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The Macroscopic Effects of Internal and External
Electric Fields on Pro�le and Thermodynamics
of a Dielectric Droplet

A. K. Shchekin, M. S. Kshevetskiy, and V. B. Warshavsky
Department of Statistical Physics, Research Institute of Physics, St. Petersburg State University,
Petrodvoretz, Russia

The effects of weak and strong axisymmetric electric � eldson the
pro� le and thermodynamic characteristics of a dielectric droplet
in the vapor-gas environment have been considered. The procedure
for numerical solution of the coupled nonlinear equations for the
equilibrium droplet shape and the electric � eld potential has been
illustrated in the case of an external uniform electric � eld and the
case of a nonuniform internal � eld of the heterogeneous nucleus
with an electric dipole moment. Analytical results of perturbation
theory for small nonspherical deformations in the droplet shape
and surface area have been shown to be really limited to small
electric � eld effects. However, the analytical results for the chemical
potential and free energy of droplet formation (which are of � rst
importance for nucleation phenomena and liquid aerosol formation
in a gaseous atmosphere) are valid even for rather strong � elds due
to mutual compensation between the nonspherical contribution to
the surface area and the contribution due to droplet polarization.

INTRODUCTION
An electric � eld is able to signi� cantly affect the thermo-

dynamics and kinetics of liquid aerosol formation. The good
example is ion-induced nucleation when a droplet is formed
in a strong central electric � eld of ion and the � eld consider-
ably reduces the critical vapor supersaturation (Wilson 1900;
Holland and Castleman 1982). In addition, if the electric � eld
is noncentral (as in the case of an external � eld, the � eld of
a condensation nucleus with a dipole moment, or ion-induced
nucleation in an external � eld), the equilibrium droplet shape
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becomes nonspherical and an instability of droplets may be in-
voked. Effects of an electric � eld in nucleation appear mainly
through variation of the characteristic thermodynamic quanti-
ties of aerosol droplets: the chemical potential of condensate
in nucleating droplets or the work of droplet formation (Kuni
et al. 1984; Cheng 1984). One can expect that the effects in
the case of the external � eld are weak for small subcritical or
critical droplets in nucleation, but can be nonlinear for super-
critical drops. By contrast, the role of the internal � eld of the
condensation nucleus should be larger for very small subcritical
nucleating droplets.

The distortion of the equilibrium droplet shape in the case
of a strong noncentral � eld impedes analytical � ndings of ther-
modynamic quantities of nucleation, except for the case of el-
lipsoidal droplets in the uniform external � eld (Cheng 1984;
Cheng and Chaddock 1984). In order to � nd the chemical poten-
tial of condensate in nucleating droplets or the work of droplet
formation in a strong axisymmetric � eld, we need a reliable
approach allowing simultaneous solving of the coupled nonlin-
ear equations for the equilibrium droplet shape and the electric
� eld potential. Such an approach to computing the equilibrium
shape of conducting and dielectric drops in the uniform external
electric � eld was proposed in Basaran and Scriven (1989) and
Wohlhuter and Basaran (1993). Nevertheless, neither the ther-
modynamic characteristics of the drops relevant for nucleation
theory nor the effects of the internal nonuniform nonspheri-
cal electric � eld were considered. In this paper we present a
numerical scheme for analysis of the effects of an arbitrary
axisymmetric electric � eld on the equilibrium shape of a di-
electric droplet and thermodynamic characteristics of nucle-
ation of such droplets. We compare the results of this approach
with the analytical results obtained previously in the cases of
the external uniform electric � eld (Cheng 1984; Cheng and
Chaddock 1984; Warshavsky and Shchekin 1996, 1999) and the
nonuniform internal � eld of the heterogeneous condensation nu-
cleus with an electric dipole moment (Shchekin and Varshavskii
1996).
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BASIC EQUATIONS
Let us consider a droplet (with volume V ) condensing out of

the vapor-gas environment (phase ¯) in the electric � eld. The
source of the electric � eld may be located outside or inside the
droplet (as in the case of the droplet formed on a heterogeneous
condensation nucleus). Let the droplet consist of º molecules
of an incompressible liquid dielectric (phase ®). Hereafter, the
indices ® and ¯ denote the quantities referred to as the liquid
and the vapor phase, respectively. Only one component in these
phases is condensable. The effect of the gravity on the droplet is
assumed to be negligible as well as the effects of the electric dou-
ble layer at the droplet surface. First we will consider the droplet
in full equilibrium, which corresponds to the extreme point in
the work of droplet formation at a given vapor supersaturation,
but the results can be extended (Kuni et al. 1984; Shchekin and
Varshavskii 1996) for all droplets relevant for nucleation.

The number º determines the size of the droplet. The balance
of local pressures at any point on the droplet surface governs the
equilibrium shape of a droplet:

P®
N ¡ P¯

N ¡ P° D 0; [1]
where

P®
N D P®

0 ¡ ¾ ®
N ; P¯

N D P¯
0 ¡ ¾

¯
N ; [2]

P0 is the pressure in a phase in absence of the electric � eld, ¾N

is the normal component of the Maxwell stress tensor, and P°

is the capillary pressure under the curved droplet surface. If the
thickness of the droplet surface layer is small enough in com-
parison to the droplet size, we can consider the surface tension
° as the scalar quantity independent of droplet size and write

P° D °

³
1
R1

C
1
R2

´
: [3]

Here R1 and R2 are the principal radii of the surface curvature at
any point on the droplet surface where the local pressure balance
(1)holds. If we � x the chemical potential of the droplet substance
in absence and presence of the electric � eld, i.e., pressure P0 is
determined at the same chemical potential ¹ as in the presence
of the electric � eld, then we have

¾N D "(¹)
( EE; En)

2

4¼
¡ "(¹)

( EE )
2

8¼
; [4]

where "(¹) is the dielectric permittivity determined as a function
of chemical potential ¹, EE is the vector of the electric � eld
intensity, and En is the unit vector of the outer normal to the
droplet surface.

Let us assume the axial symmetry of the electric � eld. Choos-
ing the spherical coordinate system with the center at the droplet
mass center and the polar axis directed along the vector EE , eval-
uating the sum of principal curvatures in (3), we obtain
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[5]

while the expression for unit vector of the outer normal En has
the form

En D
r Eer ¡ rx

p
1 ¡ x2Eeµp

r 2 C (1 ¡ x2)r 2
x

: [6]

Here x ´ cos µ , µ is the polar angle between the polar axis and
the radius vector Er 0 of the observation point, r (µ ) ´ r(x ) is the
droplet pro� le, rx ´ dr=dx , rxx ´ d2r=dx2, and Eer and Eeµ are the
unit vectors in the radial and the azimuthal directions.

The electric � eld intensity EE is related to electric poten-
tial 8(r 0; x ) as EE ´ ¡r8. In order to determine 8®(r 0; x ) and
8¯ (r 0; x ), we need to solve the Laplace equations

18® D 0 and 18¯ D 0 [7]

with the standard boundary conditions at the droplet surface,

8®jr 0Dr(x ) D 8¯ jr 0Dr(x ); [8]

"®(¹)(r8®; En)jr 0Dr(x ) D "¯ (¹)(r8¯; En)jr 0Dr(x ); [9]

and the speci� c boundary conditions at the locations of � eld
sources. In the case of the external uniform electric � eld and
in the case of the internal nonuniform electric � eld of a hetero-
geneous condensation nucleus with a dipole moment we have,
respectively,

8®jr 0D0 D const; 8¯ ¡!
r 0!1

¡E1r 0x; [10a]

8® ¡!
r 0 ! 0

px

"®(¹)r 02 ; 8¯ ¡!
r 0!1

0; [10b]

where E1 is the absolute magnitude of the external electric � eld
intensity as r 0 ! 1 and p is the electric dipole moment of the
heterogeneous condensation nucleus.

In view of Equations (2)–(6), (8), and (9), we can rewrite
the balance Equation (1) as an ordinary nonlinear differential
equation for the droplet pro� le r(x),
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[11]

where 8r ´ @8=@r 0jr 0Dr(x ), 8x ´ @8=@x jr 0Dr (x ).
As was shown in Warshavsky and Shchekin (1996, 1999)

and Shchekin and Varshavskii (1996), the solution of Equation
(11) simultaneously with Equation (7) allows us to � nd not only



320 A. K. SHCHEKIN ET AL.

the droplet pro� le r(µ ) and the electric potentials 8® and 8¯ ,
but also the thermodynamic droplet characteristics relevant for
nucleation and, � rst of all, the chemical potential of condensate
in the nucleating droplet. Because the number of condensate
molecules evaporating out of droplet per unit time is a function
of the chemical potential of condensate, � nding the condensate
chemical potential in the droplet means also that the in� uence of
the electric � eld on the evaporation of the droplet is described.

THE CHARACTERISTIC SCALES
AND INDEPENDENT PARAMETERS

Let us de� ne the characteristic scales for the problem. Let R
be the radius of the equivalent sphere for the droplet, i.e., the
sphere with the same volume as the volume of the droplet, 9 be
the characteristic electric potential (which depends on boundary
conditions and will be speci� ed later), 4¼° R2 be the characteris-
tic surface energy, and " ´ "®(¹)="(¹) be the relative dielectric
permittivity. Introducing these scales into Equations (7)–(9) and
(11), we can determine dimensionless quantities gi , i D 1, 2, 3, as

g1(x ) ´ 8̃®(r̃(x ); x ) ¡ 8̃¯(r̃(x ); x ); [12]
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Here

G ´
P®

0 ¡ P¯
0

2°
R; [15]

H 2 ´
92("®(¹) ¡ "¯(¹))

16¼° R
; [16]

the tilde marks the dimensionless quantities: r̃ ´ r=R, 8̃ ´ 8=9 ,
and, as follows from the de� nition of radius R,

Z 1

¡1
dxr̃3(x ) D 2: [17]

We can consider G as the dimensionless chemical potential
of condensate in the droplet. The meaning of H depends on
the speci� c choice of the potential 9 . If we choose the scale

potential 9 in the case of boundary conditions (10a) and (10b)
as

9 ´ E1 R [18a]

and

9 ´ p="®(¹)R2; [18b]

respectively, the dimensionless parameter H can be determined
as

H D

s
("®(¹) ¡ "¯ (¹))R

16¼°
E1 [19a]

(H has the meaning of the dimensionless intensity of the external
electric � eld) and

H D

s
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16¼° R5

p

"®(¹)
[19b]

(H has the meaning of the dimensionless electric dipole mo-
ment). Simultaneously, the speci� c boundary conditions given
by Equation (10) can be rewritten in the form

8̃®jr̃D0 D const; 8̃¯ ¡!
r 0!1 ¡r̃ x ; [20a]

8̃® ¡!
r 0!0

x

r̃2
; 8̃¯ ¡!

r 0!1 0: [20b]

In view of the axial symmetry of the electric � eld, let us seek
the solution to Equations (11) and (7) in the form of expansion in
the Legendre polynomials Pm(x) (m is the order of polynomial)

r̃ (x ) D
1X

mD0

d̃m Pm(x ); [21]

8̃®(r̃; x ) D
1X

mD0

b̃m r̃m Pm(x );

8̃¯ (r̃; x ) D ¡r̃ x C
1X

mD0

ãm

r̃mC1
Pm(x ); [22a]

8̃®(r̃; x ) D
x

r̃ 2
C

1X

mD0

b̃mr̃ m Pm(x );

8̃¯(r̃; x ) D
1X

mD0

ãm

r̃ mC1
Pm(x ); [22b]

where the dimensionless coef� cients d̃m , ãm, and b̃m are deter-
mined as

d̃m D dm=R; ãm D
1

9 RmC1
am; b̃m D

Rm

9
bm : [23]
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Here dm , am , and bm are the dimensional coef� cients of ex-
pansion of dimensional quantities r (x ); 8®(r; x ), and 8¯ (r; x )
in the Legendre polynomials.

Expansions (22a,b) satisfy Equation (7) with the speci� c
boundary conditions (20a,b), and we see after the substitution
of Equation (21) and (22a,b) into Equations (12)–(14) that the
initial problem is converted into a solution to the set of equations

gi D 0; i D 1; 2; 3 [24]

for dimensionless coef� cients d̃m , ãm , and b̃m simultaneously
with the equation obtained after substitution of Equation (21)
into Equation (17). How many independent parameters may we
use seeking the solution to the problem? From the point of ther-
modynamics we have 3 independent variables of state for the
system under consideration. These 3 thermodynamic degrees
of freedom include temperature T, chemical potential ¹ (or the
radius R), and the electric � eld intensity EE (or associated quan-
tity). The temperature is assumed to be � xed, and this leaves
only 2 thermodynamic degress of freedom. These degrees cor-
respond to dimensionless parameters G and H in Equation (14).
However, in view of the dimensionless form of Equation (17),
only one of these parameters can be determined independently.
Nevertheless, return to the dimension variables in the solution
restores the second independent parameter. For example, if we
have found G as a function of H in the course of solving Equation
(24), then in order to reveal the dependence of radius R on the
characteristic of the electric � eld, we need to specify P®

0 ¡ P¯
0 ,

i.e., to specify the chemical potential. It should be noted in view
of Equation (13) that the relative dielectric permittivity " also
remains an independent parameter of the dimensionless problem
(although " is not a thermodynamic degree of freedom).

THE NUMERICAL ALGORITHM FOR THE PROBLEM
The symmetry of Equation (14) and the antisymmetry of the

speci� c boundary conditions (20a,b) in x yield

d2mC1 D a2m D b2m D 0 (m D 0; 1; 2; : : : ): [25]

Multiplying Equation (24) by the Legendre polynomials Pm(x ),
m D 0; 1; 2; : : : , and integrating over x from ¡1 to 1, taking
into account the symmetry of the problem, we obtain

F m
1 D

Z 1

0
g1(x )P2m C 1(x )dx D 0; [26]

F m
2 D

Z 1

0
g2(x )P2m C 1(x )dx D 0; [27]

F m
3 D

Z 1

0
g3(x )P2m(x )dx D 0: [28]

Equation (17) can be rewritten in the similar form

F4 D
Z 0

1
r̃3 P0(x ) dx ¡ 1 D 0: [29]

Thus we have an in� nite set of nonlinear algebraic equations
for coef� cients a2mC1, b2mC1, and d2m (m D 0, 1, 2, : : :). Let us
cut off the series in Equations (21)–(22b) at the Legendre poly-
nomial PN (x ) of order N. Correspondingly, we will consider
only those Equations (26)–(28) where the order of the Legen-
dre polynomials does not exceed N. In this way the problem is
transformed into a solution of a � nite set of nonlinear algebraic
equations for coef� cients a2mC1, b2mC1, and d2m (m D 0, 1, 2, : : : ,
2m C1 · N ) with three external parameters G, H, and ". As was
noted at the end of the last section, only 2 of these parameters
are independent.

We will solve the set of equations by the Newton iteration pro-
cedure (Dennis and Schnabel 1983). Let us specify any 2 param-
eters among G, H, and ". The parameter that stays unspeci� ed
we will designate as t . Now we can introduce vector EX D (fd2mg,
fb2mC1g, fa2mC1g, t ) and the residual vector EF D (fFm

1 g,fFm
2 g,

fFm
3 g, F4) (m D 0, 1, 2, : : : , 2m C 1 · N). Thus the set of equa-

tions can be written in the form A EX D 0, where A is the non-
linear operator corresponding to the truncated set of
Equations (26)–(29). Then the iteration procedure is formu-
lated as follows. As a � rst step, we have the appropriate appr-
oximation EX 0 for the droplet shape, electric potential, and
variable t and calculate EF0 D A EX 0 and the matrix J 0

i j D @(A EX )i=

@ X j at EX D EX0. With the help of the equation J 0Es0 D ¡ EF0, we
� nd the next approximation EX1 D EX0 C Es0 and then repeat the
whole process starting from EX1 until the required accuracy is
achieved.

Let us say a few words about the initial approximation. At
H D 0 the droplet shape is spherical with radius R. As follows
from Equations (14), (15), and (24), we have G D 1 in this case,
but we need to determine ak and bk also. We can do this by solv-
ing Equations (26) and (27) for the sphere r̃ D 1. Thus we have
an exact solution for Equation (26)–(29) for H D 0. Designating
t D G, increasing H at � xed ", and choosing the solution for the
preceding value of H as the initial approximation, we can obtain
a solution for an arbitrary electric � eld. However, starting from
some value H ¤, such a procedure may appear ineffective. As an
example of this situation, one may consider the case when H¤

is close to the point where j@G=@ H j ! 1 (the thermodynamic
instability point). It is convenient to designate t D H in this sit-
uation and replace the variation of parameter H by the variation
of parameter G . In some cases such an approach allows us to
pass over the thermodynamic instability points and distinguish
these points from the instability points of the numerical method
itself, which correspond to zeros of matrix Ji j .

If the parameters H and " are chosen as independent, then the
solution for variable t gives the value for G. Taking into account
Equations (15) and (16), we are now able to � nd P®

0 ¡ P¯
0 as a

function of the equivalent sphere radius R and the electric � eld
intensity. Assuming the liquid in the droplet to be incompress-
ible, one can obtain the expression for the chemical potential of
condensate. Counting off the chemical potential from the value
for the vapor-liquid equilibrium with planar interface, express-
ing it in thermal energy units kT (k is the Boltzmann constant),
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and denoting the obtained dimensionless quantity as bR , we have

bR D G
2°

RkT½®
; [30]

where ½® is the number of molecules per unit volume of bulk
liquid. This expression determines the chemical potential of con-
densate as a function of R. For the number º of molecules inside
the droplet of incompressible liquid we have

º D
4¼ R3

3
½® : [31]

Thus the dependence of the chemical potential of condensate in
the droplet on º can be easily found from (30) and (31).

Let us note now that the expression for the work of droplet
formation in the electric � eld can be written as

Fº D ¡bº C
° A

kT
C

Wel

kT
; [32]

where b is the dimensionless vapor chemical potential de� ned
similarly (321) to bR (we assume that the vapor chemical poten-
tial is kept the same as in the absence of the � eld (Warshavsky
and Shchekin 1996, 1999; Shchekin and Varshavskii 1996), A
is the surface area of the droplet, and Wel is the free energy
of droplet polarization. The surface area is determined by the
solution for the droplet pro� le, while Wel is derived from the ex-
pression for the potential of reaction � eld at the location of the
� eld sources. Thus the expressions for A and Wel can be writ-
ten as (Warshavsky and Shchekin 1996, 1999; Shchekin and
Varshavskii 1996)

A D 2¼

Z 1

0

q£
r2 C (1 ¡ x2)r2

x

¤
rdx; [33]

Wel D ¡
1

2
a1"

¯ (¹)E1; [34a]

Wel D
1
2

b1 p: [34b]

In this way both quantities, ° A=kT and Wel=kT , that play an
important role in thermodynamics of nucleation can be indepen-
dently found from the results of our numerical approach.

Let us say a few words about the accuracy control during the
computations. One can use 2 methods here. The � rst method is
the control of the value of j EF j until it becomes suf� ciently small.
The second method is the control of the quantity

sZ 1

0

¡
g2

1 C g2
2 C g2

3

¢
dx :

Both methods become equivalent as N ! 1, however, the
interpretation of the methods is essentially different at � nite N.
The � rst method shows the quality of the reduced set of equa-
tions, while the second method serves for evaluation of waived
terms. Approaching the region of instability of the numerical

procedure, the estimate obtained by the � rst method stays small
in spite of the fact that the number of iterations considerably
increases. At the same time, the estimate obtained by the second
method starts to grow. This fact may be considered as the evi-
dence that we have found a good solution for the reduced set of
equations, but, getting closer to the instability region, the solu-
tion begins to deviate notably from a solution for a nonreduced
set of equations.

RESULTS FOR THE EXTERNAL UNIFORM FIELD
The effects of an external uniform electric � eld on the shape

and stability of a dielectric droplet are mostly worked out (Cheng
1984; Cheng and Chaddock 1984; Basaran and Scriven 1989;
Wohlhuter and Basaran 1993; Warshavsky and Shchekin 1996,
1999) and from that point the case of the external uniform � eld
may serve as a control example for a general approach to an
axisymmetric electric � eld in nucleation.

The results of the numerical procedure described in the last
section for the case of external uniform electric � elds (speci� ed
by Equations (19a), (22a), and (34a)) are illustrated in Figures 1–

4. Curve 1 in Figures 1a and 1b shows the dependence of droplet
aspect ratio ¯(¯ ´ r̃ (x D 1)=r̃(x D 0)) on the dimensionless
parameter

±2 D 9
" ¡ 1

(" C 2)2
H 2 [35]

for 2 values of relative dielectric permittivity ": " D 10 (for the
dichlorethane) and " D 78 (for the water). At small deviations of
a droplet shape from the sphere, parameter ± has a geometrical
meaning of the eccentricity of a prolate (along the direction of
the � eld intensity) spheroid. This behavior is con� rmed by the
results of the perturbation theory for small ±2 (Warshavsky and
Shchekin 1996, 1999), where the following asymptotic forms
were obtained for the droplet shape, the chemical potential, and
the surface and the polarization contributions to the work of
droplet formation:

r (x ) D R

µ³
1 ¡

1
45

±4
´

C
³

1
3

±2 C
79
315

±4 ¡
4

5(" C 2)
±4

´

£P2(x ) C
26

315
±4 P4(x )

¶
; [36]

bR D
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kT½® R
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1
3

" C 2
" ¡ 1

±2 ¡
4
45

±4
´

; [37]

° A

kT
D

4¼° R2

kT

³
1 C

2

45
±4

´
; [38]

Wel

kT
D ¡

4¼° R2

kT

³
2

9

" C 2

" ¡ 1
±2 C

4

45
±4

´
[39]

(for the sake of convenience the equations were rewritten in
slightly changed form in comparison to Warshavsky and
Shchekin (1999)).
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(a) (b)

Figure 1. The dependence of aspect ratio ¯ of the droplet equilibrium shape on the dimensionless parameter ±2 associated with
the intensity of the uniform external electric � eld (see Equations (35) and (19a)) at 2 values of relative dielectric permittivity " D 10
(a) and " D 78 (b). Curves 1, 2, and 3 depict the numerical, the perturbation theory (see Equation (36)) and the prolate spheroid
results, respectively.

The dependence of the droplet aspect ratio ¯ on ±2, which
corresponds to Equation (36), is depicted in Figures 1a and 1b
by curve 2. As one can see, there is good agreement between
curves 1 and 2 for ±2 · 0.4. The increasing deviation between
curves 1 and 2 for ±2 > 0.4 is not surprising because the de-
formation of the droplet from the sphere cannot be considered
as small at these values of ±2. Curve 3 in Figures 1a and 1b
shows the droplet aspect ratio for the droplet having a form of
the prolate spheroid within the whole interval of variation of ±2

(Cheng 1984). In fact, asymptotic expansion in Equation (36)
demonstrates that, with the accuracy up to terms of order of
±4, the shape of the droplet deviates from the prolate spheroid.
Nevertheless, curves 1 and 3 are in very good agreement. This
agreement is slightly distorted only in the vicinity of the turn-
ing point at ±2 D 0.4776 in Figure 1b. As is well known (Cheng
1984; Cheng and Chaddock 1984; Basavan and Scriven 1989;
Wohlhuter and Basaran 1993), the turning point marks the loss
of droplet shape stability: shapes before and beyond the turn-
ing point correspond to stable and unstable equilibrium, respec-
tively. It was found in Basaran and Scriven (1989) and Wohlhuter
and Basaran (1993) by Galerkin’s method of weighted residu-
als that the turning point of the conducting droplet is reached
at ±2 D 0.46. There is no such turning point in Figure 1a. This
con� rms the observation (Cheng 1984; Wohlhuter and Basaran
1993) that the turning point in the curve of the aspect ratio
versus the intensity of the uniform external electric � eld dis-
appears at " < 20. In order to pass the turning point in our

numerical investigation at " D 78, we used the “switching” from
independent parameter H to independent parameter G in the
vicinity of the turning point as it was noted in the last
section.

Let us evaluate the electric � eld intensity at which the consid-
ered effect on the droplet shape is signi� cant. As follows from
Equations (35) and (19a), the intensity of the electric � eld equals
E1 D 2.75 MV/m in the case of water droplets ("® D 78, ° D
73 mN/m) in the vapor-air surroundings ("¯ D 1) at R D
2.5 ¢ 10¡4m and at ±2 D 0.4776 (the turning point). This inten-
sity is less than the air breakdown limit, which equals 3 MV/m.
But the electric � eld intensity grows up to E1 D 43.5 MV/m
with decreasing the droplet radius to R D 1 ¹m. In the case of
dichlorethane droplets ("® D 10, ° D 31 mN/m) in the vapor-
air surroundings ("¯ D 1) at ±2 D 0.6, the electric � eld intensity
equals E1 D 2.6 MV/cm and E1 D 40.8 MV/m at R D
2.5 ¢ 10¡4m and R D 1 ¹m, respectively. Thus the external elec-
tric � eld is able to considerably affect the growth of supercritical
drops in nucleation, while the formation of small subcritical and
critical droplets remain undisturbed.

Figure 2 shows the dependence of parameter G, which is
related in view of Equation (30) to the chemical potential of
the droplet substance on ±2 at " D 78. Curve 1 represents the
results of our numerical approach; curve 2 plots bRkT½® R=2°

according to Equation (37). As one can see, the agreement of
both curves is rather good within the whole interval for ±2 before
the turning point.
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Figure 2. The dependence of the droplet dimensionless chem-
ical potential G on the dimensionless parameter ±2 associated
with the intensity of the uniform external electric � eld (see Equa-
tions (35) and (19a)) at " D 78. Curves 1 and 2 depict the nu-
merical and the perturbation theory (see Equation (37)) results,
respectively.

Figures 3a and 3b show the dependence of the relative sur-
face, W̄ s ´ ° A=4¼° R2, and polarization, W̄ el ´ Wel=4¼° R2,
contributions to the work of the droplet formation. Curves 1
and 2 demonstrate the results of the numerical approach and
the results following from Equations (38) and (39), respectively.
Curve 3 shows these contributions for the droplet having the
form of a prolate spheroid. As follows from Cheng (1984), we
have in this case

W̄ s D
¯¡2=3

2
C

¯1=3e¡1
s

2
arc sin es; [40]

W̄ el D ¡
2

27

(" C 2)2

(" ¡ 1)
±2

1 C (" ¡ 1)¿
: [41]

Here

¿ ´
£¡

1 ¡ e2
s

¢
=2e3

s

¤
fln[(1 C es )=(1 ¡ es )] ¡ 2esg; [42]

es D
p

1 ¡ ¯2 is the eccentricity of the spheroid. The equilibrium
values for ¯ and es are determined from equation
@ Fº=@¯jR;± D 4¼° R2@ (W̄ s C W̄ el=@¯j± D 0.

As one can see, curves 1 and 3 almost coincide in Figures 3a
and 3b. At the same time the deviation of curve 2 from curve
1 increases with increasing ±2, but for W̄ el curve 2 lies above
curve 1, while for W̄ s curve 2 lies below curve 1. Figure 4 depicts
the behavior of sum W̄ s C W̄ el as a function of ±2. Agreement

of curve 1 obtained from the numerical procedure and curve
2 obtained from Equations (38) and (39) is rather good, and
it is possible to say about the compensation of deviations in
W̄ s and W̄ el . Because sum W̄ s C W̄ el is the only part in the free
energy of droplet formation that depends on ±2 (for a � xed vapor
chemical potential), we can conclude that the expression for the
free energy of droplet formation determined by the perturbation
theory is valid within a wide interval of ±2.

RESULTS FOR THE INTERNAL NONUNIFORM FIELD
OF HETEROGENEOUS NUCLEUS WITH AN ELECTRIC
DIPOLE MOMENT

The results of the numerical procedure described earlier for
the case of the internal nonuniform � eld of heterogeneous con-
densation nucleus with an electric dipole moment (speci� ed by
Equations (19b), (20b), (22b), and (34b)) are illustrated in Fig-
ure 5–10. Curve 1 in Figure 5 shows the dependence of droplet
aspect ration ¯(¯ ´ r̃(x D 0)=r̃ (x D 1)) on the dimensionless
parameter

´2 D 9
"(" ¡ 4)
(" C 2)2

H 2 [43]

at " D 10 (for dichlorethane). At small deviations of the droplet
shape from the sphere, parameter ´ has a geometrical meaning
of the eccentricity of an oblate (along the direction of the dipole
moment of the condensation nucleus) spheroid. This behavior
is con� rmed by the results of the perturbation theory for small
´2 (Shchekin and Varshavskii 1996). The following asymptotic
forms were obtained in Shchekin and Varshavskii (1996) for the
droplet shape, the chemical potential, and the surface and the
polarization contributions to the work of droplet formation
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where fW is the work of wetting of the heterogeneous conden-
sation nucleus by the bulk liquid ( fW is not important for our
analysis because it does not contribute to the energy barrier of
nucleation (Shchekin and Varshavskii 1996)). For the sake of
convenience, Equations (44)–(47) were rewritten in a slightly
changed form in comparison to Shchekin and Varshavskii (1996)
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(a) (b)

Figure 3. The dependence of the polarization contribution to the work of droplet formation W̄ el and the work of surface formation
W̄ s on the dimensionless parameter ±2 associated with the intensity of the uniform external electric � eld (see Equations (35) and
(19a)) at " D 10. Curves 1, 2, and 3 depict the numerical, the perturbation theory (see Equations (38) and (39)), and the prolate
spheroid (see Equations (40)–(42)) results, respectively.

Figure 4. Sum W̄ s C W̄ el as a function of the dimensionless
parameter±2 associated with the intensityof the uniform external
electric � eld (see Equations (35) and (19a)) at " D 10. Curves 1,
2, and 3 depict the numerical, the perturbation theory, and the
prolate spheroid results, respectively.

and we correct misprints that occurred in formulas (48) and (49)
Shchekin and Varshavskii (1996).

The plot of droplet aspect ratio versus ´2 that corresponds to
Equation (44) is depicted in Figure 5 by curve 2. As one can
see, good agreement between curves 1 and 2 is only for rather
small values of ´2 : ´2 <» 0.1 (this region is shown in detail in
the complementary � gure). The increasing deviation between
curves 1 and 2 for ´2 > 0.1 re� ects the asymptotic character of
expansion (44). It should be noted that the curve corresponding
to the term of order of ´2 in Equation (44) lies at ´2 > 0.1 above
curve 1 in Figure 5, while curve 2 lies below curve 1.

Figure 6 shows the dependence of parameter G, which is
related in view of Equation (30) to the chemical potential of
droplet substance, on ´2. Curve 1 represents the results of our
numerical approach, and curve 2 plots bRkT½® R=2° according
to Equation (45). As one can see, the agreement of both curves
is good even for high values of ´2. Thus we can conclude that
Equation (45) is valid in a very wide range of ´2, considerably
exceeding the range of validity for Equation (44).

The behavior of the chemical potential bR as a function of
dimensionless variable R=R¤, where R¤ ´ 2° =kT½® , is depicted
in Figure 7. The dipole moment was taken as

p D
q

(16=9)R5
¤¼° "®(¹)

with " D 10. The dependence shown in Figure 7 is typical for
heterogeneous nucleation (it is similar, for example, to the
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Figure 5. The dependence of aspect ratio ¯ of the droplet equi-
librium shape on the dimensionless parameter ´2 associated with
the dipole moment of the heterogeneous condensation nucleus
(see Equations (43) and (19b)) at " D 10. Curves 1 and 2 depict
the numerical and the perturbation theory (see Equation (44))
results, respectively.

behavior of the chemical potential of a droplet in ion-induced
nucleation).

Figures 8a and 8b show the dependence of the relative sur-
face, W̄ s , and polarization, W̄ el , contributions to the work of
droplet formation. Curves 1 and 2 demonstrate the results of our
numerical approach and the results following from Equations
(46) and (47), respectively. Figure 9 shows the behavior of sum
W̄ s C W̄ el as a function of ´2. The deviations in the curves shown
in Figures 8a, 8b, and 9 are similar to the deviations depicted in
Figures 3a, 3b, and 4. Thus we again can make the conclusion
about the mutual compensation of deviations in W̄ s and W̄ el in
the expression for the work of droplet formation.

Figure 10 shows the droplet shape in dimensionless cylin-
drical coordinates z̃ D z=R and ½̃ D ½=R at rather high values
of ´2: ´2 D 6.83. According to Equations (43) and (19b), such
a high value of ´2 requires an extremely small droplet size
and can not be achieved for any molecular dipole center. For
instance, we obtain R D 1.0 ÇA for droplets of dichlorethane
(" D 10, ° D 31 mN/m) corresponding to ´2 D 6.83 with the wa-
ter molecule as an electric dipole center (p D 1.83 D). Thus
Figure 10 illustrates the tendency rather than an observable
phenomenon.

DISCUSSION
Let us summarize the results of the investigation. The droplet

pro� le in the uniform external electric � eld looks like a prolate

Figure 6. The dependence of the droplet dimensionless chem-
ical potential G on the dimensionless parameter ´2 associated
with the dipole moment of the heterogeneous condensation nu-
cleus (see Equations (43) and (19b)) at " D 10. Curves 1 and 2
depict the numerical and the perturbation theory (see Equations
(30), (45)) results, respectively.

Figure 7. The dependence of the chemical potential of con-
densate in the dielectric droplet on the droplet size in the
internal electric � eld of a dipole of the heterogeneous con-
densation nucleus. Here R¤ D 2° =kT½® is the characteristic
scale of the droplet size. The location of the maximum in the
curve depends on dipole moment p, which was taken here as
p D (4=3) ¢ R5=2

¤
p

¼° "®(¹).
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(a) (b)

Figure 8. The dependence of the polarization contribution to the work of droplet formation W̄ el and the work of surface formation
W̄ s on the dimensionless parameter ´2 associated with the dipole moment of the heterogeneous condensation nucleus (see Equations
(43) and (19b)) at " D 10. Curves 1 and 2 depict the numerical and the perturbation theory (see Equations (46), (47)) results,
respectively.

Figure 9. Sum W̄ s C W̄ el as a function of the dimensionless
parameter ´2 associated with the dipole moment of the hetero-
geneous condensation nucleus (see Equations (43) and (19b))
at " D 10. Curves 1 and 2 depict the results of the numerical and
the perturbation theory, respectively.

Figure 10. The shape of the droplet in the internal electric
� eld of the dipole of the heterogeneous condensation nucleus at
" D 10, G D ¡7.98, H D 1.35, ´2 D 6.83, ¯ D 1.23, W̄ el D 6.44,
and W̄ s D 1.00487. The axis z is collinear with the dipole
moment Ep.
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(along the � eld direction) spheroid for all values of parameter ±2

until its critical value 0.4776. The droplet pro� le in the electric
� eld of the dipole of the heterogeneous nucleus looks like an
oblate (along the dipole moment direction) spheroid only for
small values of parameter ´2 and transforms to the apple-like
shape at large ´2.

Comparison of the thermodynamic results obtained by our
numerical procedure to that of the perturbation theory shows in
both considered cases the following: While the validity of the
droplet pro� les derived analytically is really limited to small
deviations from the spherical shape, the region of validity of the
formulas for the chemical potential and the free energy of droplet
formation is much wider. The main reason for is that provided by
the mutual compensation in the nonspherical and polarization
contributions. The partial compensation of these contributions
should take place even in the general case of an arbitrary electric
� eld. The distortion of the spherical shape of the droplet in the
axisymmetric electric � eld leads to decreasing of the polariza-
tion contribution to the free energy of droplet formation. Because
the surface energy contribution is minimal for the sphere (with a

� xed volume), the distortion of the spherical shape increases this
contribution. In view of generating properties of the free energy
of droplet formation in nucleation theory, the same conclusion
stays valid for other nucleation characteristics.
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