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INTRODUCTION

We continue the study of micellization in a solution
of colloidal surfactant initiated in [1–4]. The elucida-
tion of the hierarchy of the characteristic times of
micellization is the major aim of this work. The exist-
ence of hierarchy proves reliably that the quasi-equilib-
rium concentrations of molecular aggregates in subcrit-
ical and overcritical regions of their sizes and the quasi-
steady-state concentration of molecular aggregates in
the near-critical region of their sizes that were qualita-
tively substantiated in [2] are actually established.
Remember that the establishment of the aforemen-
tioned concentrations plays a key role in the analytical
theory of the relaxation of micellar solution developed
in [2–4]. The hierarchy also gives a clear indication of
the relative values of the times of the formation and
decomposition of micelles and of the complex multi-
stage process of approaching micellar solution to the
final state of equilibrium. As in [1–4], we consider the
colloidal surfactant as a nonionic substance and the
mixture of molecular aggregates in a solution as an
ideal mixture.

1. CHARACTERISTIC KINETIC TIMES
OF MICELLIZATION

The aggregation number of a molecular aggregate of
a surfactant in a micellar solution is denoted by 

 

n

 

. At

 

n

 

 = 1, the aggregates are none other than surfactant
monomers, which are identical in the considered case
of one nonionic surfactant. The monomer concentration
is denoted by 

 

c

 

1

 

. The work formation of an aggregate in
the solution containing initially only surfactant mono-
mers is expressed in thermal units 

 

kT

 

 (

 

k

 

 is Boltzmann’s

constant and 

 

T

 

 is the solution temperature) and denoted
by 

 

W

 

n

 

. The aggregation numbers of critical and stable
molecular aggregates corresponding to the positions of
maximum and minimum work 

 

W

 

n

 

 at the 

 

n

 

-axis we
denote by 

 

n

 

c

 

 and 

 

n

 

s

 

, respectively; these maximum and
minimum works, i.e., the height of a potential barrier
and the depth of a potential well are denoted by 

 

W

 

c

 

 

 

≡

 

W

 

n

 

 

 

and 

 

W

 

s

 

 

 

≡

 

 

 

W

 

n

 

, respectively. The half-
widths of potential barrier and potential well, which are
defined by equalities (1.1) in [2], we denote by 

 

∆

 

n

 

c

 

 and

 

∆

 

n

 

s

 

, respectively. The regions 

 

n

 

 

 

& 

 

n

 

c

 

 – 

 

∆

 

n

 

c
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n

 

c

 

 – 

 

∆

 

n

 

c

 

 

 

&

 

n

 

 

 

&

 

 

 

n

 

c

 

 + 

 

∆

 

n

 

c

 

, and 

 

n

 

 

 

*

 

 

 

n

 

c

 

 + 

 

∆

 

n

 

c

 

 we call subcritical, near-
critical, and overcritical regions, respectively. Micelles
are mainly concentrated in the 

 

n

 

s

 

 – 

 

∆

 

n

 

s

 

 

 

&

 

 

 

n

 

 

 

&

 

 

 

n

 

s

 

 + 

 

∆

 

n

 

s

 

region. We call this region micellar. It is located inside
the overcritical region. The total micelle concentration
(their total concentration in the micellar region) we
denote by 

 

c

 

M

 

.
The study performed in [2–4] concerns an interest-

ing practical situation where the concentration of sur-
factant monomers exceeds the critical micellization
concentration, but is lower than the concentration cor-
responding to the onset of the formation of macro-
scopic phase (crystalline hydrate or liquid crystal of a
surfactant). Then, the conditions of the applicability of
the macroscopic description of the micellization kinet-
ics employed in [2–4] are:

 

(1.1)

(1.2)

 

(conditions (1.2) and (1.3) in [2]). The first conditions
of (1.1) and (1.2) allow us to assume that the value of

|n nc= |n ns=

∆nc @ 1, ∆nc/nc ! 1, ∆nc/ ns nc–( ) ! 1,

∆ns @ 1, ∆ns/ ns nc–( ) ! 1
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.

 

n

 

 is continuous in the important (for the micellization
kinetics) regions of the potential barrier and the poten-
tial well of work 

 

W

 

n

 

. The remaining conditions of (1.1)
and (1.2) imply that the potential barrier and potential
well of work 

 

W

 

n

 

 are most clearly pronounced: they are
divided from the initial point 

 

n

 

 = 1 at the 

 

n

 

-axis and sep-
arated from each other at this axis. This circumstance is
expressed by the inequalities

 

(1.3)

 

followed from conditions (1.1) and (1.2) [inequalities
(1.4) in [2]].

According to relations (2.14)–(2.17) in [4], it is true
that

 

(1.4)

(1.5)

 

From Eqs. (1.4) and (1.5), it follows that

 

(1.6)

 

In view of Eq. (1.4), the first inequality of (1.3)
becomes weaker with an increase in surfactant mono-
mer concentration 

 

c

 

1

 

. However, the first inequality of
(1.3) remains extremely strong due to its exponential
character, in spite of the fact that the monomer concen-
tration in the region, which is of interest to us, does not
exceed the intensity of the formation of the surfactant
macroscopic phase. Inequality (1.6) demonstrates that
the second inequality of (1.3) becomes stronger, as sur-
factant monomer concentration 

 

c

 

1

 

 increases. This is
contributed by the possible, in view of (1.5), passage of
minimum work 

 

W

 

s

 

 to the region of its negative values.
The fact that the fulfillment of conditions (1.1) and

(1.2) provides the existence of the hierarchy of charac-
teristic kinetic times of micellization, which is needed
for the validity of the analytical theory of the relaxation
of micellar solution developed in [2–4], is yet to be
proved.

Let us collect the data on the characteristic kinetic
times obtained in [3, 4]. We deal, above all, with the
times 

 

t

 

s

 

 and 

 

t

 

' 

 

of the establishment of quasi-steady-state
concentrations of molecular aggregates in micellar and
subcritical regions, respectively; time 

 

t

 

''

 

 of the estab-
lishment of quasi-steady-state concentration of molec-
ular aggregates in the part of overcritical region located
to the left of micellar region at the 

 

n

 

-axis; and with the
time 

 

t

 

c

 

 of the establishment of quasi-steady-state con-
centration of molecular aggregates in the near-criti-
cal region. For the times listed above, we have (for-
mulas (1.16)–(1.18) and (2.13) in [3])

 

(1.7)

(1.8)

(1.9)

Wc( ) @ 1, Wc( ) @ Ws( )expexpexp

∂Wc/∂c1 nc 1–( )/c1, ∂Wc/∂c1 0,<–=

∂Ws/∂c1 ns 1–( )/c1, ∂Ws/∂c1– 0.<=

∂ Wc Ws–( )/∂c1exp 0.>

ts ∆ns( )2/2 js
+,=

t ' nc∆nc/ jc
+,≈

t '' ns nc–( )∆nc/ jc
+,≈

(1.10)

Here,  (  > 0) is the number of surfactant monomers
absorbed by the stable molecular aggregate from the

solution per unit time (n = ns); and  (  > 0) is the
number of surfactant monomers absorbed by the criti-
cal molecular aggregate from the solution per unit time
(n = nc).

At the final stage of micellization, the (c1 – )/
value (wavy bar denotes the values in the final state
of  solution equilibrium) is changed, according to esti-
mate (5.3) in [4], by less than 1/ . Within the interval
of times shorter than the duration of final stage, the (c1 –

)/  value varies still much less. In view of (1.5) and
(1.4) and ns > nc, this readily proves the assumption
(used in [3]) on the constancy of concentration c1 dur-
ing determining the times ts and tc.

If times ts, t ', t '', and tc give an idea of the evolution
of the ensemble of molecular aggregates within the
characteristic ranges of aggregation numbers, the aver-
age time τ1 between the successive acts of emission of
surfactant monomers by a micelle and the average
value of micelle lifetime τM characterize a single
micelle. For these times, we have

(1.11)

(1.12)

(expressions (3.4) and (3.7) in [3]). The shorter the
time τ1, the greater the ability of a micelle to change the
composition of constituting molecules. The longer time
τM, the more stable the micelle is as an aggregative
molecular formation.

We assume, as in [5], that the velocity  of the vari-
ation (with time) of aggregation number n of molecular
aggregate is given by the relation

(1.13)

Here, D is the diffusion coefficient of monomers in
micellar solution; v  is the parameter characterizing the
velocity of monomer absorption from the solution at
the surface of molecular aggregate; R is the radius of
aggregate (for simplicity, assumed to be spherical);
c1n is the concentration of monomers in an imaginary
micellar solution, which is at material equilibrium (at
the same temperature and pressure as the micellar solu-
tion being considered) with an aggregate of n mole-
cules.

According to formula (3.20) in [2], the relation

(1.14)

tc ∆nc( )2/2 jc
+.=

js
+ js

+

jc
+ jc

+

c̃1 c̃1

ñs

c̃1 c̃1

τ1 1/ js
+,=

τM π∆nc∆ns Wc Ws–( )/ jc
+exp=

ṅ

ṅ 4πD
v R2 c1 c1n–( )

D v R+
---------------------------------.=

ṅ jn
+ 1 c1n/c1–( )=
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is valid, where  (  > 0) is the number of surfactant
monomers absorbed from solution by the aggregate of
n molecules per unit time. It follows from Eqs. (1.13)
and (1.14) that

(1.15)

and in particular, for the critical and stable molecular
aggregates

(1.16)

respectively, where Rc and Rs are the radii of these
aggregates.

Formula (1.13) as well as formulas (1.15) and (1.16)
refer to the steady-state regime of the matter exchange
between solution and molecular aggregate. In the real-
istic (for micellar solution) situation, where the radius
of molecular aggregate R is so small that vR/D ! 1, the
establishment of this regime occurs during time tj , for
which relation

(1.17)

was derived in [5]. Time tj given by expression (1.17)
supplements the set of the characteristic kinetic times
of micellization.

Finally, for time tr of the relaxation of micellar solu-
tion at the final stage of micellization, i.e., the time of
the establishment of the final (at this stage) equilibrium
state at the material isolation of a solution we have

(1.18)

[expression (4.8) in [4]].

The manner in which concentrations  and  of
surfactant monomers and micelles at the final equilib-
rium state of micellar solution at a given overall surfac-
tant concentration can be determined, was demon-
strated in [4]. In this case, concentrations  and  are
interrelated by the equality

(1.19)

(equality (4.13) in [4]).

The /  value represents the ratio of the
amount of substance accumulated by micelles in the
final equilibrium state of solution to the amount of sub-
stance remained in the form of monomers. Two repre-
sentative limiting cases are of interest.

In the first of these case, the inequality

jn
+ jn

+

jn
+ 4πDc1

v R2

D v R+
------------------=

jc
+ 4πDc1

v Rc
2

D v Rc+
---------------------,=

js
+ 4πDc1

v Rs
2

D v Rs+
--------------------,=

t j 102R2/D v R/D ! 1( )≈

tr

π1/2c̃M∆ñc W̃c( )exp

c̃1 jc
+

---------------------------------------------- 1
ñs

2c̃M

c̃1
-----------+ 

 
1–

=

c̃1 c̃M

c̃1 c̃M

c̃M/c̃1 π1/2∆ñs W̃s–( )exp=

ñsc̃M c̃1

(1.20)

is fulfilled; in view of inequality  @ 1 followed from
Eq. (1.2), this situation actually takes place when

/  * 1; i.e., when micelles in the final state of
solution equilibrium accumulate noticeable or even the
major part of all amount of surfactant containing in
solution. Then, according to Eq. (1.18), relation

(1.21)

is valid (expression (4.10) in [4]).
In the second representative case, inequality

(1.22)

is fulfilled. Furthermore, in view of  @ 1, inequality

/  ! 1 is also fulfilled; hence, micelles in the
final state of solution equilibrium absorb only small
part of the entire amount of surfactant containing in
solution. Then, according to Eq. (1.18), relation

(1.23)

is true (expression (4.12) in [4]).

2. HIERARCHY OF THE CHARACTERISTIC 
KINETIC TIMES OF MICELLIZATION

Let us disclose the hierarchy of the characteristic times
of micellization. According to relations (1.8)–(1.10), we
have

(2.1)

Taking conditions (1.1) into account and using estimate
ns – nc * nc (which allows for the equality of the
orders of magnitude for ns – nc and nc), we obtain from
Eq. (2.1)

(2.2)

According to Eqs. (1.7) and (1.10), we have

(2.3)

Analytical models [6, 7] for the formation work Wn of
molecular aggregate in surfactant solution do not result
in large differences between the values of ∆nc and ∆ns.

Assuming, as in [8], that the great difference in the 

and  values is also improbable, we can see from
Eq. (2.3) that

(2.4)

ñs
2c̃M/c̃1 @ 1

ñs

ñsc̃M c̃1

tr

π1/2∆ñc W̃c( )exp

ñs
2 j̃c

+
--------------------------------------- ñs

2c̃M/c̃1 @ 1( )=

ñs
2c̃M/c̃1 ! 1

ñs

ñsc̃M c̃1

tr

π1/2c̃M∆ñc W̃c( )exp

c̃1 j̃c
+

---------------------------------------------- ñs
2c̃M/c̃1 ! 1( )=

t '/tc 2nc/∆nc,≈
t ''/tc 2 ns nc–( )/∆nc.≈

t ''/tc * t '/tc @ 1.

tc/ts ∆nc/∆ns( )2 js
+/ jc

+( ).=

jc
+

js
+

tc/ts 1.∼
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According to Eqs. (1.7) and (1.11), we have

(2.5)

Substituting the first condition of (1.2) into Eq. (2.5),
we obtain

(2.6)

According to Eqs. (1.15) and (1.17), at ,
we have

(2.7)

Strong inequality c1R3 ! 1 is true: the number of mono-
mers per solution volume that is equal (by the order of
magnitude) to the volume of molecular aggregate (~R3)
is quite small due to a relatively small size of an aggre-
gate and the dilution of a micellar solution. Then, from
Eq. (2.7) with allowance for vR/D ! 1, it follows that

(2.8)

According to Eq. (1.17), time tj increases with R.
Hence, it is the longest time in the micellar region of
aggregate sizes. Applying inequality (2.8) to this
region, using Eq. (1.11) we obtain

(2.9)

that is true at any sizes of molecular aggregates (includ-
ing those in a micellar region).

Further we consider the representative case where
inequality (1.20) or reverse inequality (1.22) are true.

According to Eqs. (1.21) and (1.9), in the first repre-
sentative case we have

(2.10)

[we used the estimate (1.9) as applied to the final stage
of micellization]. Taking into account that the first ine-
quality of (1.3) is extremely strong due to its exponen-
tial character, we readily obtain from Eq. (2.10)

(2.11)

Further, in the same representative case, according
to Eqs. (1.12) and (1.21) with allowance for Eq. (1.19),
we have

(2.12)

[we used expression (1.12) as applied to the final stage
of micellization]. From Eq. (2.12) with the fulfillment
of inequality (1.20), directly follows

(2.13)

In general, the set of relations (2.2), (2.4), (2.6),
(2.9), (2.11), and (2.13) discloses the following hierar-
chy of the times of micellization kinetics:

(2.14)

ts/τ1 ∆ns( )2/2.=

ts/τ1 @ 1.

v R/D ! 1

t j jn
+ 4π 102c1R3 v R/D( ) v R/D ! 1( ).×≈

t j jn
+
 ! 1.

t j/τ1 ! 1,

tr/t '' π1/2 W̃c( )/ ñs ñc–( )ñs
2 ñs

2c̃M/c̃1 @ 1( )exp≈

tr/t '' @ 1 ñs
2c̃M/c̃1 @ 1( ).

τM/tr ñs
2c̃M/c̃1 ñs

2c̃M/c̃1 @ 1( )=

τM/tr @ 1 ñs
2c̃M/c̃1 @ 1( ).

τM @ tr @ t '' * t ' @ tc ts @ τ1 @ t j∼

ñs
2c̃M/c̃1 @ 1( ).

The last five relation in the hierarchical sequence (2.14)
are not related with the limit (1.20).

In the case when the inequality (1.20) is fulfilled, the
final stage of micellization is preceded by the stage of
its build-up. According to [4], the duration t0 of this
stage is not longer than time tr by factor of 1.5–2.5. This
allows us to easily find out the place of time t0 in the
hierarchy of the kinetic times of micellization.

Let us now pass to the second representative case
where the inequality (1.22) is fulfilled. According to
Eqs. (1.23) and (1.9), we have

(2.15)

[we used estimate (1.9) as applied to the final stage of
micellization]. Substituting the first of inequalities (1.3),
we readily obtain from Eq. (2.15)

(2.16)

Further, in the same representative case, according
to Eqs. (1.12) and (1.23) with allowance for Eq. (1.19),
we have

(2.17)

[we used expression (1.12) as applied to the final stage
of micellization].

In total, the set of relations (2.2), (2.4), (2.6), (2.9),
(2.16), and (2.17) discloses the following hierarchy of
the kinetic times of micellization:

(2.18)

The last five relations in the hierarchical sequence
(2.18) are not related with the limit (1.22).

According to Eqs. (2.14) and (2.18), times ts, t ', t '',
and tc are much shorter than time tr. This is easily
proved by the fact that quasi-steady-state concentra-
tions of molecular aggregates in subcritical and over-
critical regions and quasi-steady-state concentration of
molecular aggregates in the near-critical region that
were qualitatively substantiated in [2] are actually
established. As is seen from the proportionality

between time tr and exponent exp( ), the statement
of the smallness of times ts, t ', t '', and tc (compared with
time tr) is valid, as well as in the general case that is not
related with inequalities (1.20) and (1.22), since, in the
final analysis, it is the sequence of an extremely strong
inequality (1.3).

It follows from Eqs. (2.14) and (2.18) that time tj is
the shortest time of all characteristic times of micelliza-
tion. This indicates that the kinetic process of micelli-
zation begins with the formation of quasi-steady-state

absorption intensities , , and .

tr/t '' π1/2 W̃c( )c̃M/ ñs ñc–( )c̃1exp≈

ñs
2c̃M/c̃1 ! 1( )

tr/t '' @ 1 ñs
2c̃M/c̃1 ! 1( ).

τM/tr 1 ñs
2c̃M/c̃1 ! 1( )=

τM tr @ t '' * t ' @ tc ts @ τ1 @ t j∼=

ñs
2c̃M/c̃1 ! 1( ).

W̃c
+

jn
+ jc

+ js
+
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Time τM ranks first and time τ1 is the second-small-
est among the characteristic times of the micellization
kinetics in the hierarchical sequences (2.14) and (2.18).
This demonstrates that the micelles are stable molecu-
lar formations, which are quite capable of renewing the
composition of constituting molecules.

As was mentioned in [3], time τ1 determines
(via nsτ1) the average value of the resident time of a sur-
factant monomer specified (labeled) in a micelle.
Denoting this time by τ2, we thus arrive at

(2.19)

It follows from Eqs. (2.5) and (2.19) that

(2.20)

According to [6, 7], the value in the right-hand side of
Eq. (2.20) is close (by the order of magnitude) to unity.
Then, we have

(2.21)

Estimate (2.21) allows us to easily establish the place
occupied by time τ2 in the hierarchy of kinetic times.

3. TIME OF THE FAST RELAXATION
OF MICELLAR SOLUTION

Let us elucidate the interrelation between time ts and
the time of fast relaxation of solution that was found in
[8]. This makes it possible to clarify the concepts of fast
and slow relaxations of micellar solution introduced in
[8] and widely used in literature as the concepts corre-
sponding to the process of local rearrangement of
micelles without changing their numbers in a micellar
region and to the process of the establishment of final
equilibrium in the entire micellar system.

We denote the values corresponding to the end of
fast relaxation of micellar solution by superscript zero.
Denote via

Å (3.1)

the relative deviation of current concentration cn of

aggregates from concentration . Assuming that the
fast relaxation is implemented via the emission and
absorption of monomers only in a micellar region, we
take into account in Eq. (3.1) only the aggregates in a
micellar region and (at n = 1) the monomers. Together
with the aggregation number n, we use also variable

(3.2)

varying within –1 & u & 1 range to describe the aggre-
gates in micellar region.

The total micelle concentration cM is evidently
determined by the equality

τ2 nsτ1.=

ts/τ2 ∆ns( )2/2ns.=

τ2 ts.∼

ξn cn cn
0–( )/cn

0=

cn
0

u n ns
0–( )/∆ns

0,=

(3.3)

where the integration is performed over the micellar

region. Suggesting that micelle concentration  after
the termination of fast relaxation satisfies Boltzmann’s
principle; i.e., it is proportional to exp(–Wn), using rela-
tion

(3.4)

(relation (1.6) in [2]), and allowing for Eqs. (3.2) and
(3.3), we obtain

(3.5)

The solution of the kinetic equation for the micellar
region at the material isolation of a solution was con-
structed in [8] on the basis of expansion

(3.6)

according to the full-length system of Hermitian poly-
nomials Hi(u), where αi(t) are u-independent coefficients
of expansion, which are desired functions of time t.

It was shown [8] that dα0(t)/dt = 0, and, hence, coef-
ficient α0(t) is time-invariant. We then assume

(3.7)

(it was not unambiguously mentioned in [8]). Equal-
ity (3.7) makes it possible to prove that final concentra-

tions  in Eq. (4.1) are not achieved at the end of fast
relaxation of a micellar solution.

According to [8], relations

(3.8)

(3.9)

are true provided that equality (3.7) is fulfilled. Here,
α1(0), α2(0), … are the values of coefficients α1(t),
α2(t), … at the initial (for fast relaxation) time t = 0.
Times t1 and ts are defined by equalities

(3.10)

(3.11)

where ( )0 is the number of monomers emitted into
solution by the stable molecular aggregate per unit time
after the end of fast relaxation of solution. Evidently,
this number coincides with the number of monomers

cM cn n,d

ns
0 ∆ns

0–

ns
0 ∆ns

0+

∫=

cn
0

Wn Ws

n ns–
∆ns

------------- 
 

2

+=

cn
0 cM

0

π1/2∆ns
0

-----------------e u
2– 1 & u & 1–( ).=

ξn t( ) α i t( )Hi u( ) 1 & u & 1–( )
i 0=

∞

∑=

α0 t( ) 0=

cn
0

α1 t( ) α1 0( )e
t /t1–

,=

α i t( ) α i 0( )e
it /ts–

i 2 3 …, ,=( )=

t1 1/ js
–( )0

2/ ∆ns
0( )2

cM
0 /c1

0+[ ] ,=

ts ∆ns
0( )2

/2 js
–( )0

,=

js
–
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( )0 absorbed from solution by the stable molecular
aggregate per unit time at the end of fast relaxation of
solution. Hence, equality (3.11) is consistent with
equality (1.7).

According to [8], relation

(3.12)

where α1(t) is given by relation (3.8), is also true, pro-
vided that equality (3.7) is fulfilled.

It follows from Eq. (3.3) with allowance for
Eqs.  (3.1), (3.2), and (3.5)–(3.7) and the relations of
orthogonality and normalization of Hermitian polyno-
mials that

(3.13)

Upon the bimodal approximation of the total
amount of substance in a solution (the fulfillment of
equality (1.5) in [4]) and the material isolation of a
solution, we have

(3.14)

where c is a given overall surfactant concentration (the
total number of surfactant molecules per solution unit
volume). Relation (3.14) determines the proportion of

concentrations  and  at the end of fast relaxation
of solution, but not these concentration as such.

According to Eqs. (3.10) and (3.11), we have

(3.15)

(3.16)

Relations (3.1), (3.6)–(3.9), and (3.12) yield

cn(t)  = (micellar region), (3.17)

where relations (3.15) and

(3.18)

are taken into account.
Relations (3.17) and (3.18) indicate that the time-

independent aggregate concentrations  in a micellar

region and monomer concentration  are actually
established with time. If contributions from the higher
terms of expansion (3.6) with i = 2, 3, … are ignored,
the condition of applicability t @ ts of relation (3.17)
can be substituted by a weaker [in view of Eq. (3.15)]
condition t @ t1. Then, it is evident that time t1 defined
by equality (3.10) is the time of fast relaxation of a
micellar solution. The place occupied by this time in
the hierarchy of the kinetic times of micellization is
readily established by relations (3.15) and (3.16).

Fast relaxation of a micellar solution described
using [8] is observable in an experiment. This relax-

js
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c1

0=

cn
0
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ation can be caused by the instantaneous external dis-
turbance (for example, by temperature or pressure
jumps) of equilibrium micellar solution at the instant
t = 0. The external disturbance of solution was not con-
sidered in our theory [1–4], where the evolution of solu-
tion was caused exclusively by the internal processes
beginning with the time when only monomers were
present in a solution.

According to equalities (3.1), (3.8), and (3.12),
monomer concentration c1(t) varies over the period of
fast relaxation of a solution: increases at α1(0) > 0, and,
on the contrary, decreases at α1(0) < 0. The greater the
initial solution disturbance, the greater is the variation
of concentration c1(t).

In view of equality (3.13), the total micelle concen-
tration cM(t) does not vary in the course of fast relax-
ation of a micellar solution. However, micelle concen-
tration varies at the slower (final) stage of micellization
as well as at the stage preceding to its establishment. As
was shown in [4], this variation is caused by the exist-
ence of direct J ' (J ' > 0) and reverse J '' (J '' < 0) fluxes
of molecular aggregates over the potential barrier of
aggregation work.

If it turns out that inequality  >  becomes valid
as a result of the external disturbance of a solution, the
monomer concentration will lower and the micelle con-
centration will increase after the fast relaxation is

ended. However, if inequality  <  turns out to be
valid, the monomer concentration increases and the
micelle concentration lowers after the fast relaxation of
a solution is ended. During the evolution of solution
considered in [1–4], when the original solution con-
tained only monomers and was not subjected to the
external disturbance, the monomer concentration
decreases and the micelle concentration increases over
the entire evolution of a solution.

Let us explain how the study of the final stage of
micellization and the stage of its establishment per-
formed in [4] is generalized to the case of the external

disturbance of a solution. The values of  and  of
monomer and micelle concentrations, respectively,
achieved at the end of fast relaxation of a solution serve

as the initial values. If it turns out that  > , for the
generalization we should only substitute, at the final
stage, the initial monomer concentration c by the value

 retaining the previous final value (1 + 1/ )  of

this concentration. If it turns out that  < , for the
generalization we should only substitute, at the estab-

lishment of a final stage,  and (1 – 1/ )  for the
initial and final values of monomer concentration,
respectively. We also should take into account that
dominating, at this stage, is the reverse J ' rather than
direct J '' flux of molecular aggregates over the potential

c1
0 c̃1

c1
0 c̃1

c1
0 cM

0

c1
0 c̃1

c1
0 ñs c̃1

c1
0 c̃1

c1
0 ñs c̃1
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barrier of the aggregation work. This can be easily done
using expressions derived in [4] for the J ' and J '' fluxes.

Both at  >  and  < , the relaxation time tr

of a solution at the final stage is determined in the same
manner as in [4]. It can be proved that this time almost
(even more exactly than in [4]) coincides with the dura-
tion t0 of the establishment of the final stage.

Time tr serves (in accordance with terminology of
[8]) as the time of slow relaxation of a micellar solu-
tion. The place of this time in the hierarchy of the char-
acteristic times of the micellization kinetics was estab-
lished by the sequences in relations (2.14) and (2.18).
Inequality tr @ t1 followed from Eqs. (2.14), (2.18), and
(3.15) is responsible for the possibility of the division
of relaxation of micellar solution into the fast and slow
processes [8]. Note that, according to formulas (2.13)
and (2.17), the tr @ t1 inequality also follows from ine-
quality τM @ t1 that was implied in [8] during the dis-
cussion of the stage of fast relaxation.

4. INVERSE PROBLEM 
OF THE MICELLIZATION KINETICS

By now, there are relatively reliable published data
on the position of the potential well of the formation
work of surfactant molecular aggregate at the aggrega-
tion number axis (on the average micelle size) [6], as
well as on the half-width of this well (the scatter of
micelle sizes) [9, 10] and even on its depth, i.e., on min-
imum work (by data on micelle concentration). Even
less reliable data are available on the position and the
half-width of the potential barrier of a work. Still less
reliable are the data on the height of potential barrier
(maximum work). The significance of the knowledge of
the maximum formation work of surfactant molecular
aggregate is explained by the fact that, according to for-
mulas (1.12), (1.18), (1.21), and (1.23) it affects the
kinetics of micellization. Because this effect is expo-
nential, it turns out to be extremely strong.

Formulas (1.18), (1.21), and (1.23) make it possible

to find the value of exp( ), which is extremely large
and quite sensitive to the surfactant monomer concen-
tration [in view of relations (1.3) and (1.4) and inequal-
ity  @ 1], from the experimental data on the relax-
ation time of micellar solution. Although data on max-
imum work are, in this case, obtained by the velocity of
the establishment of the equilibrium state of micellar
solution, they are also true for its arbitrary state. Indeed,
as was shown in [1], the formation work of molecular
aggregate and, hence, its maximal value, are not related
by their physical meaning to the fact whether micellar
solution is at equilibrium or not.

Let us consider the proposed inverse problem of
micellization using as an example the representative
case when inequalities (1.20) and vRc/D ! 1 are ful-
filled.

c1
0 c̃1 c1

0 c̃1

W̃c

ñc

Solving Eq. (1.21) with respect to exp( ), we
obtain

(4.1)

From Eq. (4.1) with allowance for relation

, (4.2)

followed from (1.16) at vRc/D ! 1, we have

(4.3)

Relation (4.2) depends on the parameter v  charac-
terizing the rate of monomer absorption from solution
at the surface of molecular aggregate; however, it does
not depend on the diffusion coefficient D of monomers
in a solution. This demonstrates that, essentially, rela-
tion (4.2) is not connected with the equation of diffu-
sion of monomers in a solution, which can be even
inapplicable in the vicinity of molecular aggregate with
small sizes [suggested in (4.2)]. All what have been said
above is confirmed by inequality (2.8). Indeed, accord-
ing to Eq. (2.8), time tj of the establishment of quasi-
steady-state regime of matter exchange between solu-
tion and molecular aggregate is much shorter than time

1/  between two successive acts of absorption of a
monomer from solution by a molecular aggregate in

this regime; this would be impossible, if tj and  had
determined by the diffusion process of monomers in a
solution up to the vicinity of molecular aggregate.

Formula (4.3) allows us to directly find exp( )
from the experimental data on the relaxation time tr of
micellar solution. In view of extremely large value of

exponent exp( ) and its quite high sensitivity to the
concentration of surfactant monomers, it is sufficient to
monitor in Eq. (4.3) only the order of magnitude. Note
that, in accordance with what has been said in Section 1,
the relaxation time tr almost coincides with the total
time of the establishment of equilibrium in a materially
isolated micellar solution.

According to formulas (4.3) and (1.4), it should be
expected that time tr decreases with an increase in con-
centration  of surfactant monomers. This conclusion
of the theory is supported by the experimental data
reported in [9, 10].

We underline that only the kinetic approach to the
micellization problem developed by us in [1–4] made it
possible to relate the maximum formation work of sur-
factant molecular aggregate with the experimental data.
This maximum is not generally included into the for-
mulas of the theory of equilibrium micellization. These
formulas contain, according to Eq. (1.19), only the min-
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-----------------tr ñs
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imum formation work of surfactant molecular aggre-
gate.

Let us assume, in accordance with [6,7], the follow-
ing values of parameters that are realistic by the order
of magnitude:

(4.4)

The value for v  was chosen in (4.4) such that it

secures the fulfillment of inequality v /D ! 1
employed in Eqs. (4.2) and (4.3).

Let us consider two micellar solutions where mono-
mer concentrations at the final state of equilibrium are
almost identical and given by the estimate shown in
(4.4). Denoting corresponding values for these solu-

tions by superscripts 1 and 2, we have /  < 1.
According to inequalities (2.20), (2.21), and (4.14) in [4],
we also have

(4.5)

(4.6)

(4.7)

Because, according to (4.4),  ~ 102, Eq. (4.5) demon-
strates that, at almost identical monomer concentra-
tions in the final states of solution equilibrium, micelle
concentrations in these states can be quite different.
Then it is convenient [at the accepted in (4.4) order of
magnitudes of concentration ] to characterize the
final states of equilibrium by the concentrations of
micelles that are just entered into the right-hand sides of
equalities (4.6) and (4.7). Furthermore, these concen-
trations can be relatively easy observed in the experi-
ment.

From Eq. (4.3) with allowance for (4.4), we obtain

(4.8)

where times  and  are expressed in seconds. Let
us assume that

(4.9)

According to Eqs. (4.9) and (4.4), we have /  ~ 1,

/  ~ 103 that are quite realistic estimates. Note
that estimates (4.9) and (4.4) and realistic estimate
∆  ~ 10 [7] lead, according to formula (1.19), to

exp( ) ~ 103 and exp( ) ~ 1 that are also quite
true values.

Accepted estimates (4.9) and (4.4) readily secure
the fulfillment of inequality (1.20) used in Eqs. (4.1)

ñs 102, ∆ñc 10, c̃1 1017 cm 3– ,∼∼∼
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ñsc̃M
1( ) c̃1
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and (4.3) and, in view of Eq. (4.5), also the fulfillment
of suggested approximate equality of concentrations

 and .

It follows from (4.7) and (4.9) that

(4.10)

where the realistic estimate  ~ 30 [7] was used and it

was taken into account that  ~ 102 [in accordance
with (4.4)]. The fact that, according to relation (4.10),

times  and  can differ substantially (by an order
of magnitude), makes it possible to experimentally ver-
ify the relation (4.7). Experimental verification of rela-
tion (4.7) could be an important argument in favor the
micellization theory developed by us and, hence, in
favor of the validity of relation (4.3) that allows us to

find exponent exp( ) from the experimental data on
the relaxation time tr of micellar solution.

If the values of exponents exp( ) and exp( )
determined with the aid of relations of (4.8) type and

experimental data on times  and  would agree
with the equality (4.6), this could be yet another confir-
mation of the validity of the developed kinetic theory of
micellization.
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