Kinetics of the Establishment of Quasi-Steady-State Regime of Overcoming Activation Barrier of Nucleation on the Macroscopic Wettable Nuclei

A. K. Shchekin, T. M. Yakovenko, and F. M. Kuni
Research Institute of Physics, St. Petersburg State University (Petrodvorets Branch), ul. Ul'yanovskaya 1, Petrodvorets, St. Petersburg, 198504 Russia

Received December 21, 2000

Abstract

The solution of the kinetic equation of nucleation on macroscopic wettable condensation nuclei was constructed for the initial (incubation) stage. The solution thus constructed determines the times of relaxation to quasi-steady-state distribution of droplets generating on droplet nuclei in the vicinity of maximum of the work of droplet heterogeneous formation as well as the relaxation to quasi-equilibrium droplet distribution throughout the entire region located to the left of this vicinity at the droplet size axis. The dependence of relaxation times on the height of activation barrier of nucleation, size of nuclei, their nature, and characteristics of matter comprising condensate was elucidated. It was shown when the non-steady-state rate of nucleation becomes actually equal to the quasi-steady-state rate of nucleation.

INTRODUCTION

The steady-state rate of nucleation is the regular frequency at which significantly overcritical droplets appear after the completion of the incubation period, the droplets further growing irreversibly; this rate is established in the course of overcoming the activation barrier of nucleation by the droplets. The height of this barrier is the activation energy of nucleation depends on the vapor supersaturation and, at the heterogeneous nucleation of a droplet on wettable condensation nucleus, is set by the difference in the height of potential barrier and the depth of potential well of the work of droplet formation on a nucleus. If, in the process of nucleation, the vapor supersaturation varies rather slowly as compared with the establishment of the steady-state regime of overcoming the activation barrier of nucleation at a current vapor supersaturation, the nucleation rate can be approximately considered as the steady-state value characterizing the quasi-steady-state regime of barrier overcoming. In order to answer more definitely when this approximation is valid, we should find the characteristic times of the incubation stage of nucleation, in particular, the time of the establishment of steady-state droplet distribution in the vicinity of the maximum of the work of droplet formation with allowance for the presence of preceding minimum of the formation work. These times will be determined in this work and it will be shown when the non-steady-state rate of nucleation becomes practically equal to the steady-state rate of nucleation.

In a final section of this work, the characteristic times thus determined will be compared with the earlier obtained times of the establishment of quasi-steadystate regime of overcoming the activation barrier in the
kinetics of homogeneous and heterogeneous nucleation [1-8], as well as in the kinetics of the initial stages of micellization [9]. Speaking of macroscopic wettable nuclei, we will have in mind the aerosol particles composed of substance both soluble and insoluble in a liquid condensing from vapor.

1. BASIC THERMODYNAMIC RELATIONS

We denote the chemical potential of condensate in the droplet by b_{v} considering it as a function of the number v of condensate molecules, and the chemical potential of vapor, by b. Chemical potentials b_{v} and b are expressed in thermal energy units $k T$ (where k is Boltzmann's constant and T is the temperature of vapor and droplet) and measured from the level corresponding to the equilibrium between the vapor and the condensed liquid at a flat contact surface. The work of droplet heterogeneous formation in vapor on the aerosol particle expressed in energy units $k T$ is denoted by F_{v}.

For work F_{v} we have general thermodynamic relation

$$
\begin{equation*}
\partial F_{v} / \partial v=b_{v}-b \tag{1.1}
\end{equation*}
$$

The dependence of work F_{v} of droplet heterogeneous formation on the number v of condensate molecules in the droplet is qualitatively shown in Fig. 1. The values of v corresponding to the equilibrium and critical droplets, that is to the minimum and maximum of the work F_{v}, we denote by v_{e} and v_{c}, respectively. The values of v_{e} and v_{c} are determined from the equality of the righthand side of expression (1.1) to zero. The value of v corresponding to the threshold value of the chemical potential of vapor b_{th} (i.e., to the largest maxima of the
condensate chemical potential b_{v}, provided that there are several maxima) is denoted by v_{th}; this value is found from the solution of equation

$$
\begin{equation*}
\partial b_{\mathrm{v}} /\left.\partial v\right|_{\mathrm{th}}=0 . \tag{1.2}
\end{equation*}
$$

In the following, subscripts th, e, and c at the values will indicate that these values are determined at $\mathrm{v}=\mathrm{v}_{\mathrm{th}}, \mathrm{v}=\mathrm{v}_{e}$, and $v=v_{c}$, respectively.

In the case of macroscopic condensation nuclei, the intense process of nucleation proceeds at the values of the chemical potential of vapor b located in the subthreshold region, i.e., at

$$
\begin{equation*}
b=b_{\mathrm{th}}(1-\varepsilon) \quad(\varepsilon>0, \varepsilon \ll 1) \tag{1.3}
\end{equation*}
$$

(see [1, 10-12] for more detail). For the condensate chemical potential b_{v}, we can use the parabolic approximation in the vicinity of point $v_{\text {th }}$

$$
\begin{equation*}
b_{v}=b_{\mathrm{th}}-\frac{1}{2}\left|\frac{\partial^{2} b_{v}}{\partial v^{2}}\right|_{\mathrm{th}}\left(v-v_{\mathrm{th}}\right)^{2} . \tag{1.4}
\end{equation*}
$$

At the parabolic approximation (1.4), the activation energy of nucleation ΔF and the coordinates of v_{e}, and ν_{c} depend on ε as [10-12]

$$
\begin{align*}
& \Delta F=\frac{4}{3} \varepsilon^{3 / 2} b_{\mathrm{th}}^{3 / 2}\left[2 /\left|\partial^{2} b_{\mathrm{v}} / \partial v^{2}\right|_{\mathrm{th}}\right]^{1 / 2}, \tag{1.5}\\
& v_{e}=v_{\mathrm{th}}-\left[2 \varepsilon b_{\mathrm{th}} /\left|\partial^{2} b_{\mathrm{v}} / \partial v^{2}\right|_{\mathrm{th}}\right]^{1 / 2}, \tag{1.6}\\
& v_{c}=v_{\mathrm{th}}+\left[2 \varepsilon b_{\mathrm{th}} /\left|\partial^{2} b_{\mathrm{v}} / \partial v^{2}\right|_{\mathrm{th}}^{1 / 2}\right]^{1 / 2} . \tag{1.7}
\end{align*}
$$

In the subthreshold region of vapor supersaturation, we can confine ourselves to the values of $\Delta F \leq 15$. At larger heights of activation barrier, the intensity of heterogeneous nucleation becomes negligible.

As supplementary characteristics, we determine the half-width $\Delta \mathrm{v}_{e}$ of the potential well in the vicinity of the minimum of the work of droplet formation and the halfwidth Δv_{c} of the potential barrier in the vicinity the maximum of this work at the v-axis. With allowance for Eqs. (1.1), (1.4), (1.6), and (1.7), we have [10-12]

$$
\begin{equation*}
\Delta \mathrm{v}_{e}=\Delta \mathrm{v}_{c}=\left(2 / \varepsilon b_{\mathrm{th}} \mid \partial^{2} b_{\mathrm{v}} / \partial \mathrm{v}_{\mid \mathrm{th}}\right)^{1 / 4} \tag{1.8}
\end{equation*}
$$

It follows from Eqs. (1.5)-(1.8) that values $\Delta F, v_{e}, v_{c}$, $\Delta \mathrm{v}_{e}$, and $\Delta \mathrm{v}_{c}$ are interrelated by the simple expressions

$$
\begin{equation*}
\left(\mathrm{v}_{c}-\mathrm{v}_{e}\right)^{2} / 3 \Delta \mathrm{v}_{e}^{2}=\left(\mathrm{v}_{c}-\mathrm{v}_{e}\right)^{2} / 3 \Delta \mathrm{v}_{c}^{2}=\Delta F . \tag{1.9}
\end{equation*}
$$

In the following, the vicinities of minimum and maximum of the work of droplet formation will be understood as the near-equilibrium $\left|v-v_{e}\right| \leqslant \Delta v_{e}$ and near-critical $\left|v-v_{c}\right| \leqslant \Delta v_{c}$ regions, respectively. We assume that these regions are not intersected at the v-axis; however, strong inequalities $\left(v_{c}-v_{e}\right) / \Delta v_{c} \geqslant 1$ or $\left(v_{c}-\right.$ $\left.\nu_{e}\right) / \Delta \nu_{e} \gg 1$ sometimes cannot be fulfilled. It follows from Eq. (1.9) that $\Delta F \approx 2$ can be considered as a lower limit of the values of activation energy. The vicinity of

Fig. 1. The work of droplet formation versus the number of condensate molecules v.
intersection point $\mathrm{v}=\mathrm{v}_{\mathrm{th}}$ is taken as the entire $\mathrm{v}_{e}-\Delta \mathrm{v}_{e} \leqslant$ $\nu \leq v_{c}+\Delta \mathrm{v}_{c}$ region.

2. THE KINETIC EQUATION OF NUCLEATION

We denote the number of droplets with size v per unit volume of the vapor-gas medium at time t by $n_{\mathrm{v}}(t)$. Droplet size distribution $n_{v}(t)$ increases in time according to the kinetic balance equation $[5,13,14]$

$$
\begin{equation*}
\partial n_{v}(t) / \partial t=J_{v-1}-J_{v}, \tag{2.1}
\end{equation*}
$$

where the droplet flux J_{v} at the transition unit $\{v \longrightarrow$ $v+1\}$ is determined as

$$
\begin{equation*}
J_{v}=W_{v}^{+} n_{v}-W_{v+1}^{-} n_{v+1} . \tag{2.2}
\end{equation*}
$$

Here, W_{v}^{+}and W_{v+1}^{-}are the numbers of vapor molecules absorbed by the droplet of v molecules and, correspondingly, emitted by the droplet of $v+1$ molecules per unit time. In a free molecular regime of the absorption of vapor molecules, we have

$$
\begin{equation*}
W_{v}^{+}=\alpha_{C}\left(v_{T} / 4\right) n_{1} S_{v}, \tag{2.3}
\end{equation*}
$$

where α_{C} is the coefficient of vapor molecule condensation at the droplet surface, n_{1} is the concentration of vapor molecules, v_{T} is the average thermal velocity of vapor molecules, and S_{v} is the droplet surface area.

It is convenient to pass to a new distribution function, using relation

$$
\begin{equation*}
f(v, t)=\left(n_{v}-n_{v}^{(s)}\right) / n_{v}^{(0)}, \tag{2.4}
\end{equation*}
$$

where $n_{v}^{(0)}$ and $n_{v}^{(s)}$ are the equilibrium and steady-state droplet size distributions, respectively. For the equilibrium and steady-state distributions, we have

$$
\begin{align*}
& \left.J_{v}\right|_{n_{v}=n_{v}^{(0)}}=0, \tag{2.5}\\
& \left.J_{v}\right|_{n_{v}=n_{v}^{(s)}}=J_{s}, \tag{2.6}
\end{align*}
$$

where J_{s} is v-independent steady-state nucleation velocity at given vapor supersaturation.

Substituting Eq. (2.4) into Eq. (2.1) with allowance for Eqs. (2.2), (2.5), and (2.6), assuming the sufficient flatness of $f(v, t)$ as a function of v, and retaining only two first terms in expansions $f(v, t)-f(v-1, t)$ and $f(v+1, t)-f(v, t)$ in powers of v at $v \gg 1$, we rewrite Eq. (2.1) as

$$
\begin{align*}
& \partial f(v, t) / \partial t=\left(W_{v}^{+}-W_{v}^{-}\right) \partial f(v, t) / \partial v \\
& \quad+\frac{1}{2}\left(W_{v}^{+}+W_{v}^{-}\right) \partial^{2} f(v, t) / \partial v^{2} \tag{2.7}
\end{align*}
$$

If the inequality $\left|\partial F_{v} / \partial v\right| \ll 1$ is additionally fulfilled, Eq. (2.7) can be, with the aid of equality $W_{v+1}^{-}=$ $W_{v}^{+} \exp \left(F_{v+1}-F_{v}\right)$, presented in the form

$$
\begin{align*}
& \partial f(v, t) / \partial t=-\left(W_{v}^{+} \partial F_{v} / \partial v-\partial W_{v}^{+} / \partial v\right) \tag{2.8}\\
& \quad \times \partial f(v, t) / \partial v+W_{v}^{+} \partial^{2} f(v, t) / \partial v^{2}
\end{align*}
$$

At the macroscopicity of condensation nuclei, inequalities $v \gg 1$ and $\left|\partial F_{v} / \partial v\right| \ll 1$ are readily fulfilled in the vicinities of extrema of the formation work F_{v} at the droplet size axis. As follows from Eqs. (1.1) and (1.4), derivative $\partial F_{v} / \partial v$ in the vicinity of extrema of F_{v} and in the region between the extrema is maximal in the inflection point $v=v_{\mathrm{th}}$. With allowance for Eqs. (1.1) and (1.3), equality $\partial F_{v} /\left.\partial v\right|_{\mathrm{th}}=b_{\mathrm{th}} \varepsilon$ is fulfilled in the inflection point; because strong inequalities $b_{\mathrm{th}} \ll 1$ and $\varepsilon \ll 1$ take place for macroscopic nuclei [1, 10-12], inequality $\partial F_{v} /\left.\partial v\right|_{\text {th }} \ll 1$ is valid. Thereby, we are convinced that inequality $\left|\partial F_{v} / \partial v\right| \ll 1$ is fulfilled within the entire vicinity $\mathrm{v}_{e}-\Delta \mathrm{v}_{e} \leq \nu \leq \mathrm{v}_{c}+\Delta \mathrm{v}_{c}$ of the inflection point $v=v_{\mathrm{th}}$. Equation (2.8) will be solved in the next section.

Let us cite the explicit relations for $n_{v}^{(0)}, n_{v}^{(s)}$, and J_{s}. They can be found, if one takes into account that Eq. (2.1) for distribution $n_{v}(t)$ at $v \gg 1$ and $\left|\partial F_{v} / \partial v\right| \ll 1$ can be written in the form of the Fokker-Planck equation [15]

$$
\begin{equation*}
\partial n_{v}(t) / \partial t=-\partial J_{v} / \partial v, \tag{2.9}
\end{equation*}
$$

where, with allowance for Eq. (2.2) and flatness of W_{v}^{+} followed from Eq. (2.3) and expression for W_{v}, we have

$$
\begin{equation*}
J_{v}=-W_{v}^{+} \partial F_{v} / \partial v n_{v}-W_{v}^{+} \partial n_{v} / \partial v \tag{2.10}
\end{equation*}
$$

Let us assume that $n_{v}, n_{v}^{(s)}$, and $n_{v}^{(0)}$ tend to zero and virtually coincide while moving to the left of the left boundary of the vicinity of the minimum of work F_{v} at the v-axis. We also take into account that n_{v} and $n_{v}^{(s)}$ become much smaller than $n_{v}^{(0)}$ when moving along the v-axis to the right of the right boundary of the vicinity of the maximum of work F_{v}. This implies that $n_{\mathrm{v}}^{(0)} f(v$,
$t) \longrightarrow 0$ takes place on the left and $f(v, t) \longrightarrow 0$, on the right of the vicinity of the inflection point of work F_{v}.

The aforementioned boundary conditions to $n_{v}^{(s)}$ allow us to write explicit expressions for the steadystate distribution and nucleation velocity. From Eqs. (2.6) and (2.10), we find

$$
\begin{align*}
n_{v}^{(s)}= & J_{s} \int_{\mathrm{v}}^{\left(\mathrm{v}_{c}+\Delta \mathrm{v}_{c}\right)} d v^{\prime} \exp \left(F_{\mathrm{v}^{\prime}}-F_{\mathrm{v}}\right) / W_{\mathrm{v}^{\prime}}^{+} \tag{2.11}\\
& \left(\mathrm{v}_{e}-\Delta \mathrm{v}_{e} \leq v \leq \mathrm{v}_{c}+\Delta \mathrm{v}_{c}\right), \\
J_{s}= & n_{\mathrm{v}}^{(0)} / \int_{\left(\mathrm{v}_{e}-\Delta v_{e}\right)}^{\left(\mathrm{v}_{c}+\Delta \mathrm{v}_{c}\right)} d v^{\prime} \exp \left(F_{\mathrm{v}^{\prime}}-F_{\mathrm{v}}\right) / W_{\mathrm{v}^{\prime}}^{+}, \tag{2.12}
\end{align*}
$$

where the upper limit in Eq. (2.11) and both limits of integration in Eq. (2.12) are taken arbitrarily. As is seen, at $\Delta F \geq 2$, the main contribution to the integrals in Eqs. (2.11) and (2.12) is introduced by the near-critical region, and the steady-state distribution $n_{v}^{(s)}$ virtually coincides with the equilibrium distribution $n_{v}^{(0)}$ at $v<$ $v_{c}-\Delta \nu_{c}$. Indeed, representing the equilibrium distribution $n_{v}^{(0)}$ as [1]

$$
\begin{equation*}
n_{v}^{(0)}=\left(n_{n} / \pi^{1 / 2} \Delta \mathrm{v}_{e}\right) \exp \left(F_{e}-F_{v}\right) \tag{2.13}
\end{equation*}
$$

where n_{n} is the concentration of nuclei per unit volume, with a good accuracy we obtain from Eqs. (2.11) and (2.12), the well-known relations

$$
=\left\{\begin{array}{l}
n_{\mathrm{v}}^{(0)} \quad \text { at } \quad \mathrm{v} \leqq \mathrm{v}_{c}-\Delta \mathrm{v}_{c} \\
n_{\mathrm{v}}^{(0)}\left[1-\frac{1}{\pi^{1 / 2} \Delta \mathrm{v}_{c_{v_{c}}-\Delta \mathrm{v}_{c}}^{(s)}} \int_{\mathrm{v}^{\prime}}^{\mathrm{v}} d \mathrm{v}^{\prime} \frac{W_{c}^{+}}{W_{\mathrm{v}^{\prime}}^{+}} \exp \left(F_{\mathrm{v}^{\prime}}-F_{c}\right)\right] \tag{2.15}\\
\text { at } \quad \mathrm{v} \geqq \mathrm{v}_{c}-\Delta \mathrm{v}_{c}, \\
J_{s}=n_{n} \frac{W_{c}^{+}}{\pi \Delta \mathrm{v}_{e} \Delta \mathrm{v}_{c}} \exp (-\Delta F) .
\end{array}\right.
$$

3. SOLUTION OF THE KINETIC EQUATION IN THE VICINITY OF THE INFLECTION POINT OF THE WORK OF NUCLEUS FORMATION

Assuming, on the basis of equality (2.3), that W_{v}^{+}is a sufficiently smooth function of v throughout the entire vicinity of the inflection point of the work of droplet formation (which is of interest to us), ignoring (at $v \gg 1$) corrections of the order of $1 / v$ and $\left(v_{c}-v_{e}\right) / v_{\mathrm{tb}}$, with adequate accuracy we can write the kinetic equation (2.8) in the following form:

$$
\begin{align*}
\partial f(v, t) / \partial t & =-W_{\mathrm{th}}^{+} \partial F_{\mathrm{v}} / \partial v \partial f(v, t) / \partial v \\
+ & W_{\mathrm{th}}^{+} \partial^{2} f(v, t) / \partial v^{2} \tag{3.1}
\end{align*}
$$

(that will be confirmed at the end of this section). Let us introduce new variables

$$
\begin{gather*}
x=\frac{v-\mathrm{v}_{\mathrm{th}}}{\mathrm{v}_{c}-\mathrm{v}_{e}} \tag{3.2}\\
\tau=\frac{W_{\mathrm{th}}^{+}}{\left(\mathrm{v}_{c}-\mathrm{v}_{e}\right)^{2}} t . \tag{3.3}
\end{gather*}
$$

Evidently, value $v=v_{e}$ corresponds to $x=-1 / 2$ and $v=v_{c}$, to $x=1 / 2$. Equation (3.1) in variables of Eqs. (3.2) and (3.3) and with allowance for Eqs. (1.1), (1.3)-(1.7) is written as

$$
\begin{equation*}
\frac{\partial f(x, \tau)}{\partial \tau}=\frac{\partial^{2} f(x, \tau)}{\partial x^{2}}-\frac{3}{2} \Delta F\left(1-4 x^{2}\right) \frac{\partial f(x, \tau)}{\partial x} \tag{3.4}
\end{equation*}
$$

We assume

$$
\begin{equation*}
f=\phi z \tag{3.5}
\end{equation*}
$$

and choose the ϕ function such that, after substituting Eq. (3.5) into Eq. (3.4), the coefficient at the first derivative with respect to z over x in the right-hand side of Eq. (3.4) vanishes. Then, we have

$$
\begin{equation*}
\phi=\exp \left[\frac{3 \Delta F}{4}\left(x-\frac{4}{3} x^{3}\right)\right] . \tag{3.6}
\end{equation*}
$$

In this case, Eq. (3.4) is reduced to the Schrödinger non-steady-state equation

$$
\begin{equation*}
\frac{\partial z}{\partial \tau}=\frac{\partial^{2} z}{\partial x^{2}}-\left[6 \Delta F x+\frac{9 \Delta F^{2}}{16}\left(1-4 x^{2}\right)^{2}\right] z \tag{3.7}
\end{equation*}
$$

for the motion in potential

$$
\begin{equation*}
V(x)=6 \Delta F x+\frac{9 \Delta F^{2}}{16}\left(1-4 x^{2}\right)^{2} \tag{3.8}
\end{equation*}
$$

Taking into account relations (3.2), (1.1), (1.3)(1.7), and (2.13), it is easy to see that

$$
\begin{equation*}
1 / \phi \propto \sqrt{n_{v}^{(0)}} . \tag{3.9}
\end{equation*}
$$

Then, from Eqs. (2.4), (3.5), and (3.9) it follows

$$
\begin{equation*}
z \propto\left(n_{v}-n_{\mathrm{v}}^{(s)}\right) / \sqrt{n_{\mathrm{v}}^{(0)}} \tag{3.10}
\end{equation*}
$$

From Eqs. (3.2) and (3.10) with allowance for what have been said in the preceding section, we arrive at the following boundary conditions to Eq. (3.7)

$$
\begin{gather*}
z \longrightarrow 0 \quad \text { at } \quad x \longrightarrow-\infty \tag{3.11}\\
z \longrightarrow 0 \quad \text { at } \quad x \longrightarrow \infty
\end{gather*}
$$

Potential V is shown in Fig. 2 as a function of x at two values of activation energy $\Delta F=3$ (curve 1) and $\Delta F=10$ (curve 2). It is seen that the potential has two

Fig. 2. Dependences of value $V / \Delta F$ on x at ΔF : (1) 3 and (2) 10 .
minima at large ΔF values. As the activation energy increases, the plot of the $V(x)$ function becomes more symmetric with respect to the ordinate and the coordinates of minima approach the values of $x=-1 / 2$ and $x=1 / 2$. As ΔF decreases, the right minimum (in the vicinity of the maximum of work F_{v} at the droplet size axis) vanishes. With a large margin at $-1<x<1$, the particle motion in potential $V(x)$ is restricted that is confirmed by the boundary condition (3.11). The spectrum of eigenvalues of Hermitian [at boundary conditions (3.11)] operator in the right-hand side of Eq. (3.7) is real and discrete.

All what have been said above allow us to seek for the solution of Eq. (3.7) by the method of separation of variables in the following form

$$
\begin{equation*}
z=\sum_{i=0}^{\infty} C_{i} \varphi_{i}(x) \exp \left(-E_{i} \tau\right) \tag{3.12}
\end{equation*}
$$

Here, C_{i} are the constants determined by the initial condition; E_{i} are the eigenvalues numerated in ascending order; and φ_{i} are eigenfunctions of equation

$$
\begin{equation*}
\hat{H} \varphi_{i}=E_{i} \varphi_{i} \quad i=0,1,2 \ldots \tag{3.13}
\end{equation*}
$$

where operator \hat{H} is set by expression

$$
\begin{equation*}
\hat{H}=-\frac{d^{2}}{d x^{2}}+6 \Delta F x+\frac{9 \Delta F^{2}}{16}\left(1-4 x^{2}\right)^{2} \tag{3.14}
\end{equation*}
$$

To find lower eigenvalues of operator \hat{H} that determine the largest relaxation times, we use the Ritz method. We take trial functions ψ_{0} and ψ_{1} in the form

$$
\begin{gather*}
\psi_{0}\left(x, \alpha, x^{\prime}\right)=(\alpha / \pi)^{1 / 4} \exp \left(-\frac{1}{2} \alpha\left(x-x^{\prime}\right)^{2}\right) \tag{3.15}\\
\psi_{1}\left(x, \alpha, x_{l}\right)=\left(4 \alpha^{3} / \pi\right)^{1 / 4}\left(x-x_{l}\right) \\
\times \exp \left(-\frac{1}{2} \alpha\left(x-x_{l}\right)^{2}\right) \tag{3.16}
\end{gather*}
$$

Fig. 3. Dependences of the optimal values of parameters (1) α_{0}, (2) α_{l}, and (3) α_{r} on ΔF.
where the x^{\prime} value can take the values of x_{l}, coordinate of the left (smaller), and x_{r}, coordinate of the right (larger) minima of potential V at the x-axis, parameter α being adjustment parameter. Let us define mean values $E_{0}\left(\alpha, x^{\prime}\right)$ and $E_{1}\left(\alpha, x_{l}\right)$ by relations $E_{0}\left(\alpha, x^{\prime}\right) \equiv$ $\int_{-\infty}^{\infty} \psi_{0} \hat{H} \psi_{0} d x$ and $E_{1}\left(\alpha, x_{l}\right) \equiv \int_{-\infty}^{\infty} \psi_{1} \hat{H} \psi_{1} d x$. In view of Eqs. (3.14)-(3.16), we have

$$
\begin{gather*}
E_{0}\left(\alpha, x^{\prime}\right)=\frac{\alpha}{2}+6 \Delta F x^{\prime} \\
+\frac{9 \Delta F^{2}}{16}\left[\left(1-4 x^{\prime 2}\right)^{2}+4 \frac{12 x^{\prime 2}-1}{\alpha}+\frac{12}{\alpha^{2}}\right] \tag{3.17}\\
E_{1}\left(\alpha, x_{l}\right)=\frac{3 \alpha}{2}+6 \Delta F x_{l} \\
+\frac{9 \Delta F^{2}}{16}\left[\left(1-4 x_{l}^{2}\right)^{2}+12 \frac{12 x_{l}^{2}-1}{\alpha}+\frac{60}{\alpha^{2}}\right] \tag{3.18}
\end{gather*}
$$

We seek for the optimal values of parameter α (denoted as α_{0}, α_{l}, and α_{r}) from the condition imposed on extrema for $E_{0}\left(\alpha, x_{l}\right), E_{0}\left(\alpha, x_{r}\right)$, and $E_{1}\left(\alpha, x_{l}\right)$, respectively. In this case, minimal values of $E_{0}\left(\alpha, x_{l}\right), E_{0}\left(\alpha, x_{r}\right)$, and $E_{1}\left(\alpha, x_{l}\right)$ determine actual eigenvalues E_{0}, E_{1}, and E_{2} of operator (3.14).

For the further discussion, we need to know coordinates x_{l} and x_{r}. From equations for extrema of potential V, we find x_{l} and x_{r} in the form of asymptotic expansions in powers of $1 / \Delta F$

$$
\begin{align*}
& x_{l}=-\frac{1}{2}-\frac{1}{3 \Delta F}+\frac{1}{3 \Delta F^{2}}+O\left(\frac{1}{\Delta F^{3}}\right) \tag{3.19}\\
& x_{r}=\frac{1}{2}-\frac{1}{3 \Delta F}-\frac{1}{3 \Delta F^{2}}+O\left(\frac{1}{\Delta F^{3}}\right) \tag{3.20}
\end{align*}
$$

Substituting expressions (3.19) and (3.20) into (3.17) and (3.18), from condition to extrema for $E_{0}\left(\alpha, x_{l}\right)$, $E_{0}\left(\alpha, x_{r}\right)$, and $E_{1}\left(\alpha, x_{l}\right)$, we obtain

$$
\begin{align*}
& \alpha_{0}=3 \Delta F+\frac{9}{2}+O\left(\frac{1}{\Delta F}\right) \tag{3.21}\\
& \alpha_{r}=3 \Delta F-\frac{3}{2}+O\left(\frac{1}{\Delta F}\right) \tag{3.22}\\
& \alpha_{l}=3 \Delta F+\frac{11}{2}+O\left(\frac{1}{\Delta F}\right) \tag{3.23}
\end{align*}
$$

respectively.
The plots of the dependences of optimal values of parameters α_{0}, α_{l}, and α_{r} on ΔF with exact solution of equations with respect to extrema $E_{0}\left(\alpha, x_{l}\right), E_{0}\left(\alpha, x_{r}\right)$, and $E_{1}\left(\alpha, x_{l}\right)$ are shown in Fig. 3. As is seen, the values of α_{0}, α_{l}, and α_{r} increase almost linearly with ΔF; i.e., asymptotics (3.21)-(3.23) are good approximations for these values.

Substituting expressions (3.19)-(3.23) into (3.17) and (3.18), we find the asymptotic representations for the desired eigenvalues

$$
\begin{gather*}
E_{0} \equiv E_{0}\left(\alpha_{0}, x_{l}\right)=\frac{11}{4}-\frac{113}{24 \Delta F}+O\left(\frac{1}{\Delta F^{2}}\right) \tag{3.24}\\
E_{1} \equiv E_{0}\left(\alpha_{r}, x_{r}\right)=6 \Delta F-\frac{13}{4}+O\left(\frac{1}{\Delta F}\right) \tag{3.25}\\
E_{2} \equiv E_{1}\left(\alpha_{l}, x_{l}\right)=6 \Delta F+\frac{47}{4}+O\left(\frac{1}{\Delta F}\right) \tag{3.26}
\end{gather*}
$$

Eigenfunctions φ_{i} corresponding to these eigenvalues can be represented, with allowance for Eqs. (3.15) and (3.16), as $\varphi_{0}=\psi_{0}\left(x, \alpha_{0}, x_{l}\right), \varphi_{1}=\psi_{0}\left(x, \alpha_{r}, x_{r}\right)$, and $\varphi_{2}=\psi_{1}\left(x, \alpha_{l}, x_{l}\right)$. Figures 4 and 5 show the plots of dependences of E_{0}, E_{1}, and E_{2} on ΔF, using exact relations for $x_{l}, x_{r}, \alpha_{0}, \alpha_{l}$, and α_{r} (without requirement for the smallness of $1 / \Delta F)$. In view of evident linearity of dependences for E_{1} and E_{2}, we conclude that asymptotics (3.25) and (3.26) result in good approximation of these values.

It is reasonable to question the effect of approximations made when passing from Eq. (2.8) to Eq. (3.1) on the found value of E_{0} [as the smallest eigenvalue of operator (3.14)]. If we did not do this passage, we could demonstrate that relation (3.24) would be transformed into relation $E_{0}=\frac{11}{4}-\frac{11}{12} \frac{\left(\mathrm{v}_{c}-\mathrm{v}_{e}\right)}{\mathrm{v}_{\mathrm{th}}}-\frac{113}{24 \Delta F}+$ $\frac{157}{72 \Delta F} \frac{\left(v_{c}-v_{e}\right)}{v_{\mathrm{th}}}$. Evidently, while fulfilling strong inequality $\left(v_{c}-v_{e}\right) / v_{\text {th }} \ll 1$, the effect of approximations made during passage from Eq. (2.8) to Eq. (3.1) is insignificant even for the smallest eigenvalue of E_{0}.

Fig. 4. Dependence of eigenvalue E_{0} on ΔF.

Note now that eigenvalue E_{1} exists actually only at $\Delta F>4$ when the right-hand minimum and maximum of potential $V(x)$ set by relation (3.8) are sufficiently far apart at the x-axis. At $\Delta F<4$, the right-hand minimum and maximum of potential $V(x)$ first converge to an inflection point and then vanish; correspondingly, eigenvalue E_{1} also vanishes. Thus, at $2 \leq \Delta F<4$, the main relaxation contribution to Eq. (3.12) is made only by the terms in Eq. (3.12) with eigenfunctions φ_{0} and φ_{2} corresponding to eigenvalues E_{0} and E_{2}.

4. CHARACTERISTIC TIMES OF HETEROGENEOUS NUCLEATION

Taking into account relations (2.4), (3.3), (3.12), (3.5), and (3.24)-(3.26), we arrive at the following expressions for characteristic times $\Delta t_{0}>\Delta t_{1}>\Delta t_{2}$ of the heterogeneous nucleation at the incubation stage:

$$
\begin{align*}
& \Delta t_{0}=\frac{\left(v_{c}-v_{e}\right)^{2}}{W_{\mathrm{th}}^{+}} \frac{1}{E_{0}}=\frac{4\left(v_{c}-v_{e}\right)^{2}}{11 W_{\mathrm{th}}^{+}(1-113 / 66 \Delta F)}, \tag{4.1}\\
& \Delta t_{1}=\frac{\left(v_{c}-v_{e}\right)^{2}}{W_{\mathrm{th}}^{+}} \frac{1}{E_{1}}=\frac{\left(v_{c}-v_{e}\right)^{2}}{6 W_{\mathrm{th}}^{+} \Delta F(1-13 / 24 \Delta F)}, \tag{4.2}\\
& \Delta t_{2}=\frac{\left(v_{c}-v_{e}\right)^{2}}{W_{\mathrm{th}}^{+}} \frac{1}{E_{2}}=\frac{\left(v_{c}-v_{e}\right)^{2}}{6 W_{\mathrm{th}}^{+} \Delta F(1+47 / 24 \Delta F)} . \tag{4.3}
\end{align*}
$$

There are two independent external parameters of a problem affecting characteristic times (4.1)-(4.3). One of these parameters is related to the size of condensation nucleus, while the other one, to the chemical potential (or supersaturation) of vapor. The nucleus size manifest itself in Eqs. (4.1)-(4.3) via values v_{th}, b_{th}, and $\left|\partial^{2} b_{v} / \partial v^{2}\right|_{\text {th }}$. For example, in the case of macroscopic nuclei of well-soluble surfactant, we have [11, 12]

$$
\begin{gather*}
v_{\mathrm{th}}=\left(9 v_{n} / 2 a\right)^{3 / 2} \tag{4.4}\\
b_{\mathrm{th}}=2(2 a)^{3 / 2} / 27 v_{n}^{1 / 2} \tag{4.5}
\end{gather*}
$$

Fig. 5. Dependences of eigenvalues (1) E_{1} and (2) E_{2} on ΔF.

$$
\begin{equation*}
\left|\partial^{2} b_{v} / \partial v^{2}\right|_{\mathrm{th}}=2^{11 / 2} a^{9 / 2} / 3^{10} v_{n}^{7 / 2} \tag{4.6}
\end{equation*}
$$

where the size of condensation nucleus dissolved in a droplet is characterized by the number v_{n} of its molecules or ions; $a=(4 \pi \gamma / k T)\left(3 v_{\alpha} / 4 \pi\right)^{2 / 3}$, γ is the droplet surface tension; and v_{α} is the molecular volume of condensate in the liquid phase.

According to Eqs. (1.3) and (1.5)-(1.7), the chemical potential of vapor enters into Eqs. (4.1)-(4.3) via values $\mathrm{v}_{c}-\mathrm{v}_{e}$ and ΔF. In this case, it is convenient to choose directly the height ΔF of activation barrier of nucleation, instead of the relative chemical potential of vapor ε, as a second independent parameter of a problem for the analysis of characteristic kinetic times. This is due to the fact that, as the size of condensation nucleus varies, we should remain in the subthreshold region of vapor metastability whose boundaries with respect to vapor supersaturation depend on the nucleus size. However, setting ΔF, we can satisfy this condition in the simplest manner.

From Eqs. (4.1)-(4.3) and in view of Eqs. (1.5)-(1.7), we arrive at the following general estimates of times $\Delta t_{0}, \Delta t_{1}$, and Δt_{2} :

$$
\begin{align*}
& \Delta t_{0}>\left(16 / 11 W_{\mathrm{th}}^{+}\right)\left(.\left|\partial^{2} b_{\mathrm{v}} / \partial v^{2}\right|_{\mathrm{th}}\right)^{2 / 3} \Delta F^{2 / 3} \tag{4.7}\\
& \Delta t_{1}>\left(2 / 3 W_{\mathrm{th}}^{+}\right)\left(3 / 2\left|\partial^{2} b_{\mathrm{v}} / \partial v^{2}\right|_{\mathrm{th}}\right)^{2 / 3} \Delta F^{-1 / 3} \tag{4.8}\\
& \Delta t_{2}<\left(2 / 3 W_{\mathrm{th}}^{+}\right)\left(3 / 2\left|\partial^{2} b_{\mathrm{v}} / \partial v^{2}\right|_{\mathrm{th}}\right)^{2 / 3} \Delta F^{-1 / 3} \tag{4.9}
\end{align*}
$$

respectively.
In the limit of large activation energies ΔF, inequalities (4.7)-(4.9) are transformed into equalities. It is seen that, as ΔF increases, time Δt_{0} increases, while times Δt_{1} and Δt_{2} diminish.

It was shown earlier $[2,3,9]$, that, at $\Delta F \gg 1$, time required to establish the steady state in the vicinity of the maximum of the work of droplet formation is equal to $\Delta t_{c}=\left(\Delta \nu_{c}\right)^{2} / 2 W_{\mathrm{th}}^{+}$, whereas the time required to establish the equilibrium distribution in the vicinity of
the minimum of formation work is equal to $\Delta t_{e}=$ $\left(\Delta \nu_{e}\right)^{2} / 2 W_{\mathrm{th}}^{+}$. When equality $\Delta \mathrm{v}_{e}=\Delta \mathrm{v}_{c}$ is fulfilled within the framework of approximation (1.4), characteristic times Δt_{e} and Δt_{c} coincide with each other. It is seen from relations (1.5) and (1.8) that times Δt_{c} and Δt_{e} are equal to the right-hand side of Eq. (4.8); i.e., they coincide with times Δt_{1} and Δt_{2} in the principal order with respect to small parameter $1 / \Delta F$. A large number of works are available (for example, see [6-8]) on the study of times required to establish the steady state in the vicinity of the maximum of the work of droplet formation in the theory of homogeneous nucleation, which are reviewed in a monograph [5]. Times obtained in [58] are characterized by the same functional dependence on the half-width $\Delta \mathrm{v}_{c}$ and value W_{th}^{+}as the principal term of expression (4.2) for time Δt_{1} in the principal order with respect to small parameter $1 / \Delta F$ [with allowance for Eq. (1.9)] and only slightly differ in the numerical coefficient.

Based on relations (3.10), (3.12), (3.15), (3.16), and (3.19)-(3.26) and taking into account equalities (4.1)(4.3), we interpret relaxation times $\Delta t_{0}, \Delta t_{1}$, and Δt_{2}. It is seen that time Δt_{0}, which is the longest of all relaxation times, actually determines the establishment of equilibrium droplet distribution over the entire region $\nu_{e}-\Delta \nu_{e} \leqslant \nu \leqq \nu_{c}-\Delta \nu_{c}$ where the $\varphi_{0}(x)$ function is nonzero. The establishment of steady-state droplet distribution in the near-critical region $\left|v-v_{c}\right| \leqslant \Delta v_{c}$ depends on the value of ΔF. If $\Delta F>4$, the eigenvalue E_{1} and eigenfunction $\varphi_{1}(x)$ exist. Since eigenfunctions $\varphi_{0}(x)$ and $\varphi_{2}(x)$ in the near-critical region are exponentially small as compared with this function, time Δt_{1} determines, in accordance with [2-4], the establishment of steadystate droplet distribution in this region. However, if $2 \leqslant$ $\Delta F \lesssim 4$, the eigenvalue E_{1} and eigenfunction $\varphi_{1}(x)$ do not exist. Then, the establishment of droplet steadystate distribution in the near-critical region is determined by times Δt_{0} and Δt_{2}. In this case, this establishment occurs slower in view of inequality $\Delta t_{0}>\Delta t_{1}$. Note, however, that, at all $t>0$ in the near-critical region, deviation $n_{v}-n_{v}^{(s)}$ is small due to the exponential smallness of eigenfunctions $\varphi_{0}(x)$ and $\varphi_{2}(x)$.

Let us find now how the nucleation rate varies in time. For the non-steady-state nucleation rate J_{c} (equal to droplet flux J_{v} along the size axis at $v=v_{c}$), from Eqs. (2.4)-(2.6) and (2.10), we find

$$
\begin{equation*}
J_{c}=J_{s}-\left.W_{v}^{+} n_{v}^{(0)} \frac{\partial f}{\partial v}\right|_{v=v_{c}} \tag{4.10}
\end{equation*}
$$

Allowing for relations (3.2), (3.5), (3.6), and (3.12), we transform Eq. (4.10) into:

$$
\begin{equation*}
J_{c}=J_{s}-\left.\frac{W_{c}^{+} n_{c}^{(0)}}{v_{c}-v_{e}} \sum_{i=0}^{\infty} C_{i} \phi \frac{\partial \varphi_{i}}{\partial x}\right|_{x=\frac{1}{2}} e^{-E_{i} \tau} \tag{4.11}
\end{equation*}
$$

Taking into account equalities (2.13), (2.15), and (1.9) and considering only the contributions with the longest relaxation times, we rewrite expression (4.11) with allowance for (3.15), (3.16), (3.19)-(3.26), (3.3), and (4.1)-(4.3) as

$$
\begin{align*}
\frac{J_{c}}{J_{s}}= & 1+\pi^{1 / 4}(3 \Delta F)^{3 / 4} e^{-5 \Delta F / 4-13 / 4} C_{0} e^{-t / \Delta t_{0}} \\
& +\frac{\pi^{1 / 4}}{(3 \Delta F)^{1 / 4}} e^{\Delta F / 4} C_{1} e^{-t / \Delta t_{1}} \tag{4.12}\\
+ & (4 \pi)^{1 / 4}(3 \Delta F)^{5 / 4} e^{-5 \Delta F / 4-15 / 4} C_{2} e^{-t / \Delta t_{2}},
\end{align*}
$$

where only the principal orders with respect to ΔF are accounted for in pre-exponential factors, whereas the first corrections with respect to small parameter $1 / \Delta F$ are additionally taken into account in the powers of exponents. Let us suggest that the values of coefficients C_{0}, C_{1}, and C_{2} that are determined by the initial condition to the droplet size distribution are of the order of unity. At $\Delta F \gtrless 2$, the second and fourth summands in the right-side of Eq. (4.12) will be at least by two orders of magnitude smaller than unity at all $t>0$. Then, it is seen from Eq. (4.12) that these summands cannot cause any noticeable deviations in the non-steady-state nucleation rate J_{c} from the steady-state rate J_{s}. This is explained by the fact that eigenfunctions φ_{0} and φ_{2} corresponding to eigenvalues E_{0} and E_{2} are exponentially small near the value $v=v_{c}$ in Eq. (4.10). The third term in the right-hand side of Eq. (4.12) appearing only at $\Delta F>4$ (when eigenvalue E_{1} exists) becomes exponentially smaller than unity at $t \geqslant t_{1}$. Thus, at $\Delta F>4$, time Δt_{1} is the time of the relaxation of non-steady-state nucleation rate J_{c} to the steady-state value J_{s}. As was already noted, in the principal order with respect to small parameter $1 / \Delta F$, this time coincides with time Δt_{c} found in [2-4].

ACKNOWLEDGMENTS

This work was supported by the Russian Foundation for Basic Research, project no. 98-03-32009a. T.M. Yakovenko is grateful to Bergen Nansen Center for Ecology and Remote Probing for financial support.

REFERENCES

1. Kuni, F.M., Shchekin, A.K., and Rusanov, A.I., Kolloidn. Zh., 1993, vol. 55, no. 2, p. 45.
2. Melikhov, A.A., Trofimov, Yu.V., and Kuni, F.M., Kolloidn. Zh., 1994, vol. 56, no. 2, p. 201.
3. Shchekin, A.K., Yakovenko, T.M., and Kuni, F.M., in Nucleation and Atmospheric Aerosols, Hale, B. and Kulmala, M., Eds., Rolla: American Inst. of Physics, 2000, p. 511.
4. Kuni, F.M. and Grinin, A.P., Kolloidn. Zh., 1984, vol. 46, no. 1, p. 23.
5. Kashchiev, D., Nucleation. Basic Theory with Applications, Oxford: Butterworth-Heinemann, 2000.
6. Shi, G., Seinfeld, J.H., and Okuyama, K., Phys. Rev. A: Gen. Phys., 1990, vol. 41, no. 4, p. 2101.
7. Demo, P. and Kožisěk, Z., Phys. Rev. B: Condens. Matter, 1993, vol. 48, no. 6, p. 3620.
8. Demo, P. and Kožišek, Z., Philos. Mag. B, 1994, vol. 70, no. 1, p. 49.
9. Kuni, F.M., Grinin, A.P., Shchekin, A.K., and Rusanov, A.I., Kolloidn. Zh., 2000, vol. 62, no. 4, p. 505.
10. Kuni, F.M., Shchekin, A.K., Rusanov, A.I., and Widom, B., Adv. Colloid Interface Sci., 1996, vol. 65, p. 71.
11. Kuni, F.M., Shchekin, A.K., and Rusanov, A.I., Kolloidn. Zh., 1993, vol. 55, no. 2, p. 34.
12. Shchekin, A.K., Kuni, F.M., Yakovenko, T.M., and Rusanov, A.I., Kolloidn. Zh., 1995, vol. 57, no. 1, p. 99.
13. Becker, R., Theory of Heat, Berlin: Springer-Verlag, 1967. Translated under the title Teoriya teploty, Moscow: Energiya, 1974.
14. Volmer, M., Kinetik der Phasenbildung, Dresden: Steinkopff, 1939. Translated under the title Kinetika obrazovaniya novoi fazy, Moscow: Nauka, 1986.
15. Zel'dovich, Ya.B., Zh. Eksp. Teor. Fiz., 1942, vol. 12, nos. 11-12, p. 525.
