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INTRODUCTION

The formation of droplets from supersaturated
vapor on charged insoluble particles often occurs in the
presence of static electric fields. These fields affect both
the equilibrium profile and the thermodynamic charac-
teristics of nucleating droplets that, in turn, influences
the rates of the processes of nucleation and condensa-
tion.

Thermodynamics of nucleation on charged particles
in the absence of external electric field was considered
earlier in [1, 2]. The effect of external uniform electric
field on the parameters of homogeneous droplets nucle-
ating in the vapor–gas medium was described in [3–6].
Nonlinear equilibrium deformation of conducting and
dielectric droplets in the external uniform field was
numerically studied in [7–9]. Simulation of the forma-
tion work of small droplets in systems with various
intermolecular potentials in external uniform electric
field was recently conducted within the framework of
Monte Carlo method [10, 11].

Main ideas of the allowance for joint effect of exter-
nal electric field and the field of charged condensation
nucleus in the thermodynamics of dielectric droplet
have been treated in [12]. In this work, the droplet equi-
librium profile, potentials of electric field in this droplet
and the vapor–gas medium, as well as thermodynamic
characteristics of a droplet such as the chemical poten-
tial and formation work were determined. The solution

of a problem was obtained using the perturbation the-
ory with respect to small parameter characterizing the
deviation of droplet shape from spherical and under the
assumption that the displacement of condensation
nucleus with respect to the mass center of the droplet can
be neglected. This assumption substantially limited the
domain of applicability of the results obtained in [12].

In order to generalize the approach developed in
[12], we assume that the condensation nucleus is dis-
placed from the mass center of the droplet to its new
equilibrium position inside the droplet under the action
of external electric field and the response field in dielec-
tric medium. This, in turn, should affect the profile and
the thermodynamic characteristics of a droplet. As a
result, in the case of strong electric fields, essentially
nonlinear effects are possible such as considerable non-
spherical droplet deformation, the displacement of con-
densation nucleus from the mass center of the droplet
up to its surface and even the droplet emission, as well
as the loss of droplet stability related to these effects. To
study similar phenomena, the perturbation theory is
insufficient. Therefore, in this work we formulate the
scheme of numerical solution of the system of differen-
tial equations for the equilibrium droplet profile and
electric potentials inside the droplet and in the vapor–
gas medium at arbitrary values of the strength of exter-
nal field and the charge of condensation nucleus.
Results of numerical calculations will be supplemented
with the analytical relations for equilibrium character-
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Abstract

 

—The equilibrium parameters of small dielectric droplet with charged condensation nucleus in the
external uniform electric field are studied. Two typical cases are considered: (i) the droplet with charged nucleus
suspended by external uniform electric field in the gravitational field and (ii) the droplet moves steadily under
the action of external electric field with allowance for the resistance of surrounding vapor–gas medium. It is
taken into account that the charged condensation nucleus can be displaced from the mass center of the droplet
to new equilibrium position inside the droplet under the action of external electric field and response field. The
scheme of the numerical solution of a nonlinear system of differential equations for the droplet equilibrium pro-
file and electric potentials inside the droplet and in the vapor–gas medium at the arbitrary values of droplet size,
strength of external field, and the charge of condensation nucleus is formulated and realized. Dependences of
an equilibrium profile and the thermodynamic characteristics of a droplet such as the chemical potential of con-
densate and formation work on the droplet size, mass, and charge of condensation nucleus, the strength of exter-
nal field and ratio of permittivities of droplet and the vapor–gas medium are plotted. Results of numerical cal-
culations are supplemented by the analytical relations for equilibrium droplet characteristics in the first orders
of the perturbation theory for a weak external field.
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istics of a droplet in the first orders of perturbation the-
ory in a weak external field.

1. FORMULATION OF A PROBLEM

Let the droplet of volume 

 

V

 

 composed of 

 

ν 

 

mole-
cules of an incompressible dielectric liquid (the 

 

α

 

 phase)
with mass density 

 

ρ

 

α

 

 be formed in the gaseous medium
of supersaturated vapor mixed with passive gas (the

 

β

 

 phase) on a point condensation nucleus with mass 

 

m

 

and charge

 

 q

 

 (hereafter, superscripts 

 

α

 

 and 

 

β

 

 denote
that the corresponding parameter refers to liquid or gas-
eous phases, respectively). Let the external electric
field of strength 

 

E

 

∞

 

, which with allowance for a rather
small droplet size can assumed to be almost always uni-
form, acts on this system. Equilibrium shape of a drop-
let is determined from the pressure balance with allow-
ance for the Maxwell tensions in any point of the drop-
let surface [12]

 

(1.1)

 

where  is the pressure in the corresponding phase
in the absence of an electric field, but at the same value
of chemical potential as in the presence of a field; 

 

ε

 

α

 

, 

 

β

 

 is
the permittivity of corresponding phase determined,
generally speaking, as a function of chemical potential;

 

E

 

α

 

, 

 

β

 

 and  are the vectors of electric field strength
and component of this vector normal to the droplet sur-
face, respectively; 

 

R

 

1

 

 and 

 

R

 

2

 

 are the principal radii of
the surface curvature in a considered point; and 

 

γ

 

 is the
surface tension (considering the droplet as sufficiently
large, we assume that 

 

γ

 

 is a scalar quantity invariant to
the presence of a field). The contribution of 

 

P

 

ex

 

 is
related to the action of external forces, such as the grav-
ity force or the resistance force of the vapor–gas
medium, on the droplet. As was mentioned above, in
contrast to [12], we assume that the nucleus can be dis-
placed inside the droplet and, correspondingly, we
introduce the mass 

 

m

 

 of a nucleus into consideration.
As a result, under the action of the external electric field
and the response field, the new equilibrium position of
a nucleus in a droplet will be at a distance 

 

h

 

 from the
mass center of liquid comprising droplet (at 

 

m

 

 

 

≠

 

 0

 

, the
position of the mass center of the droplet will be differ-
ent than that of the mass center of liquid).

In order to set the left-hand side of Eq. (1.1), it is
necessary to solve Laplace’s equation for the electric
potential 

 

Φ

 

 with the boundary conditions at the droplet
surface 

 

S

 

(1.2)

P0
α
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β

– Pex
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2
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∆Φα β,
0,=

 

(1.3)

 

where 

 

n

 

 is the unit vector of an outer normal to the
droplet surface. In addition, one should take into
account special boundary conditions connected with
the positions of the sources of electric field.

For further analysis, we take advantage of the
approach employed earlier by us [9, 13] for the numer-
ical study of the effect of electric field on the equilib-
rium characteristics of dielectric droplets. For this pur-
pose, we pass to the spherical coordinate system related
to the mass center of the liquid part of a droplet (such a
selection of a coordinate system is convenient for
studying the deformation of the droplet profile) such
that the polar axis be directed along the symmetry axis
of electric field (along the vector of external field
strength). Variable 

 

x

 

 

 

≡ 

 

cos

 

θ

 

 is used instead of azimuthal
angle 

 

θ

 

. In addition, we determine the dimensionless
pressure drop 

 

G

 

, charge 

 

*

 

q

 

, strength of external field

 

*

 

E

 

, potential of electric field , pressure , permit-
tivity 

 

ε

 

, modulus of radius-vector , droplet profile 

 

(

 

x

 

)

 

,

nucleus displacement , and mass of condensation
nucleus  using the following relations:

 

(1.4)

 

where 

 

r

 

 is the radial coordinate; 

 

µ

 

α

 

 and 

 

µ

 

∞

 

 are the
dimension chemical potentials of a molecule in a liquid

phase at pressure  and at equilibrium of the liquid–
vapor system with the interface, respectively; 

 

v

 

α

 

 is the
molecular volume in a liquid; 

 

a

 

(

 

x

 

)

 

 is the dimension
droplet profile; and 

 

R

 

 is the radius of equivalent sphere
for the droplet of volume 

 

V

 

. In this case, Eqs. (1.1)–(1.3)
with allowance for Eq. (1.4) have the form

 

(1.5)

(1.6)

(1.7)
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(1.8)

where subscripts x and  at , , and  denote the
derivatives of these parameters with respect to x and ,
respectively.

The radius of equivalent sphere R and the condition
to the position of the mass center of liquid comprising
droplet in the coordinate origin can be determined from
two additional equations

(1.9)

(1.10)

It remains to take into account the boundary condi-
tions. For the free droplet, derivative with respect to
profile a over azimuthal angle θ satisfies conditions
aθ = 0 at θ = 0 and θ = π. These conditions in variable x
are fulfilled automatically. Boundary conditions to
potentials related to the position of the sources of elec-
tric field are defined as

(1.11)

The first of these conditions states that the field
becomes uniform at infinity, and the second condition
is the expansion of the Coulomb potential of the charge

of condensation nucleus in the vicinity of point  = , x =
1 in terms of Legendre polynomials Pk(x).

Further our interest is with two cases. In the first
case, the droplet is quiescent and suspended by the
electric filed in the presence of gravitational force. For
this case, the contribution of Pex to the pressure can be
represented in the form

(1.12)

where g is the gravitational acceleration. Note that, at
given *q, the droplet size R and the strength of external
electric field *E are interrelated in this case by the con-
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ã2Φ̃r̃

α
1 x

2
–( )ãxΦ̃x
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–( ) ã2Φ̃r̃

β
1 x

2
–( )ãxΦ̃x
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Pex ρα
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dition of droplet mechanical equilibrium and, hence,
cannot be chosen arbitrarily. It seems convenient to
choose droplet size R as independent variable, and the
strength of external field *E is assumed to be unknown
function of *q and R. In the absence of gravitational
force, the g value can be considered as the droplet accel-
eration; in this case, the presence of Pex in Eq. (1.1) can
be due to the noninertia of the frame of reference
related to the mass center of liquid in a droplet.

In the second case, the droplet moves steadily with
the velocity u under the action of external electric field
and the resistance force of the vapor–gas medium (in
this case, the gravitational force is neglected). Assum-
ing that the droplet sizes are small compared with the
free path of the molecules of the vapor–gas medium
(flowing around the droplet occurs in a free-molecular
regime), we can represent the contribution of Pex to the
pressure as

(1.13)

where ρg is the gas mass density and v t is the gas ther-
mal velocity. Note that, in this case, at given *q, the
droplet size R and the strength of external electric field
*E can be chosen arbitrarily. The velocity u of steady-
state motion of a droplet is assumed to be the unknown
function of *q, *E, and R.

Let us determine dimensionless gravitational accel-
eration  and velocity  of a droplet as

(1.14)

then, using Eqs. (1.4) and (1.12)–(1.14), we present 
in the first and second cases, respectively, as

(1.15)

and

(1.16)

Finally, we arrive at the system of equations whose
form is close to that obtained in [12]. The unknown val-

ues of this system are G, (x), ( , x), ( , x), and

, as well as *E (the first case) and  (the second
case). All other values ε, , *q, and correspondingly,

 (the first case) and *E (the second case) are the
parameters of a problem and can be set arbitrarily. It is
seen that Eqs. (1.5)–(1.7) and boundary conditions (1.11)

are used for the formal definition of ( , x) and

( , x); Eqs. (1.8)–(1.10), (1.15) or (1.16), for

finding four remaining unknown values (x), G, , and
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*E or . It was assumed [12] that  = 0; then the sys-
tem of Eqs. (1.5)–(1.11) appeared to be closed. It is not
so in our case.

To close system (1.5)–(1.11), we assume that the
resultant force acting on a condensation nucleus in its
equilibrium position in a droplet is equal to zero. In
general, we have (for the case of a droplet moving
steadily, we assume formally that g ≡ 0)

(1.17)

where Fel ≡ –q(∇  is the force acting on the

charge from the side of electric field and  is the
potential of response field equals potential Φα minus
the Coulomb field of charged nucleus. In dimensionless
variables (1.4) and (1.14), this equation acquires the
form

(1.18)

Note that, in the case of steadily moving droplet at
 = 0, the mass m of condensation nucleus is not

present explicitly in Eqs. (1.5)–(1.10) and (1.18). This
means that the results obtained are applicable to the
condensation nuclei of arbitrary mass.

2. NUMERICAL SCHEME
To solve systems of Eqs. (1.5)–(1.10) and (1.18), let

us expand the droplet profile (x) and potentials of

electric field ( , x) into series in terms of Legendre
polynomials Pk(x) with allowance for boundary condi-
tions (1.11)

(2.1)

where coefficients {dk}, {ck}, and {bk} (k = 0, 1, 2, …)
have to be found. When using expansions (2.1), Eqs. (1.5)
are transformed into identities. Substituting Eq. (2.1)
with allowance for Eqs. (1.15) or (1.16) into Eqs. (1.6)–
(1.8), multiplying consequently the left-hand side of
each equation by Legendre polynomials Pn(x), n = 0, 1,
2, …, and integrating with respect to x in the range x ∈
[–1, 1], we reduce them to algebraic equations for
expansion coefficients (2.1). Equations (1.9), (1.10),
and (1.18) are reduced to similar equations after substi-
tuting of Eq. (2.1). As a result, we arrive at the infinite
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system of nonlinear equations with respect to the sets of
unknown coefficients {bk}, {ck}, and {dk}, k = 0, 1, 2, …,

as well as G, , and t values (by t is meant *E or ,
depending on the considered problem)

(2.2)

where w1, w2, w3, w4, w5, and w6 are the left-hand sides
of Eqs. (1.6)–(1.10) and (1.18) with allowance for
Eqs. (1.15) or (1.16) after substituting the values from
Eq. (2.1) into these equations, and index n runs values
0, 1, 2, … .

This system is equivalent to the initial system of
Eqs. (1.6)–(1.10) and (1.18), but in contrast to the first
system, it is more suitable for the numerical simulation,
because it can be easily “cut.” In Eq. (2.1), we confine
ourselves only to the first N terms of expansion,
whereas the remaining coefficients bk, ck, and dk are
assumed to be equal to zero at k ≥ N. Hence, in sys-
tem (2.2) we remain only those equations where n < N.

As a result, we obtain the final system of 3(N + 1)
equations with respect to coefficients bk, ck, and dk, 0 ≤
k < N, as well as with respect to G, , and t values. The
system obtained is solved minimizing the residual by
the Newton method [14]. The accuracy of solution can
be estimated varying N value. According to estimates,
the required accuracy is achieved at N = 30.

Recalling that, in the case of suspended droplet, the
droplet size R is chosen as an independent variable, in
accordance with Eqs. (1.4) and (1.14), we obtain the
requirement for the recalculation of parameters , *q,
and  at each given R.

Knowing the droplet profile and electric potentials
inside and outside the droplet, we can calculate the

work of droplet formation. Let us denote by  the for-
mation work of droplet with charged nucleus in the
external field normalized to 4πγR2 (i.e., the formation
work of the surface of homogeneous droplet of the
same size in the absence of field). Omitting the droplet-
size-independent contribution due to the work of trans-
ferring charged nucleus to the liquid phase (contribu-
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tion of the work of nucleus wetting) and the standard
contribution related to the chemical potential of a
vapor, we have

(2.3)

where  is the work of electric field,  is the for-

mation work of droplet surface, and  is the work
required to displace the condensation nucleus to the

height  in the gravitational field with respect to the
mass center of liquid in a droplet. Dimensionless work

 is written as

(2.4)

In the case of a steadily moving droplet, g = 0 and, cor-

respondingly,  ≡ 0. Using Eqs. (7.7) and (7.4)

from [12], let us represent  and  in variables of
Eq. (1.4) as

(2.5)

(2.6)

where b1 is the coefficient in expansion of  in
Eq. (2.1). After substituting expansions (2.1) into (2.5)

and (2.6), we arrive at the relations that express  and

 via the  value and coefficients b1, {ck}, and {dk};
k = 0, 1, 2, … .

3. ANALYTICAL RELATIONS

If the strength of external field is not high and the
droplet deformation is relatively small, the solution to
system (1.5)–(1.10) [with allowance for Eqs. (1.15) or
(1.16) and (1.18)] can be sought analytically in the form
of series in powers of small parameter. As a small
parameter, it is formally convenient to use the dimen-
sionless strength of external electric field *E (for the
case of suspended droplet, it implies that by setting *E,
we obtain  = (*E); and recalling further that,
according to the first of relations (1.14),  = (R), we

find corresponding droplet radius R); then, values , G,

(x), ( , x), ( , x), and y (where y is  or ,
depending on the problem) can be presented as

W̃ W̃s W̃el W̃g,+ +=

W̃el W̃s

W̃g

h̃

W̃g

W̃g
mgh

4πγR
2

----------------
2
3
---*qm̃g̃h̃.= =

W̃g

W̃s W̃el

W̃s
1
2
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where the desired coefficients are {G(i)}, {y(i)}, { },

{ }, { }, and { } (i = 0, 1, …; k = 0, …, i).

Using expansions (3.1) in system (1.6)–(1.10) [with
allowance for (1.15)] and in Eq. (1.18), equating coef-
ficients at the identical powers of parameter *E , for the
case of suspended droplet we obtain in the first orders
with respect to *E 
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(3.8)

Substituting obtained results into Eqs. (2.3)–(2.6) and
considering relations

(3.9)

followed from (2.1), (3.1), (3.3), (3.6), and (3.7), we
find

(3.10)

In the case of steadily moving droplet and using
expansions (3.1) in system (1.6)–(1.10) [with allow-
ance for Eq. (1.16)] and in Eq. (1.18), we obtain,
respectively

(3.11)

(3.12)

(3.13)
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(3.15)
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Substituting the results obtained into Eqs. (2.3)–(2.6)
and considering relations

(3.17)

followed from (2.1), (3.1), (3.12), (3.16), and (3.15),
we have

(3.18)

Note that the appearance of Eqs. (3.4) and (3.13) as
well as Eqs. (3.9) and (3.17) are resembling, although

 is determined in these equations by different Eqs. (3.3)
and (3.12). In this sense, expression (3.10) also agrees
with Eq. (3.18), if one takes into account that  ≡ 0 for
steadily moving droplet. Analyzing Eqs. (3.3) and

(3.12) for , it is seen that, at  ≡ 0, they become iden-
tical; hence, the results for pressure drop G, formation

work , and displacement of condensation nucleus 
are completely identical in both cases under consider-

ation. Note that expressions for  set by Eqs. (3.3) and
(3.12) can be derived with the use of Eqs. (3.10) and
(3.18), respectively, by finding the extremum of the for-

mation work from the value of .

4. DISCUSSION OF THE RESULTS 
FOR A SUSPENDED DROPLET

Let us first discuss formula (3.2). Writing this for-
mula in dimension variables, we obtain the condition of
droplet equilibrium in the form

(4.1)

Recalling that  = m/M, M = ρα(4/3)πR3, we obtain the
relation between acceleration g, electric field E∞, and
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droplet size R. In this case, *E = *E(R), *q = *q(R),
and  = (R).

In order to compare these results with those
obtained in [12], it is reasonable to turn back to dimen-
sion variables. At nucleus displacement h, chemical

potential µα, and total formation work W = 4πγR2  –
(µβ – µ∞)ν + Wn, where µβ is the chemical potential of
vapor molecules, and Wn is the work of condensation
nucleus wetting, from Eqs. (1.4), (3.3), (3.4), and
(3.10), we find

(4.2)

(4.3)

(4.4)

When the size of condensation nucleus Rn is much
larger than droplet size R, we have Wn = –(1/εβ –
1/εα)(q2/2Rn).

Chemical potential µα differs from the chemical
potential µν of the molecule in a droplet, because the
explicit dependence of the mass M of a liquid in a drop-
let is present in relation (4.3). When one molecule is
added to the droplet composed of ν molecules, g varies
in view of (4.1) together with mass M [as was already
commented with respect to Eq. (1.12), this value can be
taken as the droplet acceleration]. Therefore, upon the
addition of a molecule to a droplet, one should account
for the variation in the state of remaining molecules in
a droplet with varying g

(4.5)

Respectively, from Eqs. (4.3) and (4.5), we find

(4.6)

Note that formula (4.6) can be also derived directly
from Eq. (4.4), using the common thermodynamic rela-
tionship (8.10) from [12]: ∂W/∂ν = µν – µβ.

It was suggested [12] that the condensation nucleus
is situated in the mass center of the droplet; hence, rela-
tions (4.3) and (4.4) should be transformed into analo-
gous results set by Eqs. (6.6) and (7.10) from [12] only
at h = 0. As can be seen from Eq. (4.2), h = 0 at m/M =
3εβ/(εα – εβ). If this relationship between the masses of
a nucleus and a droplet is taken into account in Eqs. (4.3)
and (4.4), these equations are actually transformed
(with allowance for corresponding designations) into
Eqs. (6.6) and (7.10) from [12] in the principal order
with respect to external field. Note that, at m = 0, h > 0,
and one cannot pass to equations reported in [12].

As follows from Eq. (4.2), the value of displacement h
can be either positive or negative, depending on the sign

of difference 3εβ – (εα – εβ). This means that the con-

densation nucleus can be displaced with respect to the
mass center of liquid both in the field direction (if the
charge is positive) and in the opposite direction.
Because M ~ R3, for small droplets, the condensation
nucleus is displaced against the field direction,
whereas, for larger droplets it is always displaced in the
field direction. This is clearly illustrated by Fig. 1. In
Fig. 1, as in subsequent Figs. 2–4, calculations refer to
the droplet of water; moreover, each droplet size corre-
sponds to different values of the strength of external
electric field. It was taken in the calculations that q = 1.6 ×
10–19 C, εα = 81, εβ = 1, ρα = 103 kg m–3, γ = 73 mN m–1,
and g = 9.8 m s–2.

Note that, for displacement , one cannot be con-
fined only to the linear approximation with respect to
external field, because the condensation nucleus can
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approach rather closely the droplet boundary (see Fig. 2);
nevertheless, even in this case, the droplet profile does
not virtually differ from the sphere. Curves 1 and 2 in
Fig. 2 describe the displacement of condensation
nucleus with respect to droplet center obtained while
solving system (2.2) with usual and increased accuracy,
respectively. Curve 3 refers to the analytical solution
obtained from Eq. (4.2) with allowance for Eq. (4.1),
and curve 4 describes the position of droplet boundary.
As is seen from this figure, analytical results for
describing the displacement of condensation nucleus
can be applied only to small (R & 0.3 µm) droplets,
whereas numerical calculations are applicable at R &
1 µm. In view of equilibrium condition (4.1), this
implies that the analytical description is applicable at
E∞ & 7 kV m–1, and the numerical results, at E∞ &

250 kV m–1. Also note that curve 2 virtually fits curve 4;
the intersection of curves 1 and 4, which could denote
possible emission of condensation nucleus from the
droplet, is indeed a consequence of the insufficient
accuracy of calculations near the droplet boundary.

Figure 3 presents the numerically calculated depen-
dence of pressure drop G on the droplet size R at m = 0.
This dependence is analytically described with the use
of Eq. (3.4); moreover, the plot of this dependence in
Fig. 3 agrees exactly with the numerical solution. Ana-
lyzing dependence (3.4) and taking into account that
*q is large only for small droplets and *E is small over
the entire range of sizes, we obtain that terms that are
dependent on the value of external electric field can be

neglected compared with unity, while term – /ε is
large only for small droplets and decreases rapidly with
an increase in R [this fact is responsible for the initial
rise and consequent achievement of the constant of
G(R) function]. Hence, it is seen that the domain on
applicability of Eq. (3.4) is noticeably wider than that
of Eq. (4.2).

Considering expression for the work  of droplet
formation, we arrive at the following conclusions. As
was already mentioned, *q is large only for small drop-
lets, and *E is small over the entire range of sizes.
Therefore, only constant contribution related to the for-
mation of the surface of spherical droplet and the con-
tribution proportional to the squared charge of conden-
sation nucleus are remained in Eq. (3.10). With respect
to the latter contribution, it can be stated that it rapidly
decreases with an increase in R. The plot of correspond-
ing dependence obtained numerically at m = 0 is shown
in Fig. 4. Note that the complete agreement between
analytical and numerical results is observed in this case
as well; hence, the applicability of Eq. (3.10) is much
larger than that of Eq. (4.2).

According to Eq. (3.5), the droplet profile a(x) is a
symmetric function of x. However, solving this prob-
lem analytically up to the third order of magnitude with
respect to *E , it can be easily demonstrated that the
droplet profile is no longer symmetric. Figures 5a and

*q
2

W̃

5b show characteristic droplet profiles in the case of
very strong electric fields obtained by the numerical
solution of system (2.2). It is seen that the droplet pro-
file is asymmetric in the field direction. The sphere of
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Fig. 1. Relative displacement of condensation nucleus in the
droplet of water as a function of its size. Mass of condensa-
tion nucleus m = 4.2 × 10–19 kg. Curves obtained analyti-
cally by Eq. (4.2) and calculated numerically [from the
solution of system (2.2)] coincide with each other.

Fig. 2. Relative displacement of condensation nucleus in the
droplet of water as a function of its size. Mass of condensa-
tion nucleus m = 0.
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Fig. 3. Dependence of pressure drop G on the droplet size
for suspended droplet. Curves obtained analytically by
Eq. (3.4) and calculated numerically [from the solution of
system (2.2)] coincide with each other.
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the same volume is shown in these figures for compar-
ison.

5. DISCUSSION OF THE RESULTS
FOR STEADILY MOVING DROPLET

When analyzing the case of steadily moving droplet,
note once again that now the droplet size R is not

related to the strength of external field E∞; in addition,
the solution is independent of the mass m of condensa-
tion nucleus. Passing to the dimension variables for
droplet velocity u, nucleus displacement h, chemical
potential µα, and total work of droplet formation W =

4πγR2  – (µβ – µ∞)ν + Wn, from Eqs. (1.4), (3.11)–
(3.13), and (3.18), we find

(5.1)

(5.2)

(5.3)

(5.4)

It was accounted for in Eq. (5.3) that, in contrast to the
problem with suspended droplet, in the problem under
consideration, chemical potential µα coincides with
that of molecule in a droplet.

Figure 6 presents the dependence of the velocity 
of droplet motion on the value of dimensionless exter-
nal electric field *E obtained using numerical solution
of system (2.2) (curve 1) and formula (3.11) (curve 2).
Slight deviation of curve 1 from curve 2 at large values
of *E is apparently explained by the improvement of
droplet streamlining.

The dependence of the relative displacement  of
condensation nucleus on the strength of external elec-
tric field *E is shown in Fig. 7 (curve 1). The initial part
of the plot is adequately described by curve 2 obtained
using formula (3.12). As is seen from Fig. 7, the analyt-
ical solution is applicable only for weak electric fields.
Note that, in contrast to the previous case, the conden-
sation nucleus can be displaced with respect to the mass
center of liquid only in one direction (along the field, if
the charge of nucleus is positive). Also note that, in the
case of strong fields, the condensation nucleus can
closely approach the droplet boundary.

Figures 8 and 9 show the dependences of pressure

drop G and the work  of droplet formation, respec-
tively. The results of numerical calculation are pre-
sented in these figures by curves 1; and analytical
results, by curves 2. As is seen, corresponding analyti-
cal and numerical curves virtually coincide with each
other. According to Eq. (3.13), the pressure drop G is
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the even function of variables *E and *q , which has
the maximum at *q = 0, *E = 0. Hence, when either *q

or *E increases, the chemical potential drops (Fig. 8).

As is seen from Eq. (3.18), the work  of droplet for-
mation is also the even function of variables *E and *q;
an increase in the charge *q of condensation nucleus

leads to a rise in  (however, the total work W of drop-
let formation decreases that is related to the contribu-
tion of the work of wetting Wn), but an increase in exter-

nal field *E leads to a decrease in  (Fig. 9).

Figure 10 shows the characteristic droplet profile
at  high strength of external electric field (*E = 0.93,

*q = 1.0, ε = 25, and  = 0.87). It is seen that the drop-
let profile is asymmetric in the field direction (sphere of
the same volume is shown in this figure for compari-

W̃

W̃

W̃

h̃

son) that is manifested only in the third-order expan-
sion of droplet profile a(x) in terms of *E .
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