(1.18)

With allowance for constraint (1.14), this estimate dem-
onstrates that, in the considered model of molecular
aggregate, term αn1/2 in the second round brackets in
the right-hand side of Eq. (1.17) cannot exceed (by the
absolute value) a value small as compared to unity

(1.19)

Numerical value of parameter α given by estimate (1.18)
and relevant constraint (1.19) can be changed when
somewhat other numerical values of parameters are
used in calculations. However, it should be expected
that, in all the cases, the absolute value of this parame-
ter is small and the parameter in the right-hand side of
relation (1.19) will also be small as compared to unity.
Note also that, according to relations (1.15) or (1.17),
the r radius decreases with and increase in aggregation
number n due to the negativity of parameter α. Never-
theless, at each n value satisfying constraint (1.11),
radius r is larger than the radius of hydrocarbon core in
the droplet model of surfactant molecular aggregate.

Relations (1.1), (1.2), and (1.17) determine the geo-
metric parameters of molecular aggregate in the model
in question. Let us assume that, at these parameters, the
molecular aggregate is at mechanical equilibrium.

2. CHEMICAL POTENTIAL OF SURFACTANT 
MOLECULES IN A MOLECULAR AGGREGATE

We consider molecular aggregate as a phase parti-
cle. Chemical potential of surfactant molecules in

molecular aggregate is denoted by . The meaning of

a bar over symbol  will be clear later. Chemical

potential  is understood as the change in the Gibbs
energy of molecular aggregate on adding new molecule
to the aggregate.

In view of a small number of molecules in molecular
aggregates that are of interest to us, their geometric and
thermodynamic characteristics undergo noticeable
changes on adding new molecule to the aggregate. In
particular, the hypothetical condensed phase for the
substance constituting the hydrocarbon core of molec-
ular aggregate consists only of the second (in the mean-
ing indicated in Section 1) fragments of hydrocarbon
chains of surfactant molecules rather than of the whole
chains. The characteristics of such a phase are changed
as the length of these fragments varied with aggregation
numbers. This will be taken into account when finding

chemical potential . At the same time, at the first

r l1 nC 1+( ) 1 αn1/2+( ).=

α 0.15
nC 1+
---------------.–≈

αn1/2  & 0.08.

µα

µα

µα

µα
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stage of  finding, the molecular aggregate is consid-
ered as a unit that does not change its characteristics on
adding a new molecule.

In any α phase, molecular chemical potential µα is
given by the standard expression of statistical mechanics

(2.1)

where µ0 is the chemical potential of isolated molecule
with the quiescent center of inertia in vacuum; wα is the
work of molecule transfer from the fixed position in
vacuum to the fixed position in the phase with concen-
tration cα (the number of molecules per unit volume);
and Λ ≡ h(2πmkT)–1/2 is the mean de Broglie wave-
length (h is Planck’s constant and m is the molecule
mass). We will apply expression (2.1) to the surfactant
molecule inside the molecular aggregate in surfactant
solution.

Considering solution surrounding aggregate as β
phase, we can write similar expression for the chemical
potential µβ of the surfactant monomers in the β phase
and, subtracting this expression from Eq. (2.1), we
arrive at the relation

(2.2)

where c1 is the surfactant monomer concentration in the
solution. It is evident that (wα – wβ) difference repre-
sents the work of surfactant molecule transfer from the
aqueous phase to the molecular aggregate. However,
during this process, only the second fragment of the
hydrophobic portion of a molecule is transferred from
solution to the hydrocarbon core of molecular aggre-
gate.

If the surface of hydrocarbon core had been flat and
the hydrophobic portion of surfactant molecule had
been completely transferred to the core, the work of
transfer of only one hydrophobic portion from water to
the depth of hydrocarbon phase would be equal to the
value known from experiments. This value is a linear
function of the number of carbon atoms constituting
hydrocarbon fragment with the coefficient of linear
dependence –w1, which at temperature T = T0 = 298 K
is approximately equal to [7]

(2.3)

Since, in the model under consideration, only the sec-
ond fragment of the hydrophobic portion of surfactant
molecule enters into the hydrocarbon core composed of
∆nC hydrocarbon groups and, hence, containing ∆nC
carbon atoms, relevant transfer work –wC can be evi-
dently represented as

(2.4)

With allowance for Eq. (1.6), we can write Eq. (2.4)
also in the following form:

(2.5)

where

µα

µα µ0 wα kT cαΛ3( ),ln+ +=

µα µβ wα wβ– kT cα /c1( ),ln+ +=

w1– 1.39kT0.–=

wC– w1∆nC.–=

wC– an1/2– w1,+=

(2.6)

The surface of hydrocarbon core is curved and is
characterized by tension γ0; therefore, the work of sur-
factant molecule transfer from solution to the molecular
aggregate contains contribution (to the chemical poten-
tial) wL expressing the work spent to overcome the
Laplace pressure difference on this surface (the surface
of polar groups will be accounted for separately). For
the spherical (with radius rα) surface of hydrocarbon
core composed of molecular fragments with volume
∆vC, this contribution is

(2.7)

Substitution of expressions (1.2) and (1.3) for the rα and
∆vC values into Eq. (2.7) with allowance for Eq. (1.6)
yields:

(2.8)

In addition, one should take into account that the sur-
factant molecule is not transferred as a whole into the
depth of hydrocarbon phase but remains in a position
when it intersects the dividing surface (to which the
surface tension is referred) inside the aggregate. There-
fore, the work of transfer contains also, according to
[11], the surface contribution –γ0a0, where a0 = πd2/4 is
the effective area occupied by one surfactant molecule
on the dividing surface (cross-section area of molecule
hydrophobic portion).

During the transfer of surfactant molecule to the
molecular aggregate, polar groups remain in the solvent
medium; however, they approach each other and from
the electrical double layer spending (per one molecule)
work wel (index “el” indicates the electrostatic nature of
this component). The electrostatic contribution wel is
estimated, as in [9], with the aid of the model of spher-
ical capacitor. We take advantage of the known formula
for electrostatic contribution Gel to the Gibbs energy of
molecular aggregate

(2.9)

where ezn is the charge of primary (internal) capacitor
plate (e is the elementary charge and z is the charge
multiplicity), ε0 is the electric constant, ε is the permit-
tivity, ∆r is the distance from the capacitor internal
plate to the sphere of radius r (r + ∆r is the radius of
capacitor internal plate), and δ is the distance between
the plates. Let us assume that parameters ∆r and δ are
independent of r and aggregation number n. From the
definition of chemical potential [11], we can calculate

a w1

d dH2O+( )3

6π1/2v 1

---------------------------.=

wL

2γ0

rα
--------∆v C.=

wL
2
3
---γ0 d dH2O+( )2.=

Gel ezn( )2

8πε0ε
--------------- 1

r ∆r+
--------------- 1

r ∆r δ+ +
------------------------– 

 =

=  
ezn( )2δ

8πε0ε r ∆r+( ) r ∆r δ+ +( )
----------------------------------------------------------------,
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the electrostatic contribution wel to the chemical poten-
tial differentiating expression (2.9) for the electrostatic
contribution Gel with respect to aggregation number n,
provided that other conditions are fixed. When writing
the result, we ignore the second-order terms due to
small (because of constraint (1.19)) αn1/2 value. With
allowance for formula (1.17) for the radius r of the sur-
face confining the hydrocarbon portions of surfactant
molecules in the quasi-droplet model of molecular
aggregate, we find

(2.10)

where

(2.11)

(2.12)

From Eq. (2.10) with account of relation (1.19) it is
seen that, within the domain of applicability of quasi-
droplet model (for which inequality (1.19) is fulfilled),
contribution wel is an increasing function of aggregation
number n. In this case, contribution wel increases more
rapidly than for the analogous contribution in the drop-
let model [9] due to the negative value of parameter α
in Eq. (2.10).

By the derivation procedure, contribution wel
accounts for the change in the characteristics of molec-
ular aggregate (more specific, its radius r) on the attach-
ment of new molecule to the aggregate. Let us take into
account contributions –wC and wL, as well as cα-depen-
dent concentration contribution given by the last term
in the right-hand side of Eq. (2.2). The last contribution
is denoted by wconc . According to Eq. (2.2)

(2.13)

Chemical potentials of surfactant molecular aggregate
and relevant contributions refined to the change in char-
acteristics of molecular aggregate are denoted by the
bar above the corresponding symbol.

It follows from above that

(2.14)

As is seen from Eq. (1.6), when the next molecule is
attached, the number ∆nC of hydrocarbon groups
(entering into the aggregate core) of the hydrophobic
portion of each molecule constituting aggregate
increases. According to Eq. (1.3), the ∆vC volume of
the fragments of the hydrophobic portions of surfactant
molecules forming the hydrocarbon core also
increases. As increase in number ∆nC gives rise to the
energy gain from the transfer of the corresponding frag-

wel bel
2n
m2
------ 1 αn1/25m1

2m2
---------– 

  ,=

bel
ez( )2δ

8πε0εlC
2

-------------------, lC≡ l1 nC 1+( ),=

m1 1
2∆r δ+

2lC
------------------,+=

m2

lC ∆r+( ) lC ∆r δ+ +( )
lC
2

-----------------------------------------------------.=

wconc kT cα /c1( ).ln=

wel wel.=

ment of the hydrophobic portion of surfactant mole-
cules to the aggregate hydrocarbon core. Extending for-
mula (2.4), we can write

(2.15)

Factor n in front of derivative with respect to n suggests
that all n molecules in the molecular aggregate partici-
pate in the formation of chemical potential in this
aggregate. From Eq. (2.15) with allowance for Eqs. (1.6)
and (2.5), we obtain

(2.16)

The contribution similar to  is independent of aggre-
gation number in the droplet model of molecular aggre-
gate; however, in the quasi-droplet model, the contribu-
tion  increases with n according to Eq. (2.16). In this

case, it can be shown that contribution  in the lower
part of the range of permissible values of aggregation
numbers determined by inequalities (1.14) is smaller
than similar contribution for the droplet model [9]; on
the contrary, it is larger in the upper part.

During the attachment of a new molecule to the
aggregate, an increase in volume ∆vC of all second
fragments of the hydrophobic portions of molecules
constituting the aggregate hydrocarbon core tends to
increase the work consumed for overcoming the
Laplace pressure difference on the surface of hydrocar-
bon core. Contribution  that takes into account this
effect we determine by the formula generalizing Eq. (2.7)

(2.17)

Hence, combining Eqs. (1.2), (1.3), and (1.6), we arrive at

(2.18)

The values of accounted changes in the characteristics
of molecular aggregate occurring during the attachment
of the new molecule to the aggregate can be estimated
comparing Eqs. (2.5), (2.16) and (2.8), (2.18), respec-
tively. As follows from Eq. (2.18), contribution  to

the molecular chemical potential  is independent of
aggregation number. This circumstance distinguishes
the quasi-droplet model from the droplet model [9]
where similar contribution is inversely proportional to
the square root of n.

Molecular concentration cα in the standard expres-
sion (2.1) in the case of discussed model is estimated as
the concentration of the second fragments of the hydro-
phobic portions of surfactant molecules constituting
hydrocarbon core of molecular aggregate. According to
Eq. (1.3), at suggested dense core packing, concentra-
tion cα is then estimated by relation

wC– w1 ∆nC n
∆nC∂

n∂
------------+ 

  .–=

wC–
3
2
---an1/2– w1.+=

wC

wC

wC

wL

wL

2γ0

rα
-------- ∆v C n

∆v C∂
n∂

-------------+ 
  .=

wL γ0 d dH2O+( )2.=

wL

µα
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(2.19)

and, as follows from Eq. (1.6), depends on the aggrega-
tion number n:

(2.20)

where

(2.21)

The dependence of concentration cα on the aggregation
number n (that was absent in the droplet model) neces-
sitates the refinement of contribution (2.13) related to
concentration cα. Performing this refinement, account-
ing for Eq. (2.20), and acting by analogy with Eqs. (2.15)
and (2.17), we obtain

(2.22)

For the dilute solutions, cα/c1 ratio is fairly large (about
105); Although expressions (2.19) and (2.20) for cα are
rough estimates, these values lead to virtually exact
expressions for ln(cα/c1), which have been actually
used in Eq. (2.22).

Using general relation (2.2), we represent now the

desired chemical potential  of surfactant molecules
in the molecular aggregate in the following form:

(2.23)

With allowance for Eqs. (2.10), (2.14), (2.16), (2.18),
and (2.22), formula (2.23) determines chemical poten-

tial  as the explicit function of aggregation number n
and the main parameters of surfactant molecules and
solution.

3. STATIONARY POINTS ON THE MOLECULAR 
AGGREGATE SIZE DISTRIBUTION CURVE. 

THE WORK OF MOLECULAR 
AGGREGATE FORMATION

At a given solution state (µβ and c1 values are con-

stant), the dependence of  on the aggregation num-
ber n is realized according to Eq. (2.23) via , ,

and  values (  and γ0a0 are independent of n).
Then, from Eq. (2.23) we obtain

(3.1)

In order not to deal with the fractional powers during

the analysis of the dependence of  on the aggrega-
tion number n, in the quasi-droplet model it seems con-

cα v 1 ∆nC 1+( )[ ] 1–=

cα gn 1/2– ,=

g
6π1/2

d dH2O+( )3
---------------------------.=

wconc kT cα /c1( )ln n
cα /c1( )ln∂
n∂

-------------------------+=

=  kT g/n1/2c1( )ln 1/2–[ ] .

µα

µα µβ wC– wL γ0a0– wel wconc.+ + +=

µα

µα

wC wel

wconc wL

µα∂
n∂

---------
µC∂
n∂

---------–
µel∂
n∂

---------
µconc∂

n∂
-------------.+ +=

µα

venient to pass from the derivatives with respect to
aggregation number n to the derivatives with respect to
variable y ≡ n1/2. Taking into account Eqs. (2.10), (2.14),
(2.16), and (2.22), instead of Eq. (3.1) we write

(3.2)

After the second differentiation, we obtain

(3.3)

Because α < 0, the right-hand side of relation (3.3) is
larger than zero in the region of positive y values. Con-

sequently, the dependence of  on y is concave in this
region.

Let us consider the problem of the presence of sta-
tionary points on this dependence. Equating the right-
hand side of Eq. (3.2) to zero, we arrive at the third-
degree algebraic equation with respect to y

(3.4)

At y > 0, the left-hand side of Eq. (3.4) decreases mono-
tonically with an increase in y, whereas the right-hand
side (recall that α < 0) increases monotonically. Hence,
Eq. (3.4) has only one positive root, as it could be on the

concavity of the dependence of  on y. We denote this
root by y0 . According to what have been said above, the

minimum of chemical potential  corresponds to root

y0 and, hence, to the aggregation number n0 ≡ . Let
us emphasize that, as is seen from Eq. (3.4), the value

of root n0 ≡  is independent of solution concentration c1.
Equation (3.4) can be solved numerically very easy.
Necessary condition of the applicability of quasi-droplet
model at the concrete values of parameters of Eq. (3.4) is
the fulfillment of double inequality (1.14) at n = n0.

Let us denote the minimal  value by . Then
we have

(3.5)

The condition of phase equilibrium

(3.6)

corresponds to the stationary points (extrema) on the
size aggregate distribution curve. Using Eqs. (2.10),
(2.14), (2.16), and (2.22) in Eq. (2.23), we obtain

(3.7)
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where the designation

(3.8)

is introduced for the parameter independent of n, nC,
and c1. Using Eq. (3.7), we write the condition of phase
equilibrium (3.6) in the form

(3.9)

The µβ value is determined by the concentration of

surfactant solution. When µβ <  (premicellar con-
centration range), the existence of extrema and, hence,
the appearance of micelles is impossible. Equation (3.9)
has no solutions in a premicellar concentration range. It
is evident that, according to Eq. (3.5), at the solution

concentration ensuring equality µβ = n and denoted
by c10, the root of Eq. (3.9) will be equal to n0. In turn,
substituting the n0  values into the left-hand side of
Eq. (3.9) instead of desired root n [found from (3.4)],
we transform Eq. (3.9) into the formula for determining
concentration c10

(3.10)

It is evident that, as n0 and A, c10 is independent of c1.
By its meaning, concentration c10 is close to the CMC,
albeit smaller than this value.

Let us study the dependence of concentration c10 on
the main parameters of surfactant molecules using rela-
tion (3.10). We estimate preliminarily the characteristic
values of the parameters of the theory. When calculat-
ing, we assume temperature T of micellar solution as
equal to T0 = 298 K. From Eqs. (2.6) and (1.13) at the
indicated in Section 2 value of work w1 = 1.39kT0, we
obtain for coefficient a

(3.11)

Substituting the values of known constants into the def-
inition (2.11) of coefficient bel and taking l1 = 1.265 Å,
we write

. (3.12)

Let us assume ε = 40 [7] and the charge multiplicity
z we take as equal to 2. We perform calculations for the
five values of the number of carbon atoms nC in the
hydrocarbon chain of the hydrophobic portion of sur-
factant molecule taken from the 14² ≤ nC² ≤ 18 range
and for the three values of length δ of the dipole of mol-
ecule hydrophilic portion (2, 3, and 4 Å). We assume

A wL γ0a0– w1 kT gln 1/2–( )+ +=

3
2
---an1/2 kT

2
------ nln bel

2n
m2
------ 1 αn1/25m1

2m2
---------– 

 –+

=  A kT c1.ln–

µmin
α

µmin
α

c10ln A
kT
------

3an0
1/2

2kT
---------------–

1
2
--- n0ln–=

+
bel

kT
------

2n0

m2
-------- 1 αn0

1/25m1

2m2
---------– 

  .

a 2.78kT0.≈

bel 225
z2δ

εl1 nC 1+( )2
-----------------------------kT0=

distance ∆r in definition (2.12) of parameters m1 and m2
as equal to zero.

Table lists the values of aggregation number n0 (the
upper value in each cell) obtained by the numerical
solution of Eq. (3.4) with allowance for Eq. (1.8) and
the values of lnc10 – A/kT0 difference (the lower value
in each cell) calculated from formula (3.10). The n0 val-
ues are shown for the control of the conditions of appli-
cability of the discussed model. In addition, the n0 value
gives an estimate of the micelle aggregation number.
Data of the table demonstrate that all indicated n0 val-
ues satisfy double inequality (1.14). However, if the
calculations were performed for z = 1, all calculated n0
values would be larger than the limiting aggregation
numbers admissible according to Eq. (1.14). As is also
seen from the table, the negative lnc10 – A/kT0 value
(A is independent of n0 and nC) increases with the
length δ of the dipole of hydrophilic portion. The law of
a decrease of lnc10 – A/kT0 value with an increase in the
nC number is close to linear. Hence, the law of a
decrease of the logarithm of concentration c10 with an
increase in the nC number is also close to linear. More-
over, the absolute value of the coefficient of angular
dependence decreases with an increase in the dipole
length δ. At δ = 2 Å, it is equal approximately to 1.9 and
at δ = 4 Å, approximately to 1.1. When recalculated
into decimal logarithms, the absolute values of the
coefficient of angular dependence are approximately
equal to 0.8 and 0.5, respectively. The absolute values
of this coefficient observed for the solutions of surfac-
tants with the dipole hydrophilic portions are also fit the
indicated range [7]. A decrease in the absolute values of
the coefficients of angular dependence with an increase
in the dipole length of hydrophilic portion seems to be
natural, because in this case the surfactant with the
dipole hydrophilic portion becomes similar to the ionic
surfactants for which the lower absolute values of angu-

Values of aggregation numbers n0 (the upper value in each
cell) and lnc10 – A/kT0 difference (lower value in each cell)
at the typical values of number nC and length δ

δ
nC

2 Å 3 Å 4 Å

14 39.6 21.9 14.6

–15.3 –11.3 –9.1

15 49.3 27.2 18.0

–17.0 –12.6 –10.2

16 60.7 33.4 22.1

–18.9 –13.9 –11.3

17 73.9 40.6 26.7

–20.8 –15.3 –12.4

18 89.0 48.8 32.3

–22.8 –16.8 –13.6
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lar coefficients are observed in the discussed depen-
dence.

The following useful observation can also be made
from the performed calculations. At the used values of
the main parameters of surfactant molecules, the bel /kT0
coefficient varies approximately from 0.10 at nC = 18
and δ = 2 Å to 0.32 at nC = 14 and δ = 4 Å; the absolute
value of parameter α was no larger than 0.01 and the m1
and m2 values slightly exceeded unity. Let us take into
account estimate (3.11) and the fact that, according to
Eq. (1.14) and y = n1/2, of interest are only the solutions
of y0 of Eq. (3.4) satisfying inequality y0 ≥ (nC + 1)/2.
Analyzing the characteristic values of the terms of
Eq. (3.4), we conclude that the second term in its left-
hand side has the form of correction and can be omitted.
In this case, Eq. (3.4) is transformed into quadratic
equation. The root of Eq. (3.4) (which is of interest to
us) is found from relation

(3.13)

The n0 values calculated with the aid of Eq. (3.13) are
well consistent with those listed in the table.

As concentration c1 exceeds c10 value, when ine-

quality µβ >  is already fulfilled, Eq. (3.9) will have
two roots due to the concavity of the dependences of

 on y and n (the latter dependence followed from the
former at not so long a distance of aggregation number n
from n0). In this case, the condition that both roots sat-
isfy double inequality (1.14) acts as a necessary condi-
tion of the applicability of quasi-droplet model. The
larger root is denoted by ns. It corresponds to relatively
stable molecular aggregates (micelles). The smaller
root denoted by nc corresponds to the aggregates that

y0
2m2

15αm1
----------------

2m2

15αm1
---------------- 

 
2 am2

2

10αbelm1

-----------------------–
1/2

.–≈

µmin
α

µα

are in unstable equilibrium with the solution. This root
has the meaning of the number of molecules of critical
nucleus in the theory of nucleation (in this case, critical
nucleus of a micelle).

In the general case, at c1 > c10, the roots of Eq. (3.9)
are calculated numerically. If concentration c1 is mea-
sured in units of c10 concentration, then, in view of
Eq. (3.10), Eq. (3.9) for the desired roots acquires more
convenient (albeit more cumbersome) form

(3.14)

Curves in Fig. 2 illustrate the dependences of the nc
and ns roots on the c10 concentration expressed in c1
units. The curves were obtained by the numerical calcu-
lation of Eq. (3.14) at nC = 16 and two values of param-
eter δ (3 and 4 Å). The other parameters needed for the cal-
culations are taken the same as for constructing the table.
Each of the curves contacts the vertical axis in the corre-
sponding point n0, which divides the curve into two
branches. The upper branch corresponds to root ns, the
lower curve, to root nc. According to calculations, at δ =
2 Å, root ns ceases to satisfy the upper of constraints (1.14)
at a fairly low excess of concentration c1 over c10 .

Main principles of the development of the formation
work of surfactant molecule aggregate used in [9]
remain true also in the case of quasi-droplet model of
molecular aggregate under consideration. According to
[9], for work Wn of the aggregate formation from n mol-
ecules we rite

(3.15)

Expressing parameter A in Eq. (3.7) with the use of
Eq. (3.10), substituting the result into Eq. (3.15), and
integrating with respect to n at n @ 1, we find for the
desired work Wn the following relation:

(3.16)

From Eqs. (3.15), (3.2), (3.4), and at y = n1/2, we
obtain
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Fig. 2. Dependences of the nc and ns roots on concentration
c1 taken in c10 units. Curve 1 corresponds to δ = 3 Å, curve 2,
to δ = 4 Å.
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so that n0 is the inflection point of work Wn. According
to the aforementioned remarks, point n = n0 is indepen-
dent of solution concentration c1.

At c1 < c10, work Wn rises monotonically with n that
means the absence of relatively stable aggregates in the
solutions of such surfactant concentration. At c1 = c10,
the appearance of local maximum and minimum of
work Wn in its inflection point n = n0 is observed. Taking
into account that steady-state conditions ∂Wn/∂n = 0 of
work Wn in the local maximum and minimum (merged
in the point n = n0) are simultaneously fulfilled at c1 = c10,
we obtain

(3.18)

At c1 > c10, work Wn is characterized by the local max-
imum in point nc and the local minimum in point ns cor-
responding to micelles. As c1 increases, the nc and ns
points are withdrawn correspondingly to the left and
right of point n0 that is independent of c1. All what have
been said above is illustrated by Fig. 3 where work Wn
is represented in units of thermal energy kT (T = T0).
Curves in Fig. 3 are plotted at nC = 16 and δ = 3 Å. The
curves refer to the ratio c1/c10 values equal to 0.5, 1, and
3, respectively. The other parameters needed for the
calculations are taken the same as when constructing
the table.

According to Eq. (3.16), we have

(3.19)

Recall that c10 is independent of c1. Although nc and ns

depend on c1, however, due to steady-state conditions
(∂Wn/  = 0 and (∂Wn/  = 0 of work Wn in
the n = nc and n = ns points of its local maximum and
minimum, conditions /∂c1 = (∂Wn/  and

/∂c1 = (∂Wn/  are true. Then, it follows

from Eq. (3.19)

(3.20)

Because nc < ns, the local maximum  of work Wn

decreases slower than the local minimum  of work
Wn with an increase in concentration c1.

Let us consider the approximation of work 
allowing for the analytical study at the construction of
which we omit, according to constraint (1.19), the
terms proportional to parameter α and let lnn = lnn0 (in
agreement with the suggested not so large distance of
aggregation number n from n0). Then, repeating the
derivation of Eq. (3.16) with allowance for aforemen-
tioned simplifications, we obtain the equation
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(3.21)

This equation, as Eq. (3.16), is consistent with Eq. (3.18).
From Eqs. (3.17) and (3.21), follows the relation

(3.22)

that could be derived from Eq. (3.13) at α  0. Sub-
stituting Eq. (3.22) into Eqs. (3.21) and (3.10), we cor-
respondingly obtain

(3.23)

(3.24)

For the roots of equation ∂Wn/∂n = 0 determining the nc
and ns aggregation numbers at which work Wn is char-
acterized by the local maximum and minimum, using
Eq. (3.23), we find

(3.25)

According to Eq. (3.22), at c1/c10 = 1, the nc and ns
roots naturally coincide with n0. As inequality c1 > c10
becomes stronger, the nc and ns roots deviate to the left
and right of n0. However, when c1 is not so large as c10,
the nc root has the positive value.
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Fig. 3. Dependences of work Wn on the aggregation number
n at c1/c10: (1) 0.5, (2) 1.0, and (3) 3.0; nc = 16, δ = 3 Å.
Work Wn is expressed in kT0 units. 
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Note in conclusion that the dependence of work Wn
on the aggregation number n obtained in the droplet
model of surfactant molecular aggregate also possesses
all features typical of the micellization process [9]. Dif-
ferences of the contributions to the chemical potential
of surfactant molecules in the molecular aggregate
mentioned in Section 2 for the quasi-droplet and drop-
let models result in the differences of the behavior of
work Wn as a function of aggregation number. In partic-
ular, it turned out that, at the identical values of c1/c10
ratio and other equal conditions, the local maximum of
work Wn in the quasi-droplet model is achieved at larger
values, and local minimum, at smaller values of aggre-
gation number than in the droplet model. Significant for-
mal difference between the approximate relation (3.23)
and similar relation in the droplet model [9] is in the
fact that the work of molecular aggregate formation is
represented in [9] as the expansion in powers of cubic
root of aggregation number n, whereas in Eq. (3.23) the
expansion is performed in powers of quadratic root of
aggregation number. The latter can be considered as the
reflection of almost two-dimensional structure of sur-
factant molecular aggregate in the quasi-droplet model,
the structure similar to rolled surfactant monolayer.
Comparison of the predictions of both models and the
experimental data should demonstrate which of these
models and in which cases more fully accounts for the
properties of real micellar solutions.
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