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Abstract—The characteristic kinetic times of micellization in the solution of a nonionic surfactant: the times
of establishment of quasi-equilibrium concentrations of molecular aggregatesin micellar, subcritical, and over-
critical regions, times of establishment of quasi-equilibrium concentrations of molecular aggregatesin the near-
critical region of their sizes, the average time between two successive acts of emission of surfactant monomers
by amicelle, the average value of micellelifetime, the time of establishment of quasi-stationary mode of matter
exchange between the solution and molecular aggregate, as well as the times of fast and slow relaxation in a
solution were analyzed. The hierarchy of these times disclosing complex multistage kinetic process of micelle
formation and decomposition and the establishment of equilibrium in the micellar solution wasrevealed. It was
shown that this hierarchy is provided by the small parameters of the kinetic theory. The inverse problem of
micellization kinetics was discussed; this problem allows us to find the characteristics of the formation work
for micellar aggregate from the experimental data on the relaxation time of micellar solution.

INTRODUCTION

We continue the study of micellization in a solution
of colloidal surfactant initiated in [1-4]. The elucida-
tion of the hierarchy of the characteristic times of
micellization is the major aim of this work. The exist-
ence of hierarchy provesreliably that the quasi-equilib-
rium concentrations of molecular aggregatesin subcrit-
ical and overcritical regions of their sizes and the quasi-
steady-state concentration of molecular aggregates in
the near-critical region of their sizes that were qualita-
tively substantiated in [2] are actually established.
Remember that the establishment of the aforemen-
tioned concentrations plays akey role in the analytical
theory of the relaxation of micellar solution developed
in [2—4]. The hierarchy also gives a clear indication of
the relative values of the times of the formation and
decomposition of micelles and of the complex multi-
stage process of approaching micellar solution to the
final state of equilibrium. Asin [1-4], we consider the
colloidal surfactant as a nonionic substance and the
mixture of molecular aggregates in a solution as an
ideal mixture.

1. CHARACTERISTIC KINETIC TIMES
OF MICELLIZATION

The aggregation number of amolecular aggregate of
a surfactant in a micellar solution is denoted by n. At
n=1, the aggregates are none other than surfactant
monomers, which are identical in the considered case
of one nonionic surfactant. The monomer concentration
isdenoted by c,. Thework formation of an aggregatein
the solution containing initially only surfactant mono-
mersis expressed in thermal unitskT (kis Boltzmann's

constant and T is the sol ution temperature) and denoted
by W,. The aggregation numbers of critical and stable
molecular aggregates corresponding to the positions of
maximum and minimum work W, a the n-axis we
denote by n. and n,, respectively; these maximum and
minimum works, i.e., the height of a potential barrier
and the depth of a potential well are denoted by W, =

anlnznc and Ws = Wnlnznsa reSp@Cther The half-

widths of potential barrier and potential well, which are
defined by equalities (1.1) in[2], we denote by An, and
An, respectively. The regions n < n, — An., n, — An, <
n =< n.+ An, and n = n, + An_ we call subcritical, near-
critical, and overcritical regions, respectively. Micelles
are mainly concentrated in the ng— Ang < n < ng+ Ang
region. We call this region micellar. It islocated inside
the overcritical region. The total micelle concentration
(their total concentration in the micellar region) we
denote by cy,.

The study performed in [2—4] concerns an interest-
ing practical situation where the concentration of sur-
factant monomers exceeds the critical micellization
concentration, but is lower than the concentration cor-
responding to the onset of the formation of macro-
scopic phase (crystalline hydrate or liquid crystal of a
surfactant). Then, the conditions of the applicability of
the macroscopic description of the micellization kinet-
ics employed in [2-4] are:

An,> 1, AnJ/n. <1, AnJ(ng—n.) <1, (1.1)
Ang> 1, AnJ(n,—n.) <1 (1.2)

(conditions (1.2) and (1.3) in [2]). The first conditions
of (1.1) and (1.2) alow us to assume that the value of
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nis continuous in the important (for the micellization
kinetics) regions of the potential barrier and the poten-
tial well of work W,,. The remaining conditions of (1.1)
and (1.2) imply that the potentia barrier and potential
well of work W, are most clearly pronounced: they are
divided fromtheinitial point n= 1 at the n-axisand sep-
arated from each other at thisaxis. Thiscircumstanceis
expressed by the inequalities

exp(We) > 1,  exp(W;) > exp(Ws) (1.3)

followed from conditions (1.1) and (1.2) [inequalities
(1.4)in[2]].

According to relations (2.14)—2.17) in [4], it istrue
that

ow.oc, = -(n.—1)/c,, 90W,.dc, <0,

owJac, = —(n,—1)/c,, 90WJoc, <O0.
From Egs. (1.4) and (1.5), it follows that

oexp(W,—W,)/dc, > 0. (1.6)

In view of Eqg. (1.4), the first inequality of (1.3)
becomes weaker with an increase in surfactant mono-
mer concentration ¢,. However, the first inequality of
(1.3) remains extremely strong due to its exponential
character, in spite of the fact that the monomer concen-
tration in the region, which is of interest to us, does not
exceed the intensity of the formation of the surfactant
macroscopic phase. Inequality (1.6) demonstrates that
the second inequality of (1.3) becomes stronger, as sur-
factant monomer concentration ¢, increases. This is
contributed by the possible, in view of (1.5), passage of
minimum work W; to the region of its negative values.

The fact that the fulfillment of conditions (1.1) and
(1.2) provides the existence of the hierarchy of charac-
teristic kinetic times of micellization, which is needed
for thevalidity of the analytical theory of the relaxation
of micellar solution developed in [2-4], is yet to be
proved.

Let us collect the data on the characteristic kinetic
times obtained in [3, 4]. We deal, above al, with the
timest,andt' of the establishment of quasi-steady-state
concentrations of molecular aggregatesin micellar and
subcritical regions, respectively; time t" of the estab-
lishment of quasi-steady-state concentration of molec-
ular aggregates in the part of overcritical region located
to the left of micellar region at the n-axis; and with the
time t, of the establishment of quasi-steady-state con-
centration of molecular aggregates in the near-criti-
cal region. For the times listed above, we have (for-
mulas (1.16)—(1.18) and (2.13) in [3])

te = (Ang)?/2jg,

(1.4)
(1.5)

(1.7)
t'=nAndje, (1.8)

t" = (ns—nJ)Anjs, (1.9)

KUNI et al.

t. = (Any)*/2js. (1.10)

Here, j: (j: >0)isthe number of surfactant monomers
absorbed by the stable molecular aggregate from the
solution per unit time (n=ny; and j. (j. > 0) isthe

number of surfactant monomers absorbed by the criti-
cal molecular aggregate from the solution per unit time

(n=ny.

At the final stage of micellization, the (c, — ¢, )/C;
value (wavy bar denotes the values in the fina state
of solution equilibrium) is changed, according to esti-
mate (5.3) in [4], by lessthan 1/n. Within the interval
of times shorter than the duration of final stage, the (c, —
C,)/C, vaue varies till much less. In view of (1.5) and
(1.4) and ng > n., this readily proves the assumption

(used in [3]) on the constancy of concentration c, dur-
ing determining the timest, and t..

If timest, t', t", and t, give an idea of the evolution
of the ensemble of molecular aggregates within the
characteristic ranges of aggregation numbers, the aver-
age time 1, between the successive acts of emission of
surfactant monomers by a micelle and the average
value of micelle lifetime 1), characterize a single
micelle. For these times, we have

T, = 1/j2, (1.11)

Ty = TAnANnexp(W, —Wy)/je (1.12)
(expressions (3.4) and (3.7) in [3]). The shorter the
time1,, the greater the ability of amicelleto changethe
composition of constituting molecules. Thelonger time
Tw, the more stable the micelle is as an aggregative
molecular formation.

We assume, asin [5], that the velocity n of the vari-
ation (with time) of aggregation number n of molecular
aggregate is given by therelation

v R2(01 —C1p)

n = 4nbD D+ VR

(1.13)
Here, D is the diffusion coefficient of monomers in
micellar solution; v isthe parameter characterizing the
velocity of monomer absorption from the solution at
the surface of molecular aggregate; R is the radius of
aggregate (for simplicity, assumed to be spherical);
C,n IS the concentration of monomers in an imaginary
micellar solution, which is at material equilibrium (at
the same temperature and pressure as the micellar solu-
tion being considered) with an aggregate of n mole-
cules.

According to formula (3.20) in [2], the relation

n=jr(l-—cy/c,) (1.14)
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isvalid, where j, (j, > 0) isthe number of surfactant

monomers absorbed from solution by the aggregate of
n molecules per unit time. It follows from Egs. (1.13)
and (1.14) that

vR?

i -4nDc1D+ UR (1.15)

and in particular, for the critica and stable molecular
aggregates

2
e VR
Je = 4nDc1—D VR
(1.16)

2

Js = 47TD01—D TVR

respectively, where R. and R, are the radii of these
aggregates.

Formula(1.13) aswell asformulas(1.15) and (1.16)
refer to the steady-state regime of the matter exchange
between solution and molecular aggregate. In the real-
istic (for micellar solution) situation, where the radius
of molecular aggregate Risso small that vR/D < 1, the
establishment of this regime occurs during time t;, for
which relation

tj=10°R*/D (VR/D < 1) (1.17)

was derived in [5]. Time t; given by expression (1.17)
supplements the set of the characteristic kinetic times
of micellization.

Finaly, for timet, of the relaxation of micellar solu-
tion at the final stage of micellization, i.e., the time of
the establishment of thefinal (at this stage) equilibrium
state at the material isolation of a solution we have

(1.18)

r

T[” CyAN, exp(Wc)%l R CMD
Cl]c
[expression (4.8) in[4]].

The manner in which concentrations ¢, and ¢,, of

surfactant monomers and micelles at the final equilib-
rium state of micellar solution at a given overall surfac-
tant concentration can be determined, was demon-

stratedin [4]. Inthis case, concentrations ¢, and ¢, are
interrelated by the equality

&€, = T°AREexp(-Ws)
(equality (4.13) in [4]).

The ng, /c, value represents the ratio of the

amount of substance accumulated by micelles in the
final equilibrium state of solution to the amount of sub-
stance remained in the form of monomers. Two repre-
sentative limiting cases are of interest.

In thefirst of these case, the inequality

(1.19)
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RZCy/C, > 1 (1.20)
isfulfilled; in view of inequality n, > 1 followed from
Eq. (1.2), this situation actually takes place when
Ny /C, = 1; i.e, when micelles in the find state of

solution equilibrium accumul ate noticeable or even the
major part of al amount of surfactant containing in
solution. Then, according to Eq. (1.18), relation

_ 10D, exp(We)
r ~27+

nsJC

(R2Cylc, > 1)  (1.21)
isvalid (expression (4.10) in [4]).

In the second representative case, inequality

RCy/C, < 1 (1.22)

is fulfilled. Furthermore, in view of ng > 1, inequality

Ny /C, < 1 is aso fulfilled; hence, micelles in the

final state of solution equilibrium absorb only small

part of the entire amount of surfactant containing in
solution. Then, according to Eqg. (1.18), relation

_ 728, AR exp (W)

Cijc

(R2EylC, < 1) (1.23)

istrue (expression (4.12) in [4]).

2. HERARCHY OF THE CHARACTERISTIC
KINETIC TIMES OF MICELLIZATION

Let usdisclosethe hierarchy of the characterigtic times
of micellization. According to relaions (1.8)—«1.10), we
have

t'/t. = 2n/An,,
t"/t, = 2(ng—n,)/An,.
Taking conditions (1.1) into account and using estimate

n, — n, = n. (which allows for the equality of the
orders of magnitude for ng— n, and n.), we obtain from

2.1)

Eq. (2.1)
"/t = t'/t, > 1. (2.2)
According to Egs. (1.7) and (1.10), we have
t/te = (AnJANG)?(ji/js)- (2.3)

Analytical models [6, 7] for the formation work W, of
molecular aggregate in surfactant solution do not result
in large differences between the values of An. and An..

Assuming, asin [8], that the great differencein the j.
and j. values is also improbable, we can see from
Eq. (2.3) that

t./t, O1. (2.4)



726

According to Egs. (1.7) and (1.11), we have
t/1, = (Any)?/2. (2.5)

Substituting the first condition of (1.2) into Eq. (2.5),
we obtain

(2.6)

According to Egs. (1.15) and (1.17), &t vR/D < 1,
we have

tjn=4mx10°c,R*(VR/ID) (VRID <1). (2.7)

Strong inequality ¢,R® < 1 istrue: the number of mono-
mers per solution volume that is equal (by the order of
magnitude) to the volume of molecular aggregate (~R?)
isquite small dueto arelatively small size of an aggre-
gate and the dilution of amicellar solution. Then, from
Eq. (2.7) with allowance for vR/D < 1, it follows that

tijn < 1. (2.8)

According to Eq. (1.17), time t; increases with R.
Hence, it is the longest time in the micellar region of
aggregate sizes. Applying inequality (2.8) to this
region, using Eg. (1.11) we obtain

t/T, < 1, 2.9)

that istrue at any sizes of molecular aggregates (includ-
ing thosein amicellar region).
Further we consider the representative case where
inequality (1.20) or reverse inequality (1.22) aretrue.
According to Egs. (1.21) and (1.9), inthefirst repre-
sentative case we have

t,/t" = T2 exp (We) /(s — M) A2 (REC/E, > 1) (2.10)

[we used the estimate (1.9) as applied to the final stage
of micellization]. Taking into account that the first ine-
quality of (1.3) is extremely strong due to its exponen-
tial character, we readily obtain from Eqg. (2.10)

tJ/1, > 1.

t/t">1 (AZC,/C, > 1). 2.11)

Further, in the same representative case, according
to Egs. (1.12) and (1.21) with allowance for Eq. (1.19),
we have

Tylt, = R2Cy/C, (R%C,/E, > 1) (2.12)

[we used expression (1.12) as applied to the final stage
of micellization]. From Eqg. (2.12) with the fulfillment
of inequality (1.20), directly follows

Tult, > 1 (RZC,/IE, > 1). (2.13)

In generd, the set of relations (2.2), (2.4), (2.6),
(2.9), (2.11), and (2.13) discloses the following hierar-
chy of the times of micellization kinetics:

WS>t =ttt 0> 1, >t

o (2.14)
(R2Eu/C, > 1).

KUNI et al.

Thelast fiverelationin the hierarchical sequence (2.14)
are not related with the limit (1.20).

In the casewhen theinequality (1.20) isfulfilled, the
final stage of micellization is preceded by the stage of
its build-up. According to [4], the duration t, of this
stageisnot longer thantimet, by factor of 1.5-2.5. This
allows us to easily find out the place of time t, in the
hierarchy of the kinetic times of micellization.

Let us now pass to the second representative case
where the inequality (1.22) is fulfilled. According to
Egs. (1.23) and (1.9), we have

t/t" = T2 exp (We) Ey/ (s — ) &
(N2C,, /¢, < 1)
[we used estimate (1.9) as applied to the final stage of

micdllization]. Subgtituting the first of inequalities (1.3),
we readily obtain from Eq. (2.15)

(2.15)

t/t">1 (R%C,/C, <1). (2.16)

Further, in the same representative case, according
to Egs. (1.12) and (1.23) with allowance for Eq. (1.19),
we have

(2.17)

[we used expression (1.12) as applied to the final stage
of micellization].

In total, the set of relations (2.2), (2.4), (2.6), (2.9),
(2.16), and (2.17) discloses the following hierarchy of
the kinetic times of micellization:

Iy =L>t"=t'>t. 0t > 1, >

Tult, = 1 (RZC,/C, < 1)

2.18
(2E,/C, < 1). @19
The last five relations in the hierarchical sequence
(2.18) are not related with the limit (1.22).

According to Egs. (2.14) and (2.18), timest,, t', t",
and t; are much shorter than time t. This is easily
proved by the fact that quasi-steady-state concentra
tions of molecular aggregates in subcritical and over-
critical regions and quasi-steady-state concentration of
molecular aggregates in the near-critical region that
were qualitatively substantiated in [2] are actually
established. As is seen from the proportionality

between time t, and exponent exp(WZ ), the statement
of the smallness of timest,, t', t", and t. (compared with
timet,) isvalid, aswell asin the general casethat isnot
related with inequalities (1.20) and (1.22), since, in the
final analysis, it is the sequence of an extremely strong
inequality (1.3).

It follows from Eqgs. (2.14) and (2.18) that time t; is
the shortest time of all characteristic times of micelliza-
tion. This indicates that the kinetic process of micelli-
zation begins with the formation of quasi-steady-state

absorption intensities j ., j., and j;.

COLLOID JOURNAL Vol. 63 No.6 2001



THERMODYNAMIC AND KINETIC FOUNDATIONS OF THE MICELLIZATION THEORY

Time 1y ranksfirst and time 1, is the second-small-
est among the characteristic times of the micellization
kineticsin the hierarchical sequences (2.14) and (2.18).
This demonstrates that the micelles are stable molecu-
lar formations, which are quite capable of renewing the
composition of constituting molecules.

As was mentioned in [3], time 1, determines
(viangt,) the average val ue of the resident time of asur-
factant monomer specified (labeled) in a micelle.
Denoting thistime by 1,, we thus arrive at

T, = NgTy. (2.19)
It follows from Egs. (2.5) and (2.19) that
t/T, = (Any)°/2n,. (2.20)

According to [6, 7], the value in the right-hand side of
Eq. (2.20) is close (by the order of magnitude) to unity.
Then, we have

T, Ut.. (2.21)

Estimate (2.21) allows us to easily establish the place
occupied by time 1, in the hierarchy of kinetic times.

3. TIME OF THE FAST RELAXATION
OF MICELLAR SOLUTION

Let us elucidate the interrel ation between timets and
the time of fast relaxation of solution that was found in
[8]. Thismakesit possibleto clarify the concepts of fast
and slow relaxations of micellar solution introduced in
[8] and widely used in literature as the concepts corre-
sponding to the process of local rearrangement of
micelles without changing their numbers in a micellar
region and to the process of the establishment of final
equilibrium in the entire micellar system.

We denote the values corresponding to the end of
fast relaxation of micellar solution by superscript zero.
Denotevia

& = (c,—cy)lch 3.1)

the relative deviation of current concentration c, of

aggregates from concentration cﬂ. Assuming that the
fast relaxation is implemented via the emission and
absorption of monomers only in a micellar region, we
take into account in Eq. (3.1) only the aggregates in a
micellar region and (at n = 1) the monomers. Together
with the aggregation number n, we use also variable

u=(n-nd/An, (3.2)
varying within —1 =< u =< 1 range to describe the aggre-
gatesin micellar region.

The total micelle concentration c,, is evidently
determined by the equality
COLLOID JOURNAL
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ng+Ang
Cy = c,dn,

0 a0
ng —Ang

(3.3)

where the integration is performed over the micellar

region. Suggesting that micelle concentration cg after
the termination of fast relaxation satisfies Boltzmann’'s
principle; i.e., itisproportional to exp(-W,,), using rela-
tion

_ - ngf
W, = We+ B

(relation (1.6) in [2]), and allowing for Egs. (3.2) and
(3.3), we obtain

(3.4)

0
0 Cw —?
c, = e
" A ng
The solution of the kinetic equation for the micellar

region at the material isolation of a solution was con-
structed in [8] on the basis of expansion

(-1su=sl). (3.9)

&n(t) = zai(t)Hi(u) (-1=u=1) (3.6)
i=o0

according to the full-length system of Hermitian poly-
nomials H;(u), where g;(t) are u-independent coefficients
of expansion, which are desired functions of timet.

It was shown [8] that da,(t)/dt = 0, and, hence, coef-
ficient a(t) istime-invariant. We then assume

ae(t) =0 (3.7)

(it was not unambiguously mentioned in [8]). Equal-
ity (3.7) makesit possibleto provethat final concentra-
tions cg in EQ. (4.1) are not achieved at the end of fast
relaxation of amicellar solution.

According to [8], relations

-/t

ay(t) = a,(O)e (3.8)

a(t) = 0,00 ™ (1=23,...) (3.9)
are true provided that equality (3.7) is fulfilled. Here,
0,(0), a,(0), ... are the values of coefficients a,(t),
0,(t), ... a theinitial (for fast relaxation) timet = 0.
Timest, and t are defined by equalities

t, = 1/(j3) [2/(And)* + /e, (3.10)

to = (And)72(j0)’, (3.11)
where (j3)° is the number of monomers emitted into

solution by the stable molecular aggregate per unit time
after the end of fast relaxation of solution. Evidently,
this number coincides with the number of monomers
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(j<)° absorbed from solution by the stable molecular

aggregate per unit time at the end of fast relaxation of

solution. Hence, equality (3.11) is consistent with
equality (1.7).

According to [8], relation

0 0

£u(t) = e

C;

where a,(t) is given by relation (3.8), is also true, pro-

vided that equality (3.7) isfulfilled.
It follows from Eqg. (3.3) with alowance for
Egs. (3.1), (3.2), and (3.5)—3.7) and the relations of

orthogonality and normalization of Hermitian polyno-
mials that

a,(t), (3.12)

cy(t) = 3. (3.13)

Upon the bimodal approximation of the total
amount of substance in a solution (the fulfillment of
equality (1.5) in [4]) and the materia isolation of a
solution, we have

¢y +nXcy = c, (3.14)

where c is a given overall surfactant concentration (the
total number of surfactant molecules per solution unit
volume). Relation (3.14) determines the proportion of
concentrations ¢, and cyy at the end of fast relaxation
of solution, but not these concentration as such.
According to Egs. (3.10) and (3.11), we have

t, <t (3.15)
t, =t (/S < 2/(An%)%). (3.16)
Relations (3.1), (3.6)<(3.9), and (3.12) yield
C( s =y (micellar region), (3.17)
where relations (3.15) and
()]s, = C1 (3.18)

are taken into account.
Relations (3.17) and (3.18) indicate that the time-

independent aggregate concentrations cg in amicellar

region and monomer concentration c(l) are actually
established with time. If contributions from the higher
terms of expansion (3.6) withi =2, 3, ... are ignored,
the condition of applicability t > t; of relation (3.17)
can be substituted by a weaker [in view of Eq. (3.15)]
conditiont > t,. Then, it is evident that time t, defined
by equality (3.10) is the time of fast relaxation of a
micellar solution. The place occupied by this time in
the hierarchy of the kinetic times of micellization is
readily established by relations (3.15) and (3.16).

Fast relaxation of a micellar solution described
using [8] is observable in an experiment. This relax-

KUNI et al.

ation can be caused by the instantaneous external dis-
turbance (for example, by temperature or pressure
jumps) of equilibrium micellar solution at the instant
t = 0. The external disturbance of solution was not con-
sidered in our theory [1-4], where the evol ution of solu-
tion was caused exclusively by the internal processes
beginning with the time when only monomers were
present in a solution.

According to equalities (3.1), (3.8), and (3.12),
monomer concentration ¢, (t) varies over the period of
fast relaxation of asolution: increasesat o,(0) > 0, and,
on the contrary, decreases at a,(0) < 0. The greater the
initial solution disturbance, the greater is the variation
of concentration c,(t).

In view of equality (3.13), the total micelle concen-
tration c(t) does not vary in the course of fast relax-
ation of amicellar solution. However, micelle concen-
tration varies at the slower (final) stage of micellization
aswell as at the stage preceding to its establishment. As
was shown in [4], this variation is caused by the exist-
ence of direct J' (J' > 0) and reverse J" (J" < 0) fluxes
of molecular aggregates over the potential barrier of
aggregation work.

If it turns out that inequality cg > ¢, becomesyvalid

as aresult of the external disturbance of a solution, the
monomer concentration will lower and the micelle con-
centration will increase after the fast relaxation is

ended. However, if inequality c(l) < C,; turns out to be

valid, the monomer concentration increases and the
micelle concentration lowers after the fast relaxation of
a solution is ended. During the evolution of solution
considered in [1-4], when the origina solution con-
tained only monomers and was not subjected to the
external disturbance, the monomer concentration
decreases and the micelle concentration increases over
the entire evolution of a solution.

Let us explain how the study of the final stage of
micellization and the stage of its establishment per-
formed in [4] is generalized to the case of the external
disturbance of a solution. The values of ¢; and ¢y, of
monomer and micelle concentrations, respectively,
achieved at the end of fast relaxation of a solution serve
astheinitial values. If it turns out that ¢) > ¢, , for the
generalization we should only substitute, at the fina
stage, theinitial monomer concentration c by the value
¢ retaining the previous final value (1 + 1/fi,)¢, of

this concentration. If it turns out that cfl) < ¢y, for the
generalization we should only substitute, at the estab-

lishment of afinal stage, . and (1 — 1/f”,)¢, for the
initial and final values of monomer concentration,
respectively. We also should take into account that
dominating, at this stage, is the reverse J' rather than
direct J" flux of molecular aggregates over the potential
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barrier of the aggregation work. This can be easily done
using expressions derived in [4] for theJ' and J" fluxes.

Bothat ¢ > ¢, and c. < ¢, , the relaxation time't,

of asolution at thefinal stageis determined in the same
manner asin [4]. It can be proved that this time almost
(even more exactly thanin [4]) coincideswith the dura-
tion t, of the establishment of the final stage.

Time t, serves (in accordance with terminology of
[8]) as the time of slow relaxation of a micellar solu-
tion. The place of thistimein the hierarchy of the char-
acteristic times of the micellization kinetics was estab-
lished by the sequences in relations (2.14) and (2.18).
Inequality t, > t, followed from Egs. (2.14), (2.18), and
(3.15) is responsible for the possibility of the division
of relaxation of micellar solution into the fast and slow
processes [8]. Note that, according to formulas (2.13)
and (2.17), thet, > t, inequality also follows from ine-
quality Ty, > t, that wasimplied in [8] during the dis-
cussion of the stage of fast relaxation.

4. INVERSE PROBLEM
OF THE MICELLIZATION KINETICS

By now, there are relatively reliable published data
on the position of the potential well of the formation
work of surfactant molecular aggregate at the aggrega-
tion number axis (on the average micelle size) [6], as
well as on the half-width of this well (the scatter of
micellesizes) [9, 10] and even onitsdepth, i.e.,, on min-
imum work (by data on micelle concentration). Even
less reliable data are available on the position and the
half-width of the potential barrier of a work. Still less
reliable are the data on the height of potential barrier
(maximumwork). The significance of the knowledge of
the maximum formation work of surfactant molecular
aggregate is explained by the fact that, according to for-
mulas (1.12), (1.18), (1.21), and (1.23) it affects the
kinetics of micellization. Because this effect is expo-
nential, it turns out to be extremely strong.

Formulas (1.18), (1.21), and (1.23) make it possible

to find the value of exp(W.), which is extremely large
and quite sensitive to the surfactant monomer concen-
tration [in view of relations (1.3) and (1.4) and inequal-
ity n, > 1], from the experimental data on the relax-

ation time of micellar solution. Although data on max-
imum work are, in this case, obtained by the velocity of
the establishment of the equilibrium state of micellar
solution, they area so truefor itsarbitrary state. Indeed,
as was shown in [1], the formation work of molecular
aggregate and, hence, its maximal value, are not related
by their physical meaning to the fact whether micellar
solution is at equilibrium or not.

Let us consider the proposed inverse problem of
micellization using as an example the representative
case when inegualities (1.20) and vR./D < 1 are ful-
filled.
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Solving Eqg. (1.21) with respect to exp(\7Vc), we
obtain

~27+

exp(We) = H—%ﬁ—ctr (/6> 1). (&1
From Eg. (4.1) with allowance for relation
ji=4nc,vR® (VR/D < 1), (4.2)
followed from (1.16) at vR./D < 1, we have
exp(We) = (41°°R%8, v RIIARL, “3)

(VRJ/D < 1, i28,,/¢, > 1).

Relation (4.2) depends on the parameter v charac-
terizing the rate of monomer absorption from solution
at the surface of molecular aggregate; however, it does
not depend on the diffusion coefficient D of monomers
in a solution. This demonstrates that, essentially, rela
tion (4.2) is not connected with the equation of diffu-
sion of monomers in a solution, which can be even
inapplicablein the vicinity of molecular aggregate with
small sizes[suggested in (4.2)]. All what have been said
above is confirmed by inequality (2.8). Indeed, accord-
ing to Eq. (2.8), time t; of the establishment of quasi-
steady-state regime of matter exchange between solu-
tion and molecular aggregate is much shorter than time

1/j, between two successive acts of absorption of a
monomer from solution by a molecular aggregate in
this regime; this would be impossible, if t; and i+ had

determined by the diffusion process of monomersin a
solution up to the vicinity of molecular aggregate.

Formula (4.3) alows us to directly find exp(\7vc)
from the experimental data on the relaxation time t, of
micellar solution. In view of extremely large value of

exponent exp(W; ) and its quite high sensitivity to the
concentration of surfactant monomers, it is sufficient to
monitor in Eq. (4.3) only the order of magnitude. Note
that, in accordance with what has been said in Section 1,
the relaxation time t, amost coincides with the total
time of the establishment of equilibrium in amaterialy
isolated micellar solution.

According to formulas (4.3) and (1.4), it should be
expected that timet, decreases with an increase in con-

centration ¢, of surfactant monomers. This conclusion

of the theory is supported by the experimental data
reported in [9, 10].

We underline that only the kinetic approach to the
micellization problem devel oped by usin [1-4] madeit
possible to relate the maximum formation work of sur-
factant molecular aggregate with the experimental data.
This maximum is not generally included into the for-
mulas of the theory of equilibrium micellization. These
formulas contain, according to Eqg. (1.19), only the min-
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imum formation work of surfactant molecular aggre-
gate.

L et us assume, in accordance with [6,7], the follow-
ing values of parameters that are realistic by the order
of magnitude:

A, 010°, AR, 010,
R. 0107 cm,
The value for v was chosen in (4.4) such that it
secures the fulfillment of inequality vR./D < 1
employed in Egs. (4.2) and (4.3).
L et us consider two micellar solutions where mono-
mer concentrations at the final state of equilibrium are

almost identical and given by the estimate shown in
(4.4). Denoting corresponding values for these solu-

tions by superscripts 1 and 2, we have & /& ~

According to inequdlities (2.20), (2.21), and (4.14) in [4],
we also have

¢, 010" cm™,
(4.4)

vO1lcems™

(1)~ (1) ~ (2} P
D = @)

4.5)

~ (1) m(2) (1) (= D)/
exp(WE ) exp(WE?) = (ER/ER) , (4.6
(Op@ = (@Y™ 4.7)

Because, according to (4.4), ng ~ 102, Eq. (4.5) demon-
strates that, at almost identical monomer concentra-
tionsin the fina states of solution equilibrium, micelle
concentrations in these states can be quite different.
Then it is convenient [at the accepted in (4.4) order of
magnitudes of concentration C,] to characterize the

final states of equilibrium by the concentrations of
micellesthat arejust entered into the right-hand sides of
equalities (4.6) and (4.7). Furthermore, these concen-
trations can be relatively easy observed in the experi-
ment.

From Eq. (4.3) with allowance for (4.4), we obtain
2

exp(W) 010'tY,  exp(WP)D 1012, (4.8)
where times t™ and t!? are expressed in seconds. Let
us assume that

¢ 010 em™, €2 010" em™. (4.9)

According to Egs. (4.9) and (4.4), we have n c(l) /Cy ~1,

n CM)/Cl ~ 10° that are quite realistic estimates. Note
that estimates (4.9) and (4.4) and redlistic estimate
Ang ~ 10 [7] lead, according to formula (1.19), to

exp(VNV(sl)) ~10% and exp(Wgz)) ~
true values.

Accepted estimates (4.9) and (4.4) readily secure
the fulfillment of inequality (1.20) used in Egs. (4.1)

1 that are also quite

KUNI et al.

and (4.3) and, in view of Eq. (4.5), also the fulfillment
of suggested approximate equality of concentrations

& and 2.

It follows from (4.7) and (4.9) that
tMt? 010, (4.10)

where the realistic estimate n, ~ 30 [7] was used and it

was taken into account that n, ~ 102 [in accordance
with (4.4)]. The fact that, according to relation (4.10),

times t" and t*? can differ substantially (by an order

of magnitude), makesit possible to experimentally ver-
ify the relation (4.7). Experimental verification of rela-
tion (4.7) could be an important argument in favor the
micellization theory developed by us and, hence, in
favor of the validity of relation (4.3) that allows us to

find exponent exp(\7vc) from the experimental data on
the relaxation timet, of micellar solution.

If the values of exponents exp(WC ) and exp(W. ( ) )
determined with the aid of relations of (4.8) type and

experimental data on times t” and t*® would agree
with the equality (4.6), this could be yet another confir-
mation of the validity of the devel oped kinetic theory of

micellization.
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