
Abstract. Major recent advances in the theoretical study of
heterogeneous nucleation on macroscopic wettable centers of
different nature are reviewed in the context of the classical
scheme which uses the thermodynamics of a new phase nuclea-
tion to calculate the key kinetic characteristics of nucleation.
The review centers on the kinetics of heterogeneous nucleation
under conditions where a metastable state of the initial phase
gradually forms Ð a situation in which the factors supporting
the phase transition to the metastable state and then deepening
the phase into the metastability region also remain active after
the intense phase transition has begun. The formulation and
control of the conditions of consistency for applying all the
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thermodynamic and kinetic elements of the theory are empha-
sized. The thermodynamics of interfaces are discussed in detail
and a careful kinetic analysis is performed for the stage at which
the main number of stably growing nuclei of the new phase is
formed around wettable nuclei consisting of soluble or insoluble,
surface-inactive or surface-active materials. The features com-
mon to barrier and barrierless heterogeneous nucleation pro-
cesses are discussed, which open new possibilities in the
experimental study of the phenomenon and offer new practical
applications of the theory.

1. Introduction

Various first-order phase transitions, from the commonest
(the dropwise condensation in a supersaturated vapor) to
latent formation of pores from a supersaturated vacancy
solution in a solid, proceed in their development through
virtually identical stages, the starting point being the creation
of a metastable state of matter.

The transformation of matter to a metastable state, such
as the production of a supersaturated vapor, superheated and
supercooled liquids or supersaturated solution is possible in
different ways. In practice, all of them are categorized into
two groups depending on how rapidly the physical para-
meters of a substance are changed under the action of factors
which induce metastable state formation. By the instanta-
neous formation of metastability is meant the transition to a
metastable state during a time much smaller than the
characteristic time of the subsequent phase transition. The
gradual formation of metastability occurs in the opposite
situation when factors responsible for matter transformation
to a metastable state and going further into the metastability
region remain active after the intense phase transition has
begun.

The knowledge of characteristics of a metastable state
immediately after its instantaneous formation, when it is not
yet perturbed by the subsequent phase transition, consider-
ably simplifies the theory describing the progress of phase
transitions under such conditions. This explains to a large
extent why the majority of theoretical and experimental
works concerning the kinetics of phase transitions and now
recognized as classical proceeded from the assumption of
instantaneous formation of the initial metastable state [1 ± 7].

Although widespread in nature and extensively employed
in technology, phase transitions attending the gradual
formation of metastability have long been given little
attention by theorists and experimenters. The few theoretical
works in this field did not arouse great interest. The main
reason for such a situation lies in the difficulty of correctly
determining metastable state parameters prior to the onset of
intense phase transition.

Considerable progress in the description of phase transi-
tions under conditions of the gradual formation of metast-
ability has been achieved during the last two decades.
Theoretical studies have demonstrated that, if certain slack
constraints are imposed on the metastability formation rate,
two conspicuous stages can be distinguished in the course of a
phase transition [8]. The initial one is nucleation giving rise to
the bulk number of steadily growing nuclei of the new, stable
phase. The nonlinearity of nucleation, manifested as the
sharp dependence of the intensity of formation of new phase
nuclei (nucleation rate) on the degree of metastability of the
initial phase, accounts for the short duration of the nucleation
stage compared with the characteristic time of metastable

state formation. This stage is induced by metastability-
forming factors, while its termination is dictated by a
decrease in the degree of metastability (despite the continu-
ing action of the causative factors) due to the transfer of a
fraction of the matter occurring in the metastable phase into
the stable phase nuclei. In the beginning, this fraction is
relatively small. The metastable phase almost entirely trans-
forms to the stable one after the termination of the nucleation
stage and the onset of the so-called collapse stage. This stage is
characterized by the further growth of new phase nuclei
without a substantial change in their number. The intensity
of the action of factors creating metastability, the number of
new phase nuclei formed at the nucleation stage and their
growth rate (the rate of consumption of metastable phase
material by the nuclei) are interrelated in the process such that
practically all the matter rapidly transforms to the stable state
at the collapse stage. In the case of an additional constraint
imposed on the metastability formation rate, the collapse
stage is followed by the well-known Ostwald ripening stage
during which large particles of the new phase grow at the
expense of disappearing small ones [9, 10].

Ostwald ripening had been described before the theory of
nucleation and collapse stages was developed. Only the most
general characteristics of the initial state of a system in which
the phase transition takes place are used in this explanation.
The description of the collapse stage in the gradual metast-
ability formation process is analogous to the description of its
counterpart after the instantaneous formation of metastabil-
ity. The only difference consists in that the transition of the
bulk ofmatter from themetastable state, reached by the onset
of the nucleation stage, to the stable state occurs while the
metastability-inducing factors are still active.

The nucleation stage poses a most interesting and
difficult problem for researchers studying phase transitions
in the course of gradual formation of metastability. In the
theory of the nucleation stage, the questions of thermo-
dynamics of small systems are closely intermingled with the
descriptions of the process of overcoming the energy barrier
(which changes during the nucleation stage) by newly-
formed stable phase particles, the growth peculiarities of
these particles in a wide range of their size variation, and the
correct interpretation of the collective effect of an ensemble
of the growing stable phase particles on the state of the initial
metastable phase. Taken together with the effects of
metastability-forming factors, all this gives rise to a
complicated, strongly nonlinear mathematical problem.
However, a remarkable feature of the conditions for the
gradual formation of metastability, reviewed in this paper,
consists in that the efforts to surmount mathematical
difficulties are repaid by the discovery of interesting and
even unusual nucleation properties. The most important of
them is the weak dependence of the principal nucleation
stage characteristics on the accuracy of determining the
thermodynamic parameters of small stable phase nuclei. It
is this universal property that makes predictions of the
theory under consideration quantitative and distinguishes it
from the theory of nucleation after instantaneous metastable
state formation, which makes high demands upon the
accuracy of describing small critical nuclei.

In this review, the theory of the nucleation stage is
formulated for the heterogeneous mechanism, most wide-
spread in nature, by which stable phase nuclei (droplets) arise
on foreign particles present in a supersaturated vapor volume.
Such foreign particles or heterogeneous centers can be ions,
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acid droplets, sea-salt crystals, dust or soot particles, etc.
Given the great variety of properties and sizes of similar
heterogeneous centers and the diversity of phase transition
conditions, all attempts to construct a quantitative theory of
heterogeneous nucleation may seem impracticable. For
example, are sea-salt crystals completely dissolved in the
critical-size droplets of aqueous vapor that condenses on
them, allowing for the nucleation rate largely dependent on
the thermodynamic parameters of such vapor droplets? Is this
solution saturated or, on the contrary, lean? Are insoluble
aerosol particles totally or partially wettable?Does the critical
size of nuclei depend on thin or thick liquid films in nucleation
on wettable dust particles? These beforehand unknown
circumstances determine to a large extent such character-
istics of the nucleation process as the number and average size
of the droplets being formed or the duration of nucleation. In
the gradual formation of metastability, the initiation and the
length of the nucleation stage depend not only on its rate but
also on the internal processes in the nucleation system.
Peculiar conditions of metastable state formation are in a
certain consistency of the sizes of nuclei whose thermody-
namic parameters determine the nucleation rate and char-
acteristics of heterogeneous centers aroundwhich these nuclei
are formed. Such a consistency for the representative types of
heterogeneous centers dealt with in this review considerably
simplifies the thermodynamic description of stable phase
nuclei and leads to the exhibition of universal rules in the
theory of heterogeneous nucleation.

The forthcoming discussion of nucleation will be centered
on the commonest phase transition of a supersaturated vapor
to the liquid-droplet state. Accordingly, liquid droplets will be
considered as new phase nuclei.

2. General notions of the thermodynamics of
heterogeneous nucleation

The nucleation theory is based on thermodynamic data and
its objective is to construct the kinetics of nucleation.

The thermodynamics of heterogeneous nucleation has
rather a long history [5, 11 ± 32]. The central issue is the
assessment of work of droplet formation or chemical
potential of the condensate in a droplet, i.e. a liquid
condensed from the vapor. The knowledge of this work or
the chemical potential of the condensate as a function of the
number of condensate molecules allows all major thermo-
dynamic characteristics of nucleation kinetics to be calcu-
lated. In what follows, we shall confine ourselves to consider-
ing wettable condensation nuclei (ions, small macroscopic
salt crystals or insoluble particles with a zero wetting angle at
the surface). Thermodynamic characteristics of nucleation
for wettable nuclei include threshold supersaturation of
vapor, the height of the activation barrier to nucleation,
positions and half-widths of maxima and minima of droplet
formation work on the droplet size axis. We shall define these
characteristics below and formulate general notions of the
thermodynamics of heterogeneous nucleation on wettable
nuclei.

2.1 The work of droplet formation on a nucleus
Let us introduce the vapor supersaturation z according to
formula

z � n

n1
ÿ 1 ; �2:1�

where n is the number density of vapor molecules, and n1 is
the number density of saturated vapor molecules. The
supersaturation z lies within the range ÿ1 < z <1.

Let us now consider a droplet arising in the vapor ± gas
medium on one of the wettable condensation nuclei of radius
Rn (Fig. 1). The droplet radius is R. Let us introduce the
quantity n according to the formula

n � 4pR 3

3va
; �2:2�

where va is the volume per molecule of the liquid condensed
by the droplet from the vapor. The quantity n is a variable to
be used in the description of the droplet. In the subsequent
discussion the subscripts a, b, and g label quantities
characterizing liquid, gaseous, and solid phases, respectively.

When condensation nuclei are represented bymicroscopic
heterogeneous condensation centers with Rn 5R, the quan-
tity n defined by equality (2.2) coincides with the number of
condensate molecules.

The quantity n defined by expression (2.2) has the same
sense for soluble macroscopic condensation nuclei because in
this case (see Section 4.1) the number of vapor molecules
condensed in a droplet is by far greater than the number of
molecules of condensation nucleus matter dissolved in the
same droplet (it will be shown below that this is true even for
droplets close to equilibrium).

In the case of insoluble macroscopic nuclei of condensa-
tion, the quantity n defined by equality (2.2) governs the
number of molecules of a liquid which would be contained in
a droplet if it had no insoluble condensation nucleus at all. It
should be noted that droplet radii begin to grow rapidly after
the droplets have overcome, by fluctuation, the activation
barrier of nucleation. Then, the quantity n defined by Eqn
(2.2) coincides, with a progressively higher accuracy, with the
true number of vapor molecules condensed by a droplet
containing the insoluble condensation nucleus. This issue
will be discussed at greater length in Section 7.1.

A peculiar feature of heterogeneous nucleation on
wettable nuclei, which distinguishes it from homogeneous
nucleation, is the limiting threshold value zth of vapor
supersaturation z above which barrierless heterogeneous
nucleation occurs. Inequalities ÿ1 < z < 0, 0 < z < zth and

R

Rna

b

g

h

Figure 1. Initial stage of a R-radius droplet formation from a vapor on a

wettable nucleus of radiusRn. Here, h is the liquid film thickness, phase a is
liquid, phase b is gaseous, phase g is solid.
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z > zth indicate regions of stable, metastable, and unstable
vapor states, respectively.

The work of droplet formation on a condensation nucleus
constitutes an important characteristic of heterogeneous
nucleation thermodynamics. This work is conveniently
expressed in kBT units, where kB is the Boltzmann constant,
and T is the temperature which is the same for the droplets
and the surrounding vapor ± gasmedium if the former and the
latter are in thermal equilibrium. Such an equilibriummay be
due to a high concentration of passive gas compared with that
of vapor in the vapor ± gas medium. The work of droplet
formation on a nucleus, expressed in kBT units, is denoted by
F. It is a function of two variables: n and z.

Typical of heterogeneous nucleation is a change in the
dependence of the work F on the variable n (used in the
droplet description) with increasing vapor supersaturation z.
It is illustrated by Fig. 2. Curves 1, 2, 3, and 4 meet vapor
supersaturations at which ÿ1 < z < 0, 0 < z < zth, z � zth,
and z > zth, respectively. In Fig. 2, the origin of the n-axis is
fixed at the point corresponding to the zero true number of
vapor molecules condensed by the droplet. It is taken into
account that the work F at this point goes to zero because the
vapor intrinsically contains a condensation nucleus; hence, no
work is needed to form it.

At the values ne and nc of variable n, the work F depicted
by curve 2 passes a minimum Fe and maximum Fc. The ne and
nc values correspond to the equilibrium and critical droplets,
respectively, which are in stable and unstable chemical
equilibrium with the vapor. Obviously, one has�

qF
qn

�
e

� 0 ;

�
qF
qn

�
c

� 0 ; �2:3�
�
q2F
qn 2

�
e

> 0 ;

�
q2F
qn 2

�
c

< 0 ; �2:4�

where the subscripts e and c mark magnitudes taken at values
ne and nc of variable n. Aminimum of work F is also present in
curve 1. Thereafter the work F unboundedly grows with
increasing n and therefore has no maximum.

The n0 value on curves 2, 3, and 4 corresponds to the
inflection point of a plot of work F versus n. Hence, one

obviously obtains�
q2F
qn 2

�
0

� 0 ; �2:5�

where the subscript 0 indicates magnitudes of quantities at
n � n0. Why n0 does not depend on the supersaturation z as
shown in Fig. 2 will be explained in Section 2.3.

Further interpretation of Fig. 2 needs invoking additional
thermodynamic relations. The known thermodynamic depen-
dence of work F on vapor supersaturation z gives rise to the
inequality

qF �n; z�
qz

< 0 ; �2:6�

where the work F is displayed as a function F�n; z� of two
variables, n and z. The greater n, the stronger inequality (2.6).

Let us first consider a droplet at equilibrium. There is an
explicit relation

Fe�z� � F �n; z�
���
n�ne�z�

�2:7�

indicating the dependence on z of the minimum Fe of work F
and the position n � ne of this minimum on the n-axis. It
follows from Eqn (2.7), in compliance with a known rule of
differentiation, that

qFe

qz
� qF

qn

����
n�ne

qne
qz
� qF

qz

����
n�ne

: �2:8�

By virtue of formula (2.3), the first term on the right-hand side
of Eqn (2.8) vanishes. Then, according to relation (2.8), one
arrives at

qFe

qz
� qF

qz

����
n�ne

: �2:9�

A similar line of reasoning as regards a critical droplet
leads to

qFc

qz
� qF

qz

����
n�nc

; �2:10�

in addition to Eqn (2.9).
Bearing in mind that the greater n, the stronger inequality

(2.6) and that nc > ne, the following chain of inequalities
follows from expressions (2.9), (2.10):

qFc

qz
<

qFe

qz
< 0 : �2:11�

Let us further examine Fig. 2. For ÿ1 < z < 0 (i.e. in the
region of vapor stable state), the work F depicted by curve 1
has a negativeminimum after which it starts to grow infinitely
with increasing n.

Upon the transition from the region ÿ1 < z < 0 to the
region 0 < z < zth of vapor metastable state, the work F
acquires, in addition, a maximum lying to the right of the
minimum on the n-axis. This maximum is positive and rather
large at small z values.

As the vapor supersaturation z continues to grow, both
the maximum and the minimum of work F according to
inequality (2.11) decrease, the former more rapidly than the
latter. The initially positive maximum gradually turns to a

1

nncn0ne

2

3

4

Fe

Fc

0

F

DF

Figure 2. Variation of n-dependence of the work F of droplet formation

with increasing vapor supersaturation z.
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negative one. While increasing in absolute value, the mini-
mum naturally remains negative. Curve 2 in Fig. 2 corre-
sponds to the situation in which the maximum has just
become negative.

With a further increase of supersaturation z, the max-
imum of work F according to Eqn (2.11) progressively comes
close to its minimum. At z � zth, when the vapor super-
saturation z reaches a threshold value zth, the maximum and
minimum of the work F coincide giving rise to an inflection
point on a plot of work as a function of n. Both the first and
the second derivatives of work with respect to n vanish at this
point. Curve 3 in Fig. 2 is appropriate to the vapor super-
saturation z � zth.

Finally, after the transition into the region z > zth of the
vapor unstable state described by curve 4 in Fig. 2, the work F
monotonically decreases with increasing n and shows neither
maximum nor minimum, in conformity with inequality (2.6)
and its strengthening with a rise in n. The point of inflection in
the curve describing the n-dependence of F still exists.
However, the first n-derivative of F is smaller than zero at
this point, while the second n-derivative of F remains zero.

Let us introduce the height difference DF between the
potential hump and potential well in work F, derived from the
relation

DF � Fc ÿ Fe �0 < z < zth� �2:12�

(see Fig. 2), in the region 0 < z < zth of vapor metastable
state. This difference gives the energy in kBT units necessary
for the fluctuation transition of a droplet from the bottom of
the potential well in work F over its potential hump, i.e. for
overcoming the activation barrier to heterogeneous nuclea-
tion via fluctuation mechanism. Being determined by the
equality (2.12), DF has the physical sense of the activation
energy in heterogeneous nucleation. Kinetic evidence of this
meaning of DF will be given in Section 3.1.

According to Eqns (2.11) and (2.12), the inequality

qDF
qz

< 0 �0 < z < zth� �2:13�

holds in the vapor metastable state region 0 < z < zth. Hence,
the activation energy DF monotonically decreases with
increasing vapor supersaturation z. When the supersatura-
tion z attains its threshold value zth, the maximum and
minimum of the work F merge into the point of inflection as
above. Then, the DF activation energy vanishes and barrier-
less heterogeneous nucleation in the region z > zth takes
place.

The behavior of the work F of droplet formation on a
condensation nucleus illustrated by Fig. 2 and its interpreta-
tions will be used in Section 3.1 for the qualitative representa-
tion of heterogeneous nucleation under conditions of gradual
vapor metastable state formation.

2.2 Near-equilibrium and near-critical droplets
Bearing in mind Eqns (2.3) and (2.4), the following approx-
imations may be written:

F � Fe � �nÿ ne�2
Dn 2e

ÿjnÿ nej9Dne
�
; �2:14�

F � Fc ÿ �nÿ nc�2
Dn 2c

ÿjnÿ ncj9Dnc
�
; �2:15�

where

Dne �
�

2

�q2F=qn 2�e

�1=2
; Dnc �

���� 2

�q2F=qn 2�c

����1=2: �2:16�
It follows from Eqn (2.14) that if the variation of n from ne

is Dne, the work F increases by a thermal unit of energy (recall
that the work F is expressed in such units). In contrast,
according to Eqn (2.15), the work F decreases by a thermal
unit of energy if the difference between n and nc equals Dnc.
For this reason, quantities Dne and Dnc defined by equalities
(2.16) are in fact `half-widths' of the potential well and
potential hump in the work F on the n-axis. Quantities Dne
and Dnc play an important role in the kinetics and thermo-
dynamics of heterogeneous nucleation. An equally important
part is played by near-equilibrium and near-critical droplets
for which the variable n lies in the vicinities jnÿ nej9Dne and
jnÿ ncj9Dnc of points n � ne and n � nc, respectively.

The condition that the terms with the third n-derivative of
F at points n � ne and n � nc, neglected in the approximations
(2.14) and (2.15), should be smaller than the retained terms
with the second n-derivative of F at the same points is given by
the inequalities

Dne
3�n0 ÿ ne� 5 1 ;

Dnc
3�nc ÿ n0� 5 1 �2:17�

(the factor 3 in the denominators originates from the factorial
multipliers in a Taylor series; it is taken into account that
ne < n0 < nc).

Inequalities (2.17) show that the potential well and hump
in work F are fully manifested: they are spaced apart on the n-
axis as is qualitatively represented in Fig. 2.

It will be shown in Sections 4 and 6 that inequalities (2.17)
are satisfied if the inequality

exp �DF �4 1 �2:18�

is fulfilled, thus defining the condition that an effective
supercritical droplet formation proceeds when the droplets
pass a significant activation barrier to nucleation.

In the thermodynamics and kinetics of heterogeneous
nucleation, the essentially discrete quantity n is understood
as a continuous one. If such an understanding is to be
acceptable for near-equilibrium and near-critical droplets,
the following inequalities need to be fulfilled:

Dne 4 1 ; Dnc 4 1 : �2:19�
The threshold supersaturation zth of vapor and quantities

DF, ne, nc, Dne, and Dnc as functions of vapor supersaturation
are the main thermodynamic characteristics of nucleation.
For macroscopic condensation nuclei, these characteristics
will be represented in the analytical form in Sections 4 and 6,
along with the illustration of the fulfillment of conditions
(2.17) ± (2.19) in nucleation kinetics.

It is worthwhile to note that analogues of conditions
(2.17) ± (2.19) in the problem of homogeneous nucleation in
a vapor have been found earlier in Ref. [33].

2.3 Relationship between the work of droplet formation
and the condensate chemical potential in the droplet
Let us denote as bn the chemical potential of the condensate in
a droplet, which depends on the droplet description variable
n.We shall further express bn in kBT units and reckon it from a

April, 2001 Theory of heterogeneous nucleation for vapor undergoing a gradual metastable state formation 335



value corresponding to the equilibrium between the con-
densate and the vapor, with a flat interface between them.
The condensate in the droplet is much denser than the vapor,
and its chemical potential bn is practically independent of the
vapor supersaturation z.

Let us denote the vapor chemical potential as b, express it
(similar to bn) in kBT units, and reckon from a value
corresponding to the equilibrium between the vapor and the
liquid which undergoes condensation and has a flat contact
surface.

Assuming that vapor by virtue of its supposedly low
density is an ideal gas, using a known thermodynamic
relation between the chemical potential and density of an
ideal gas, and taking into account the definition (2.1) of vapor
supersaturation, we obtain

b � ln�1� z� : �2:20�

In agreement with Eqn (2.20), the threshold value zth of vapor
supersaturation z corresponds to the threshold value bth of
vapor chemical potential b and this linkage is given by the
equality

bth � ln�1� zth� : �2:21�

Evidently, there is not only thermal but also mechanical
equilibrium between the droplet and the vapor ± gas medium.
Hence the availability of the thermodynamic relation [34]

qF
qn
� bn ÿ b : �2:22�

It is taken into consideration in the above expression that the
droplet is incapable of exchanging matter with a passive gas.
Equation (2.22) also takes into account that the material of
soluble condensation nuclei is fully retained in the droplet.
This equation will be frequently referred to in the forth-
coming discussion.

Let us consider the region 0 < z < zth of the vapor
metastable state. According to relations (2.20) and (2.21),
the vapor chemical potential b in this region satisfies the
inequality 0 < b < bth. The use of relation (2.22) in (2.3) ±
(2.5) leads to

�bn�e � b ; �bn�c � b ; �2:23��
qbn
qn

�
e

> 0 ;

�
qbn
qn

�
c

< 0 ; �2:24��
qbn
qn

�
0

� 0 : �2:25�

It can be seen from Eqns (2.24), (2.25) and ne < n0 < nc
that bn has a maximum at the point n � n0. Therefore, the
following inequality holds:�

q2bn
qn 2

�
0

< 0 : �2:26�

The point n � n0 (similar to bn) does not depend on the
vapor supersaturation z. The work F having the point of
inflection at n � n0 [in accordance with equality (2.5)] explains
why this inflection point is independent of vapor super-
saturation as stated in Section 2.1.

The maximum of bn at the point n � n0 appears when the
points n � ne and n � nc of F-work maximum and minimum

merge together. This takes place at the zth value of vapor
supersaturation z or (which is the same) at the bth value of
vapor chemical potential b related to zth by formula (2.21).
Hence the validity of the equality

bth � max bn � �bn�0 : �2:27�

The solid line in Fig. 3 depicts the condensate chemical
potential bn in a droplet as a function of the variable n in the
droplet description. This relationship, characteristic of
heterogeneous nucleation, agrees with Eqns (2.22) ± (2.27)
and with Fig. 2. The point of reference on the n-axis is chosen
in the same way as in Fig. 2. The tending of bn towards ÿ1
when the variable n tends to this point ensues, because of Eqn
(2.22), from the behavior of the work F shown in Fig. 2. The
tendency of bn towards zero as n!1, when the condensate ±
vapor interface flattens, results from the mode of reckoning
adopted in the definition of bn.

The dashed line in Fig. 3 shows the dependence on n of the
chemical potential bn of the condensate in homogeneous
nucleation. This potential is given by the Gibbs ±Kelvin
relation

bn � 2

3
anÿ1=3 ; �2:28�

which takes into consideration the capillary pressure in a
droplet. The quantity a is determined by the equality

a � 4pg
kBT

�
3va
4p

�2=3

; �2:29�

where g is the droplet surface tension. The quantity a has the
sense of the dimensionless surface tension of the droplet. It
will be of importance in the theory of heterogeneous
nucleation as well. When the variable n is sufficiently large,
the dashed and solid lines in Fig. 3 coalesce. In such a case, the
chemical potentials of the condensate in homogeneous and
heterogeneous nucleation practically coincide.

At the chemical potential b of vapor, which lies in the
region 0 < b < bth of the vapor metastable state (see Fig. 3),
both equilibrium and critical droplets exist [in agreement with

0

b

bth

bn

nc nn0ne

2

3
a nÿ1=3

Figure 3. Dependence on n of the condensate chemical potential bn in a

droplet.
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relations (2.23)]. This confirms what was said in Section 2.1
about curve 2 in Fig. 2.

Figure 3 also describes at once the characteristic cases
ÿ1 < z < 0, z � zth and z > zth, i.e. ÿ1 < b < 0, b � bth
and b > bth [in accord with Eqns (2.20), (2.21)], which are
represented by curves 1, 3, and 4 in Fig. 2. Indeed, if the
chemical potential b of vapor in Fig. 3 lay in the stable state
region ÿ1 < b < 0, it would indicate the existence of an
equilibrium droplet, thus confirming what was said in
Section 2.1 about curve 1 of Fig. 2. Experimental examina-
tion of such a droplet, i.e. a solvated condensation nucleus,
for ÿ1 < b < 0 gives additional evidence that quantity bn
tends to ÿ1 while the variable n tends to its reference point
in Fig. 3.

If the chemical potential b of vapor in Fig. 3 was assumed
to be equal to or higher than a threshold value bth, it would be
clear from the figure and relation (2.22) that the work F
monotonically decreases with increasing n. At b � bth,
however, its n-derivative vanishes at the point n � n0. This
also confirms what was said in Section 2.1 about curves 3 and
4 in Fig. 2.

The chemical potential bn of the condensate, given by
relation (2.28) and shown by the dashed line in Fig. 3, grows
monotonically in homogeneous nucleation with decreasing n
and has no maximum. No matter how large is the chemical
potential b of vapor, the inequality bn ÿ b > 0 will hold at a
sufficiently small n; the same refers to the inequality
qF=qn > 0, owing to relation (2.22). This indicates that
homogeneous nucleation cannot be a barrierless process.

Being independent of vapor supersaturation z, the
chemical potential bn is a simpler theoretical object in the
thermodynamics of heterogeneous nucleation than the work
F which depends not only on n but also on z. For all that, the
knowledge of chemical potential bn as a function of n is
sufficient for determining all the most important thermo-
dynamic characteristics of nucleation. Indeed, the threshold
supersaturation zth of vapor is deduced from formulas (2.21)
and (2.27). Points n � ne and n � nc of the maximum and
minimum of work F are found as the roots of equations given
by equalities (2.23). Furthermore, the half-widthsDne andDnc
are found from the formulas ensuing from Eqns (2.16) and
(2.22):

Dne �
�

2

�qbn=qn�e

�1=2
; Dnc �

���� 2

�qbn=qn�c

����1=2: �2:30�

Finally, the activation energyDF follows from relations (2.12)
and (2.22):

DF �
�nc
ne
�bn ÿ b� dn : �2:31�

As a result, when the chemical potential bn is given as a
function of n, the thermodynamic characteristics ne, nc, Dne,
Dnc, and DF of heterogeneous nucleation can be determined
as functions of vapor supersaturation.

The construction of heterogeneous nucleation thermo-
dynamics by analyzing the dependence of the condensate
chemical potential bn in a droplet on variable n of the droplet
description will be employed in Sections 4 and 6. Also, these
sections will be concerned with more complicated details,
having important practical implications, of the general
concepts that touch upon the thermodynamics of hetero-
geneous nucleation considered in Sections 2.1 ± 2.3.

3. Fundamentals of the kinetic theory
of heterogeneous nucleation

The activation barrier to nucleation is overcome owing to an
increase of the droplet size through the fluctuation mechan-
ism associated with vapor adsorption from the surrounding
vapor ± gas medium. In the course of this process, the droplet
becomes supercritical, i.e. it steadily grows until overconden-
sation begins [9, 10]. Just such supercritical droplets are of
special interest in the context of this review.

Although droplets overcome the barrier via the fluctua-
tion mechanism throughout the entire period of the effective
supercritical droplet formation (nucleation stage), this is only
an initial event with respect to this stage. The nucleation stage
is of special interest because it gives rise to all important
kinetic characteristics of the nucleation process open for
experimental examination, such as the total number of
newly-formed supercritical droplets, the time of onset and
duration of supercritical droplet formation or the width of the
supercritical droplet size spectrum.

The nucleation kinetics are nontrivial in their theoretical
description and susceptible to nucleation system parameters
when the activation barrier is sufficiently but not extremely
high. Otherwise, the intensity of the process may prove
negligibly low. The situation with the sufficient activation
barrier will be considered below.

In the case of gradual formation of a vapor metastable
state, neither the magnitude of vapor supersaturation nor the
concentration of condensation nuclei is known in advance.
Both are determined by nucleation kinetics. Papers [35 ± 39]
report a study of these kinetics which correlates the super-
saturated vapor intake and consumption of condensation
nuclei by droplets with the rate of external gradual vapor
metastable state formation.

3.1 Ideal vapor supersaturation and its reference value
Let us consider in greater detail the results of the above-
mentioned kinetic studies [35 ± 39] of a nucleation stage under
conditions of gradual vapor metastable state formation.

Following paper [8], let us first define an ideal vapor
supersaturation F by the equality

F � ntot
n1
ÿ 1 ; �3:1�

where ntot is the total number of molecules of the condensing
matter per unit volume of vapor ± gas medium including
molecules condensed on the droplets. Evidently, the ideal
supersaturation depends on the external conditions alone.
The time-course of nucleation is governed from the outside by
a given increment of ideal supersaturation in time. The ideal
supersaturation F cannot be lower than the true one, z,
determined by equality (2.1) in which n is the current number
of vapor molecules per unit volume of the vapor ± gas
medium.

In laboratory and technical devices (as well as in nature at
large), an external increase of ideal supersaturation with time
may be due to adiabatic expansion of the vapor ± gasmedium.
There is a one-to-one correspondence between the ideal
supersaturation and the temperature of the vapor ± gas
medium undergoing adiabatic expansion [8, 35]. This rela-
tionship accounts for a rise in ideal vapor supersaturation
with decreasing vapor ± gas temperature, which initiates the
process of nucleation. Moreover, the relationship makes it
possible to follow, based on the given increment of ideal

April, 2001 Theory of heterogeneous nucleation for vapor undergoing a gradual metastable state formation 337



supersaturation, the time-course of vapor ± gas temperature
and the equivalent (under thermal equilibrium) temperature
of the droplets.

Under certain conditions, chemical (e.g. photochemical)
reactions in the vapor ± gas medium can proceed and be
accompanied by the production of vapor molecules. In such
cases, a time-dependent rise in the ideal supersaturation will
be due to the bulk `pumping' of a vapor into the vapor ± gas
medium by chemical reactions occurred in the latter. If the
amount of pumped vapor is relatively small, the temperature
of the vapor ± gas medium during phase transition remains
practically unaltered.

Here is a brief description of a supercritical droplet
formation process running as the ideal supersaturation F
increases in time.

The intensity j of supercritical droplet formation (the
number of supercritical droplets formed per unit volume of
vapor ± gas medium per unit time as a result of overcoming
the activation barrier to nucleation by droplets via fluctuation
mechanism) is proportional (as shown in Ref. [40]) to
Z exp�ÿDF�, where Z denotes the concentration of condensa-
tion nuclei (their number per unit volume of the vapor ± gas
medium) and DF is determined by equality (2.12). Here, we
mean by condensation nuclei only those which are not yet
taken up by the supercritical droplets arising from them. In
other words, these nuclei continue to give rise to new
supercritical droplets. The dependence of the intensity j on
vapor supersaturation, largely expressed in the form of an
exponent exp�ÿDF�, provides a kinetic proof of the fact that
DF has the sense of an activation energy (expressed in kBT
units) as was stated in Section 2.1.

With a rise in the ideal supersaturation F in time,
starting from F � 0 (which corresponds to the onset of
vapor metastable state formation), the work of droplet
formation on a nucleus is characterized not only by a
potential well (which also existed at F < 0) but also by a
potential hump. It follows from inequalities (2.11) that the
potential well sinks as the ideal supersaturation increases.
Simultaneously, there is an even more rapid lowering of the
potential hump. As a result, the activation energy DF falls
but remains fairly high. Practically, each condensation
nucleus takes up as many vapor molecules as is sufficient
for the newly-formed droplet to sink to the bottom of the
potential well. It is the concentration of condensation nuclei
Z introduced in the previous paragraph that stands for the
concentration of such droplets. Droplets on the bottom of
the potential well seek to overcome the activation barrier to
nucleation by fluctuation. As the activation energy DF
decreases, the intensity j of supercritical droplet formation
increases in proportion to the exponent exp�ÿDF� but
remains rather low. In this situation, practically no new
supercritical droplets develop. Hence, there is no vapor
absorption by the droplets, and the vapor supersaturation
z is almost identical to the ideal supersaturation F. The two
supersaturations increase at equal rates. The above scenario
constitutes the preliminary stage of supercritical droplet
formation.

As the ideal supersaturation F grows further with time,
the activation energyDF decreases so as to enable the droplets
`accumulated' at the bottom of the potential well to over-
come, with a high probability, the activation barrier to
nucleation via fluctuation mechanism. This gives an impetus
to the nucleation stage which is the subject-matter of this
discussion.

The supercritical droplets that have passed the activation
barrier take up progressively more vapor as they grow. This
results in vapor supersaturation z getting lower than the ideal
supersaturation F. The earlier a supercritical droplet forms,
the greater is its size and the more vapor it absorbed.
Moreover, the newly-formed supercritical droplets cause the
concentration Z of condensation nuclei to decrease. Each
supercritical droplet `takes away' one condensation nucleus.

A fall in vapor supersaturation z relative to the ideal
supersaturation F and a decrease of condensation nuclei
concentration Z compared with its initial value at the onset
of the nucleation stage tend to slow down a time-dependent
rise in the intensity j of new supercritical droplet formation.
Nevertheless, this rise continues until approximately the
middle of the nucleation stage. As soon as the intensity j
passes its peak, it starts to decrease and eventually becomes so
low that the effective supercritical droplet formation stops
despite the continuing increase of ideal supersaturation F in
time. This brings the nucleation stage to an end. If the time-
dependent growth of the ideal supersaturation F is rather
slow [as permitted by the constraint (3.39) introduced below
in Section 3.4], this stage has time to reach the end while the
activation barrier to nucleation is still sufficiently high.

It is clear from what is said about the supercritical droplet
formation on condensation nuclei that its termination may be
due to vapor absorption by the growing droplets, which
accounts for the maximum of vapor supersaturation z (with
a continuous external rise in the ideal supersaturation F) and
its subsequent fall. However, the droplet formation can just as
well discontinue if the stock of condensation nuclei is depleted
by supercritical droplets formed on them, while the vapor
supersaturation z continues to increase for a certain period as
a result of enhanced ideal supersaturation F. Which of the
two feasible mechanisms prevails will be elucidated in
Section 3.2.

After the nucleation stage is completed (even though the
ideal supersaturation continues to grow with time), subse-
quent stages of vapor ± liquid phase transformation follow at
which no new supercritical droplets form. These stages were
investigated in Refs [37 ± 39].

A principal kinetic characteristic of the nucleation process
is the total number of newly-formed supercritical droplets.
This characteristic is determined from the reference value F�
of ideal supersaturationF at which half of the total number of
new droplets develop. For an externally given growth rate of
ideal supersaturation F in time, the F� value is not known in
advance. The accuracy with which it is found determines how
correctly the kinetic theory predicts the total number of
newly-formed supercritical droplets.

For a given t-time dependence of the ideal supersaturation
�F� growth rate, the reference value F� unambiguously
determines the corresponding time moment t�. It is by
approximately this moment that the intensity j of super-
critical droplet formation passes its maximum.

The power-like approximation to the growth rate of ideal
supersaturation F with time t is representative for the
description of gradual external metastable vapor state
formation:

F �
�

t

t1

�m

: �3:2�

We adopt this approximation following Refs [8, 35, 36]. It
contains two independent positive parameters: the character-
istic scale time t1, and the exponent m. Time t is reckoned
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from the moment at which, in the power-like approximation,
F � 0. According to formula (3.2), the time moment t� is
related to F� by the equation

t� � t1F 1=m
� : �3:3�

In fact, the power-like approximation (3.2) is needed only
at the stage of effective supercritical droplet formation. It will
be shown in Section 3.2 that the relative change of ideal
supersaturation F at this stage is very small. Therefore, the
power-like approximation (3.2) will be extremely accurate for
any time-dependent growth law of ideal supersaturation F,
given from the outside. In this case, however, the parameters
t1 and m are no longer given straightforwardly. It will be
clarified in Section 3.5 how the parameters t1 and m can be
found based on the given growth law of ideal supersaturation
F in time. The same section will elucidate an approach to
determining the time moment at which F � 0 in reality and
not according to the power-like approximation (3.2).

It is clear from the aforesaid that a study of the effective
supercritical droplet formation stage requires the solution of
a difficult, essentially nonlinear and nonlocal in time kinetic
problem of correlation between the absorption of super-
saturated vapor as well as the consumption of condensation
nuclei by supercritical droplets and the rate of external
amplification of ideal supersaturation F in time, i.e. the rate
of the external gradual vapor metastable state formation.
This problem is nonlinear because the dependence of the
intensity of supercritical droplet formation on the vapor
supersaturation z is expressed in the form of exp�ÿDF�. The
problem is nonlocal in time since both the vapor super-
saturation z and the condensation nuclei concentration Z,
which determine the supercritical droplet formation intensity
at each current moment, are themselves dependent on the
number and size of all previously formed supercritical
droplets.

The nucleation kinetics problem under consideration has
been resolved without regard to the specific nature of
condensation nuclei in the kinetic theory of nucleation
developed in Refs [35, 36, 38, 39]. The central issue of this
theory is the iterative method of contracting approximations
which allows all important kinetic characteristics of the
nucleation process to be found and compared with those
examined in experiment. This method is based on a physical
idea [8] that, because the intensity of vapor absorption by
supercritical droplets rapidly increases with their size, those
droplets which were formed when it was virtually absent, i.e.
when the vapor supersaturation was largely due to its external
increase, are primarily involved in the absorption.

3.2 Key parameters of the kinetic theory of nucleation and
kinetic characteristics of nucleation
An important dimensionless parameter G of nucleation
kinetics is defined by the equality

G � ÿF� qDFqz
����
z�F�

: �3:4�

This parameter characterizes the sharpness of the dependence
of the activation energy DF on the vapor supersaturation z in
the neighborhood of z � F�. In the situation of interest in
which droplets have to surmount an appreciable activation
barrier to nucleation, the parameter G is very large, namely

G4 1 : �3:5�

Let Rc be the radius of a critical droplet. For essentially
supercritical droplets [for which R > �3ÿ4�Rc], it is always
possible (regardless of the regime of matter exchange between
the droplets and the vapor) to pass from the variable n defined
by equality (2.2) to such a variable r which grows with time t
at a rate _r independent of r (and n) and is determined only by
the vapor supersaturation z. In what follows, we shall use this
convenient variable r. Then one has

_r � _r�z� : �3:6�

We shall refer to the variable r as the droplet `size'. The
inequalityR > �3ÿ4�Rc is guaranteed at the nucleation stage
by meeting the condition (3.46) introduced in Section 3.4.

The radius Rc of a critical droplet is usually much smaller
than the mean free path traveled by a vapor molecule in the
vapor ± gas medium. For this reason, droplets almost invari-
ably overcome the activation barrier to nucleation by
fluctuation mechanism in a free-molecule regime of matter
exchange between the droplets and the vapor.

However, as soon as the droplets have overcome the
activation barrier to nucleation, their size at the nucleation
stage is likely to be so large that the free-molecule regime will
graduallymake room for the diffusionmode. This new regime
may even prevail if the passive gas concentration in the
vapor ± gas medium is sufficiently high while the coefficient
of condensation of vapor molecules by a droplet is not too
low.

Let us first consider a typical case when the free-molecule
regime still predominates at the nucleation stage. Just such a
case was examined in Refs [35, 36, 38, 39].

It follows from definition (2.2) that a convenient variable
r of the supercritical droplet description owing to which the
equality (3.6) is fulfilled is

r � n 1=3 : �3:7�

The rate _r of the free-molecule growth of this variable with
time is given by

_r � az
t
: �3:8�

Here, a is the coefficient of vapor molecule condensation on a
droplet and t is a characteristic time. This time is defined by
the equality

t � 12

�36p�1=3v 2=3
a n1vT

; �3:9�

where vT is the mean thermal velocity of vapor molecules.
Evidently, the characteristic time t is an estimate of the mean
free time of the vapor molecules in a saturated vapor. As
required, the velocity _r is independent of r, in compliance
with Eqn (3.8).

Other important parameters of nucleation kinetics,
besides G, are c and h which, in the case of the free-molecule
growth of supercritical droplets, are given by the equalities

c � mtG

at1F �m�1�=m�
; �3:10�

h � 6
Z�ÿ1�
n1

G
F�

1

c 3
; �3:11�
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where Z�ÿ1� stands for the initial concentration of con-
densation nuclei, i.e. their number per unit volume of vapor ±
gas medium at the beginning of the nucleation stage. It has
been shown in Refs [35, 38, 39] how, at a given growth rate of
ideal supersaturation F with time, the concentration Z�ÿ1�
is expressed in terms of nuclei concentration at the onset of
vapor metastable state formation when this state is induced
by adiabatic expansion of the vapor ± gas mixture and the
nuclei concentration is time-dependent.

Parameter h is important because it allows us, using the
formula

N � Z�ÿ1�
�
1ÿ exp

�
ÿ 1

h

��
�3:12�

given by the kinetic theory of nucleation (see formula (28) in
Ref. [36]), to find the total numberN of supercritical droplets
formed anew per unit volume of the vapor ± gas medium. For
h4 1 and h5 1, it follows from Eqn (3.12) that

N � Z�ÿ1�
h

�h4 1� ; �3:13�

N � Z�ÿ1� �h5 1� : �3:14�

According to Eqn (3.13), the droplets consume only a very
small fraction of the initially available condensation nuclei for
h4 1 (each droplet takes up one nucleus). In contrast, it
follows from Eqn (3.14) that for h5 1 the droplets consume
all the initially available condensation nuclei. Therefore, the
value of h provides a quantitative criterion for the cause of the
termination of the droplet formation stage. The cause can be
either vapor absorption by the droplets or depletion of the
stock of condensation nuclei by supercritical droplets to
which they have given birth.

The inequality (37) in Ref. [36] suggests the validity of the
inequality

jz� ÿ F�j
F�

<
ln 2

G
�h4 1 or h5 1� : �3:15�

The subscript � refers to the values of quantities at the
moment t�. It follows from Eqns (3.5) and (3.15) that

jz� ÿ F�j
F�

5 1 �h4 1 or h5 1� : �3:16�

Parameter cmay be used to determine the width Dr of the
supercritical droplet size spectrum on the r-axis by the
formula

Dr � 3

c
�h4 1 or h5 1� �3:17�

ensuing from formulas (45) and (48) in Ref. [36]. Only on this
axis on which, in agreement with Eqn (3.6), all the super-
critical droplets `travel' with the same speed at each current
value of the vapor supersaturation z, the spectrum of
supercritical droplet sizes (or, to be precise, each part of the
spectrum formed by a given moment) transfers as a whole
without changing its shape. Therefore, only on this axis the
width of the supercritical droplet size spectrum can be
regarded as a time-independent quantity.

According to formulas (45) ± (50) in Ref. [36], the
following relation holds at the nucleation stage:

jFÿ F�j
F�

� 3

G
�h4 1 or h5 1� ; �3:18�

while the period Dt of this stage satisfies the approximate
relation

Dt
t�
� 3

mG
�h4 1 or h5 1� : �3:19�

It follows from Eqns (3.5), (3.18) that

jFÿ F�j
F�

5 1 �h4 1 or h5 1� : �3:20�

When the parameterm from relation (3.19) is not too small, it
also follows from Eqn (3.19) that

Dt
t�

5 1 �h4 1 or h5 1� : �3:21�

By using equation (3.3) in (3.19) and taking into account
(3.10), we arrive at

Dt � 3t
aF�c

�h4 1 or h5 1� : �3:22�

Therefore, the parameter c is also important for determining
the time period Dt.

The moments of time ton and toff corresponding to the
initiation and termination of supercritical droplet formation
can be found from formula (3.22) with the help of the
approximate equalities

ton � t� ÿ Dt
2
; toff � t� � Dt

2
; �3:23�

which take into account that the moment t� lies roughly in the
middle of the time interval during which the effective super-
critical droplet formation occurs. The inequality (3.21)
warrants that ton > 0, as it should be.

Figure 4 illustrates the density of distribution of super-
critical droplets, p�r; t�, over size r at three characteristic time
moments. This density, also understood as the supercritical
droplet size spectrum, is defined in such a way that p�r; t� dr
gives the number of supercritical droplets at moment t within
the interval dr. The origin of the r-axis corresponds to a size
which is several-fold bigger than the supercritical droplet size.
The possibility to consider this size to be formally equal to
zero is ensured by the fulfillment of condition (3.46) from
Section 3.4. Curve 1 in Fig. 4 corresponds to the time moment
t1 satisfying the inequality ton < t1 < toff. The process of

0 r

1 2 3

Dr

p�r; t�

Figure 4. Changes of the density of distribution of supercritical droplets,

p�r; t�, over their size r with growing time t.
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effective supercritical droplet formation is already in progress
by this moment, and the relation p�r; t1�

��
r�0> 0 is valid.

Curve 2 corresponds to the time moment t2 satisfying the
equality t2 � toff. At this moment, the effective formation of
supercritical droplets is discontinued. Then p�r; t2�

��
r�0� 0.

Curve 3 corresponds to the time moment t3 satisfying the
inequality t3 > toff. The effective formation of supercritical
droplets is completed before this moment. The relation
p�r; t3�

��
r�0� 0 is valid as in the case of curve 2. Starting

from the time moment t2, the spectrum of supercritical
droplet sizes is fully developed. The spectral width Dr is
shown in Fig. 4. The shift of the supercritical droplet size
spectrum (or, to be precise, each part of the spectrum formed
by a given moment) as a whole in the course of time along the
r-axis without changing its shape is sketched in Fig. 4 as a
simple displacement of the curves in time parallel to the r-
axis. The picture in Fig. 4 agrees with the analytical
dependence of the density of distribution p�r; t� on r and t,
found earlier in Refs [35, 36, 38, 39].

It follows from Eqns (3.11), (3.13), and (3.17) that

N�Dr�3 � 9

2

n1F�
G

�h4 1� : �3:24�

In agreement with relation (3.7), the quantity N�Dr�3 in the
left-hand side of Eqn (3.24) estimates the total number of
vapor molecules (per unit volume of the vapor ± gas medium)
contained in the supercritical droplets by the end of their
effective formation. It is clear from definition (3.4) that the
activation energy DF increases by unity for a relative decrease
of vapor supersaturation z by 1=G. Hence, there is a
significant (e-fold) reduction in the intensity of supercritical
droplet formation. In agreement with this circumstance and
with the fact that the termination of the effective supercritical
droplet formation for h4 1 is caused by their vapor
absorption, the quantity n1F�=G on the right-hand side of
relation (3.24) estimates the total number of vapor molecules
absorbed by supercritical droplets at the nucleation stage.
Thus, relation (3.24) has the meaning of the vapor molecule
balance equation. The fact that the kinetic theory ensure the
fulfillment of this balance equation supports the validity of
this theory.

Let us now consider an opposite typical case in which the
diffusion mode of material exchange between supercritical
droplets and vapor predominates at the nucleation stage. This
case was examined in Ref. [41].

It follows from Eqn (2.2) that in this situation the variable

r � n 2=3 �3:25�
is a convenient variable for the description of supercritical
droplets satisfying equation (3.6). The rate _r of the diffusive
growth of this variable with time is written as

_r � z
tD

: �3:26�

Here, tD is a characteristic time given by the equality

tD � 3

8p

�
4p=�3va�

�1=3
Dn1

; �3:27�

where D is the diffusion coefficient of vapor molecules in the
vapor ± gas medium. As required, the velocity _r is indepen-
dent of r, in compliance with Eqn (3.26).

It is easy to see that the relations (3.12) ± (3.21), (3.23) also
hold in the case of diffusive growth of supercritical droplets.

In this case, however, the dimensionless parameters c and h of
the theory are determined by the equalities

c � mtDG

t1F �m�1�=m�
; �3:28�

h � 3p 1=2

4

Z�ÿ1�
n1

G
F�

1

c 3=2
�3:29�

[the former definition (3.4) of the parameter G remains valid].
Therefore, we shall have

Dt � 3tD
F�c

�h4 1 or h5 1� ; �3:30�

N�Dr�3=2 � 31=2 4

p 1=2

n1F�
G

�h4 1� �3:31�

instead of Eqns (3.22), (3.24). Similar to (3.24) and in
agreement with (3.35), relation (3.31) has the sense of a
balance equation for the number of vapor molecules.

As before, the magnitude of the parameter h remains a
quantitative criterion for the completion of the effective
supercritical droplet formation.

For the linear dependence of h on the initial concentration
Z�ÿ1� of condensation nuclei suggested by the equalities
(3.11) and (3.29), the limiting situations h4 1 and h5 1
(interesting because of their relative simplicity and physical
clarity) are easier to realize than the situation where h � 1.
Therefore, we shall confine ourselves to the discussion of the
situations with h4 1 and h5 1.

3.3 Equation for the reference value
of ideal vapor supersaturation
The key parameters G, c, and h of the kinetic theory of
nucleation, introduced in the preceding section, depend on
the reference value F� of ideal vapor supersaturation. This
value also determines the kinetic characteristics of the
nucleation process, defined by formulas (3.12), (3.17), (3.22),
(3.23), and (3.30), such as the total number of newly-formed
supercritical droplets, the width of the supercritical droplet
size spectrum, the total duration and times of initiation and
termination of supercritical droplet formation, respectively.

There is a relation

fs �
c

h
ln 2 �h4 1�

c ln 2 �h5 1�

8<: �3:32�

for the reference value F� of ideal vapor supersaturation
(relation (36) in Ref. [36]), where the quantity fs in the case of
free-molecule growth of supercritical droplets is found from
the equation

fs � 3

p

�
n 2=3c

Dne Dnc

1� z
z

exp�ÿDF �
������

z�F�
�3:33�

(relations (16) and (27) in Ref. [35]). In the case of diffusive
growth of supercritical droplets, the same quantity can be
found from

fs � 3

p
atD
t

�
n 2=3c

Dne Dnc

1� z
z

exp�ÿDF �
������

z�F�
�3:34�

(relation (3.3) in Ref. [41]). Here, it is taken into consideration
that for the former intensity of droplet formation, there is a
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t=�atD�-fold change in the characteristic growth rate _r of
supercritical droplets at the stage of their effective formation,
in agreement with Eqns (3.8) and (3.26). It is worthwhile to
note that the concentration of condensation nuclei (the
multiplier in the expression for the intensity of supercritical
droplet formation) does not enter Eqns (3.32) ± (3.34).

Taken together, relations (3.32) ± (3.34) give rise to a
closed equation for the reference value F� of the ideal
supersaturation F. This equation is responsible for the
coordination among supersaturated vapor absorption as
well as consumption of condensation nuclei by supercritical
droplets and a rate of external enhancement of the ideal
supersaturation F with time. Parameters c and h in formula
(3.32) are determined by equalities (3.10), (3.11) in the case of
the free-molecule growth of supercritical droplets and by
equalities (3.28), (3.29) in the case of diffusive growth. A high
sensitivity of the exponent exp�ÿDF� in Eqns (3.33), (3.34) to
the value z � F� makes it possible to find, by iteration, the
reference value F� of the ideal supersaturation F.

Let us represent the closed equation for F�, given by
relations (3.32) ± (3.34), in a form important for further
discussion. We will first introduce the time ts with the help
of expression

ts � �Dnc�
2

2Wc

����
z�F�

; �3:35�

where

Wc � pavT nR 2
c : �3:36�

Because the exchange of material between a critical droplet
and vapor occurs via a free-molecule mechanism (see above),
Wc is the number of molecules absorbed by a critical droplet
from the vapor per unit time [in agreement with (3.36)]. Then,
the time ts introduced with the aid of expression (3.35)
characterizes the time necessary for the quasi-stationary
regime in which droplets overcome the activation barrier to
nucleation by fluctuation to set in [40, 32]. This is, however, a
rough characteristic because in Eqn (3.35) the vapor super-
saturation z is assumed to be equal to the reference valueF� of
the ideal supersaturationF. In what follows, the time ts will be
important only in condition (3.39) significant for the applic-
ability of the kinetic theory of nucleation. Due to this, the
approximate interpretation of time ts will be of no practical
importance.

Using definitions (2.1), (2.2), and (3.9), we may write
(3.36) as

Wc � 3atÿ1�1� z�n 2=3c : �3:37�

Expressions (3.32), (3.35), and (3.37), taking into account
(3.22), (3.33) in the case of free-molecule supercritical droplet
growth and (3.30), (3.34) in the case of diffusive supercritical
droplet growth, yield an equation for the reference value of
ideal vapor supersaturation

�
Dne
Dnc

exp�DF �
������

z�F�
�

h

6p ln 2
Dt
ts
�h4 1� ;

1

6p ln 2
Dt
ts
�h5 1� :

8>>><>>>: �3:38�

Presented in an identical form for the free-molecule and
diffusive growth of supercritical droplets, this equation will
be important for the following discussion.

3.4 Applicability conditions for the kinetic theory
of nucleation
Let us formulate conditions for the applicability of the
nucleation kinetic theory [35, 36, 38, 39, 41]. The kinetic
theory postulates that droplets overcome the activation
barrier to nucleation in a quasi-stationary fluctuation pro-
cess that continues throughout the entire stage of effective
supercritical droplet formation. Evidently, for such a process
to proceed the following condition must be fulfilled:

Dt
ts

4 1 : �3:39�

Because of relation (3.38), the strong fulfillment of the
condition (3.39) ensures that the condition

exp
�
DF
���
z�F�

�
4 1 �3:40�

is also satisfied. This latter condition guarantees that the
nucleation stage is completed while the nucleation activa-
tion barrier is still of significance. The greater the time t1
of the ideal supersaturation �F� growth, the greater the
time period Dt, in accordance with formulas (3.22) and
(3.30) and definitions (3.10) and (3.28) of the parameter c
in these formulas. This ensures the better fulfillment of
condition (3.39) and also of condition (3.40), by virtue of
Eqn (3.38).

In a characteristic case when the free-molecule growth of
supercritical droplets prevails during nucleation, the inequal-
ityR5 l=a is satisfied throughout the entire nucleation stage.
In this inequality, l is the mean free path traveled by vapor
molecules in a vapor ± gas medium, estimated through the
kinetic relationship for gases:

l � �n1 � ng�ÿ1vÿ2=3a ; �3:41�

in which ng is the number of passive gas molecules per unit
volume of the vapor ± gas medium (v

2=3
a stands for the cross

section of collisions between a vapor molecule and molecules
of the vapor ± gas medium, on the assumption that n � n1).
Passing from the radius R to the variable r defined by
equalities (2.2) and (3.7), bearing in mind that characteristic
values of the variable r at the nucleation stage are of the same
order of magnitude as the width Dr of the supercritical
droplet size spectrum on the axis of this variable, and taking
into consideration estimate (3.41), the inequalityR5 l=a can
be presented as

Dr
rl

5 1 ; �3:42�

where

rl � aÿ1�n1 � ng�ÿ1vÿ1a : �3:43�

In an opposite characteristic case when the diffusive
growth of supercritical droplets prevails during nucleation,
the inequality R4 l=a is satisfied throughout the entire
nucleation stage. Passing from the radius R to the variable r
defined by equalities (2.2) and (3.25), bearing in mind that
characteristic values of variable r at the nucleation stage are
of the same order of magnitude as the width Dr of the
supercritical droplet size spectrum on the axis of this
variable, and taking into consideration Eqn (3.41), the
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inequality R4 l=a can be presented as

Dr
rl

4 1 ; �3:44�

where rl is estimated by

rl � aÿ2�n1 � ng�ÿ2vÿ2a �3:45�

instead of Eqn (3.43).
The kinetic theory suggested the fulfilment of the

condition

Dr
rc

4 1 ; �3:46�

where rc is the critical droplet size on the r-axis. In case of the
free-molecule growth of supercritical droplets in agreement
with Eqns (3.17), (3.22), (3.35), (3.37), and rc � n 1=3c , one
finds an expression

Dr
rc
� 1

6

� �Dnc�2
nc

z
1� z

������
z�F�

Dt
ts

�h4 1 or h5 1� :
�3:47�

It follows from Eqn (3.47) that in this case condition (3.46) is
satisfied if condition (3.39) is strongly fulfilled [the coefficient
of factor Dt=ts in Eqn (3.47) will be estimated in Sections 5.1
and 7.1]. In the case of diffusive growth of supercritical
droplets, the fulfilment of condition (3.46) ensues, with
ample reserve, directly from inequalities (3.44) and
rc=rl 5 1, the latter showing (as in Section 3.2) that the
critical droplet radius is always much smaller than l=a.

It was implied in the kinetic theory that in a volume V
occupied by the vapor ± gas medium under consideration, the
relation�

V

n�r; t� dr � nV �3:48�

holds throughout the entire nucleation stage. Here, r is the
spatial point inside volume V, and n�r; t� is the local number
density of vapor molecules perturbed by the supercritical
droplet growth. The quantity n denotes, in agreement with
definition (2.1), the uniform number density of vapor
molecules far from supercritical droplets.

Relation (3.48) allows the approximation for a homo-
geneous vapor with a molecular number density n to be
employed for the description of vapor consumption by
supercritical droplets. Because the intensity of supercritical
droplet formation varies significantly (e-fold) when the vapor
supersaturation z changes by 1=G, a small relative change of
vapor supersaturation z by 1=G [in accordancewith inequality
(3.5)] at the nucleation stage becomes important. Therefore,
relation (3.48) must be very accurate. The relative error in
relation (3.48) must be much smaller than the small quantity
1=G. The fulfilment of relation (3.48) with such a high
accuracy was substantiated in Ref. [42] for the case of the
strongly fulfilled inequality n1va 5 1 typical of the nuclea-
tion process.

Finally, it was suggested in the kinetic theory that the
effects of condensation heat release in the course of the
nucleation process are negligibly small. It was noted in Ref.
[8] that these effects are manifested as a deviation of droplet
temperature from the vapor ± gas temperature and a decrease

of the vapor supersaturation by heating of the medium. The
assumption of the smallness of condensation heat release
effects is true at a high passive gas concentration in the
vapor ± gas medium, implied in the present review. General-
ization of the kinetic theory to the case where the passive gas
concentration may be low was undertaken in Refs [37, 43].

Conditions (3.39), (3.40), (3.42), (3.44), and (3.46) are very
sensitive to parameters determining the properties of vapor,
liquid condensed from the vapor, and condensation nuclei
matter. They are equally susceptible to the size of the
condensation nuclei and their initial content in vapor ± gas
medium, the passive gas concentration in the vapor ± gas
medium, and the external gradual vapor metastable state
formation rate. These conditions restrict the scope of
applicability of the kinetic theory of nucleation.

3.5 Generalization of the theory to an arbitrary law
of gradual formation of a vapor metastable state
The foregoing discussion was concerned with the power-like
approximation (3.2) to the law of enhancement of the ideal
supersaturation F with time. This approximation was used
from the moment at which the ideal supersaturation F was
zero. This moment was taken as the initial moment t � 0. By
reckoning time t from this moment and using formula (3.3),
we found the moment of time t�, important for nucleation, by
which half of the total number of supercritical droplets was
formed in the process of nucleation. Parameters t1 and m of
the approximation (3.2) were regarded as the given ones.

Approximation (3.2) was actually important only at the
nucleation stage. At this stage, the relative change of the ideal
supersaturation F is very small, in agreement with inequality
(3.20). Therefore, the power-like approximation (3.2) is
rather accurate. However, in the general case of an arbitrary
law of gradual vapor metastable state formation, the
parameters t1 and m of approximation (3.2) are no longer
known in advance and have to be found based on an
externally given enhancement rate of ideal supersaturation
F in time. Moreover, the moment of time at which the ideal
supersaturation F was really equal to zero (we denote this
moment as t0) no longer coincides with the moment t � 0 at
which the ideal supersaturation F vanished according to
approximation (3.2). Therefore, the moment t0 on the time
axis convenient for the theory [on which F

��
t�0� 0 in terms of

approximation (3.2)] must be found together with parameters
t1 and m. Only after the moment t0 is found it is possible to
pass to the convenient (for the purpose of experiment) time
axis on which reckoning is performed from the onset of the
vapor metastable state formation under experimental condi-
tions. Thereafter, the location of approximation (3.2) on this
axis can be determined.

It will be shown below how the quantities t1, m, t0, and
also t� are found in the case of gradual vapor metastable state
formation arbitrary in time. We shall base our reasoning on
that adopted in Refs [44, 45].

Let us use, as above, the time axis convenient for the
theory, on which F

��
t�0� 0 in accord with the power-like

approximation (3.2) (it is now used only during the nucleation
stage).

In what follows, byF�t� is understood the externally given
ideal vapor supersaturation arbitrarily growing with time t.
From the definition of the moment t0 one obtains that

F
���
t�t0
� 0 : �3:49�
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Let us represent the ideal supersaturation F�t� as
F�t� � j�tÿ t0� ; �3:50�

where the function j�tÿ t0� describes `switching on' the ideal
supersaturation F�t�, i.e. its true increase with time tÿ t0
reckoned from the moment t0 at which the ideal super-
saturation F was really zero [in agreement with the result
(3.49)]. The function j�tÿ t0� serves to externally govern the
progress of supercritical droplet formation in time.

Below, we shall consider the function j�tÿ t0� as being
known, e.g. given by experimental conditions, and mono-
tonically growing, i.e. satisfying the condition

_j�tÿ t0� > 0 �3:51�

(the dot over denotes the time-derivative). According to Eqn
(3.50) and F� � F

��
t�t� , the following equality is valid:

j�t� ÿ t0� � F� : �3:52�

Let us choose parameters t1 and m of the approximation
(3.2) such that at t � t� (i.e. at the moment of time t�
important for the formation of supercritical droplets) this
approximation ensured true values of ideal supersaturation
F�t� and its first, _F�t�, and second, �F�t�, time-derivatives.
Taking into account relations (3.50) and (3.52), we arrive at�

t�
t1

�m

� F� ; �3:53�

m
t mÿ1�
t m1
� _j�t� ÿ t0� ; �3:54�

m�mÿ 1� t
mÿ2
�
t m1
� �j�t� ÿ t0� : �3:55�

Evidently, Eqn (3.53) is equivalent to Eqn (3.3).
If the equalities (3.52) ± (3.55) are satisfied, the approx-

imation (3.2) is highly accurate at the nucleation stage.
Accordingly, the kinetic theory of nucleation set forth in
Sections 3.2 and 3.3 will be just as accurate. At the
preliminary stage of the process, when the vapor metastable
state is already being formed while supercritical droplets are
still absent, approximation (3.2) tends to poorly describe the
true growth of ideal supersaturation with time (as having a
purely formal meaning). This, however, will be apparent only
in that the moment of time t � 0 (initial for the theory), at
which F � 0 is satisfied [as a result of approximation (3.2)], is
likely to fail to coincide with the moment t0 at which really
F � 0 in accordance with Eqn (3.49).

Thus, parameters t1 and m are not given in advance but
determined (together with t0 and t�) by a system of four
equations (3.52) ± (3.55). The reference value F� of ideal
vapor supersaturation in these equations is expressed
through parameters t1 and m by means of the equation
derived for it in Section 3.3.

Let us examine Eqns (3.52) ± (3.55), taking into account
that F� is a function of t1 and m. Owing to inequality (3.51),
Eqn (3.52) admits solution in terms of the difference t� ÿ t0
which is revealed as a function of F� alone:

t� ÿ t0 � k�F�� : �3:56�
The introduced function k is the inverse of function j and
positive. It is easy to find using a given j function.

According to relation (3.56), the right-hand sides of Eqns
(3.54) and (3.55) are functions of F� too. Let us divide these
equations by Eqn (3.53) and introduce the functions k1�F��
and k2�F��:
k1�F�� � Fÿ1� _j

ÿ
k�F��

�
; k2�F�� � Fÿ1� �j

ÿ
k�F��

� �3:57�
[the function j being known, its derivatives _j, �j and
functions k1�F�� and k2�F�� are also known]. As a result,
one can write down:

m � k1�F�� t� ; �3:58�
m�mÿ 1� � k2�F�� t 2� : �3:59�

Division of Eqn (3.59) by the square of equation (3.58)
yields

m � k 2
1 �F��

k 2
1 �F�� ÿ k2�F�� : �3:60�

Then with the help of Eqn (3.58), the relationship

t� � k1�F��
k 2
1 �F�� ÿ k2�F�� �3:61�

is obtained. At last, using expression (3.53) and taking into
consideration Eqns (3.60) and (3.61), we find that

t1 � k1�F��
k 2
1 �F�� ÿ k2�F�� F

� k2�F��ÿk 2
1
�F���=k 2

1
�F��

� : �3:62�

Formulas (3.56), (3.60) ± (3.62) taken together with the
equation for the reference value F� of ideal vapor super-
saturation, obtained in Section 3.3, give rise to a closed system
of equations with which to find the quantities t1,m, t0, and t�
from the experimentally found growth rate of ideal super-
saturation in time. We did not solve equation (3.56) for t0
because it is the difference t� ÿ t0 that permits us to locate the
moment t0 on the time axis convenient for the theory (used
above) from the time moment t� on this axis.

It can be seen from Eqns (3.50), (3.57) and (3.60) that the
values of m < 1 and m > 1 depend on whether the growth of
ideal supersaturation F with time in the vicinity of the
moment t � t� is slow or accelerated. It is also clear that in
the case of an accelerated growth, when k2�F�� > 0, the
acceleration cannot be too high, to avoid violation of the
condition

k 2
1 �F�� ÿ k2�F�� > 0 �3:63�

which guarantees, in accordance with Eqn (3.60), thatm > 0.
Before this condition is broken, m as well as t1 and t� passes
to infinity. The growth of the ideal supersaturation F with
time should not be too rapid (as was noted many times
before); otherwise, the process of nucleation will not be
completed till its activation barrier is essential.

According to Eqns (3.51) and (3.57), the inequality
k1�F�� > 0 is valid and, together with the condition (3.63)
and formulas (3.61), (3.62), warrants that natural inequalities
t� > 0, t1 > 0 are fulfilled. Although the relation t� ÿ t0 > 0
ensues from Eqn (3.56) and inequality k�F�� > 0, the sign of
time t0 in the general case remains unknown. If the ideal
supersaturation rapidly increases with time at the preliminary
stage, it is clear that t0 > 0. Conversely, t0 < 0 if the ideal
supersaturation grows slowly at this stage.
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The solid line in Fig. 5 depicts the true ideal super-
saturation F�t� on the time axis on which F

��
t�0� 0 according

to the power-like approximation (3.2). The power-like
approximation (3.2) is shown by the dashed line which only
deviates from the solid one at the preliminary stage, i.e. at
t9 t�ÿ Dt=2. Throughout the entire nucleation stage, i.e. for
t� ÿ Dt=29 t9 t� � Dt=2, the dashed line practically merges
into the solid one, which suggests that the power-like
approximation (3.2) is very accurate. Figure 5 illustrates the
case in which m < 1 and t0 > 0.

Let us examine the transition to a situation in which the
power-like approximation (3.2) holds throughout the entire
period of vapor metastable state formation, i.e. when the
equality j�tÿ t0� � �t=t1�m takes place according to repre-
sentation (3.50). Then, the definitions formulated in Eqns
(3.56), (3.57) give rise to

k�F�� � t1F 1=m
� ; k1�F�� � m

t1
Fÿ1=m� ;

k2�F�� � m�mÿ 1�
t 21

Fÿ2=m� : �3:64�

As expected, the substitution of relations (3.64) into formulas
(3.56), (3.60) ± (3.62) leads to equalities (3.3) and t0 � 0 and
also confirms that parameters t1 andm actually coincidewith
the parameters of approximation (3.2) [the equality t0 � 0 is
readily apparent directly from Eqn (3.49)].

4. Thermodynamics of nucleation
on soluble nuclei

Soluble nuclei are the most widespread natural wettable
condensation nuclei. In the Earth's atmosphere, the over-
whelming majority of active condensation nuclei are sea-salt
particles readily soluble in water. For this reason, we begin
the discussion of explicit expressions for thermodynamic
characteristics of heterogeneous nucleation from the con-
densation on soluble nuclei.

4.1 Chemical potential of the condensate in a droplet
Let us consider a droplet in a vapor, which is in fact a solution
of nuclear matter in the condensate. The number of con-
densate molecules in the droplet is chosen as the variable n of
the droplet description. The total number of nuclear
molecules dissolved in the droplet (or the total number of
ions of nuclear matter if it dissociates on solution) is

designated as nn. If the nuclear matter is an electrolyte, it is
assumed to be completely dissociated.

Let us further suppose that the condensation nuclei
consist of a surface-inactive material and are completely
dissolved in the droplet (i.e. the original condensation
nucleus shown in Fig. 1 has disappeared). Condensation
nuclei consisting of surface-active materials (surfactants)
will be considered in Section 4.4, and generalization of the
theory to the case of partially soluble nuclei and nuclei of
mixed composition in Section 8.

It will be shown below that the inequality

n
nn

4 1 �4:1�

is satisfied in the case of complete dissolution of a macro-
scopic condensation nucleus in a droplet over the entire range
of variable n important for the theory. Whenever this
inequality is satisfied, the nuclear matter solution in the
droplet is dilute, that is the relative concentration of the
solution x is equivalent to a small quantity nn=n. The surface
tension of the droplet and the specific molecular volume of
the condensate may be regarded as identical to those in the
absence of dissolved matter.

The condensation around soluble nuclei exemplifies the
situation in which a study on nucleation thermodynamics
may conveniently be begun from finding the expression for
the condensate chemical potential in a droplet. The chemical
potential of the condensate in a droplet containing dissolved
nuclear matter is determined by the difference between the
contributions of capillary and osmotic pressures [13, 46, 47].
Taking into consideration the definition of the dimensionless
chemical potential bn offered in Section 2.3, relation (2.28) for
the contribution of capillary pressure, and the expression for
the osmotic pressure contribution in the case of a dilute
solution, we have

bn � ÿ nn
n
� 2

3
anÿ1=3 : �4:2�

It is easy to notice that the n-dependence of bn given by
relation (4.2) corresponds to the typical dependence of the
chemical potential of the condensate in the case of hetero-
geneous condensation, depicted in Fig. 3. Specifically, at
n � n0, where

n0 �
�
9nn
2a

�3=2

; �4:3�

bn attains its maximum value of

�bn�max �
4a

9n 1=30

: �4:4�

In the region of relatively small n, where the droplet may
contain an undiluted solution and relation (4.2) is not
fulfilled, the chemical potential of the condensate does
have to monotonically decrease with decreasing n as a
result of thermodynamic instability of the solution. For
this reason, the above maximum of bn is unique in the
region of complete nucleus dissolution in the droplet.
Accordingly, this maximum determines the threshold value
bth of the vapor chemical potential during condensation on
soluble nuclei. It follows from Eqn (4.4), taking into

0

Power-like
approximation

F�

F�t�

t�t0 tt� ÿ Dt
2

t� � Dt
2

Figure 5. Behavior of ideal supersaturation F�t� on the t-time axis

convenient for the theory.
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account Eqn (4.3), that

bth � 2 �2a�3=2
27n 1=2n

: �4:5�

This equation expresses bth directly through the number of
molecules or ions of the condensation nucleus.

According to Eqn (4.3), inequality (4.1) holds in the
vicinity of the point n � n0 and to the right of it if the
condition

n 1=3n 4 1 ; �4:6�

having the sense of the condition of macroscopicity of soluble
nuclei, is satisfied. On account of inequality (4.6), Eqn (4.5)
yields bth 5 1. Then, if equality (2.21) is taken into considera-
tion and in agreement with Eqn (4.5), the vapor threshold
supersaturation is given by

zth �
2 �2a�3=2
27n 1=2n

; �4:7�

zth 5 1 : �4:8�
Equation (4.7) is called the Kohler formula [46].

4.2 Thermodynamic characteristics
of nucleation on soluble nuclei
Let us represent the vapor chemical potential b in the form

b � bth�1ÿ e� ; �4:9�

where e is its relative deviation from the threshold value bth.
Bearing in mind Eqns (2.20), (2.21), and (4.8), we can write
down, along with Eqn (4.9), the relation

z � zth�1ÿ e� : �4:10�

Therefore, e has the sense of relative deviation of vapor
supersaturation from the threshold value.

In the subthreshold region of vapor metastability,
0 < z < zth, one also has the inequality 0 < e < 1. It has
been noted in Sections 2.2 and 2.3 that nucleation kinetics
can be described on condition that the dependence of the
activation energy DF on vapor supersaturation, the locations
of ne and nc and the half-widths Dne and Dnc of the minimum
and maximum on the axis of variable n of the droplet
formation work F are known. Let us find these thermody-
namic characteristics of nucleation as functions of e in the
subthreshold region of vapor metastability.

By expanding bn in a Taylor series in the neighborhood of
the point n � n0 and taking equality (2.27) into account, it is
possible to write the parabolic approximation

bn � bth � 1

2

�
q2bn
qn 2

�
0

�nÿ n0�2 �4:11�

(the subscript 0 marks the values of quantities at n � n0). The
condition of smallness of the discarded term containing the
third n-derivative of bn at the point n � n0 assumes the form

1

3

�����nÿ n0�
�
q3bn
qn 3

�
0

��
q2bn
qn 2

�
0

����5 1 ; �4:12�

which defines the region in which approximation (4.11) is
valid.

Using Eqns (2.23), (4.9), (4.11), we have

ne � n0 ÿ
 

2ebth��q2bn=qn 2��0
!1=2

;

�4:13�

nc � n0 �
 

2ebth��q2bn=qn 2��0
!1=2

:

Furthermore, the use of Eqns (4.11) and (4.13) in Eqn (2.30)
gives

Dne � Dnc �
 

2

e bth
��q2bn=qn 2��0

!1=4

: �4:14�

Finally, the substitution of relations (4.11) and (4.9) into
(2.31), taking into consideration formula (4.13), yields

DF � 4

3
e 3=2b3=2th

 
2��q2bn=qn 2��0

!1=2

: �4:15�

In the case of totally dissolved nuclei consisting of surface-
inactive materials, the following equation is valid, in agree-
ment with Eqns (4.2) and (4.3):�

q2bn
qn 2

�
0

� ÿ 211=2a 9=2

310n 7=2n

: �4:16�

Accordingly, it follows from formulas (4.13) ± (4.16) that

ne � n0
�
1ÿ �6e�1=2 � ; nc � n0

�
1� �6e�1=2 � ; �4:17�

Dne � Dnc � 27

�
3

2

�1=4

�2a�ÿ3=2nneÿ1=4 ; �4:18�

DF � 16

61=2
nne 3=2 : �4:19�

It is clear from Eqns (4.2), (4.17) that condition (4.12) is
met over the entire range ne 4n4nc if the following inequal-
ity is satisfied:

13

9
�6e�1=2 5 1 : �4:20�

In conformity with this inequality, the deviation e from the
threshold chemical potential of vapor in formulas (4.17) ±
(4.19) must be rather small.

An opposite restriction on the deviation e ensues from the
applicability conditions (2.17) for quadratic approximations
(2.14) and (2.15) to the work F of formation of near-
equilibrium and near-critical droplets. The use of relations
(4.13) ± (4.15) leads to

Dne
n0 ÿ ne

� Dnc
nc ÿ n0

� 2

�3DF �1=2
: �4:21�

Hence, and from conditions (2.7), we have the inequality

2

3�3DF �1=2
5 1 : �4:22�

According to formulas (4.22) and (4.19), the quantities DF
and emust be fairly large.

It should be emphasized that the equality (4.21) and the
equalities n0 ÿ ne � nc ÿ n0,Dne � Dnc ensuing from formulas
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(4.13), (4.14) are corollaries of the parabolic approximation
(4.11) alone and unrelated to the specific nature of a
macroscopic condensation nucleus.

4.3 Prethreshold region of vapor metastability
It has been mentioned in Section 3.1 that the intensity of
supercritical droplet formation is proportional to
Z exp�ÿDF �. The exponent exp�ÿDF � shows a fairly sharp
dependence on DF while the concentration of condensation
nuclei Z does not normally exceed 105 cmÿ3. Therefore, only
that vapor metastability region appears interesting for the
present study in which an approximate double inequality

29DF9 15 �4:23�

is satisfied. Indeed, the activation energy to the left of the
lower bound of this inequality, i.e. at DF9 2, is so small that
nucleation proceeds in a virtually barrierless way. To the right
of the upper bound of the same inequality, i.e. atDF0 15, the
activation energy is already so high that nucleation is
practically absent.

According to Eqns (4.19) and (4.23), one obtains

e 1=2 � nÿ1=3n ; �4:24�

where it is taken into consideration that the range of
�DF �1=3 variations is significantly narrower than that of
DF variations; therefore, it is roughly assumed that
�61=2DF=16�1=3 � 1. Relation (4.24) will be considered at
greater length in Section 5.1.

It follows from Eqns (4.6) and (4.24) that

e 1=2 5 1 : �4:25�

The vapor metastability region in which inequality (4.23)
is satisfied will be referred to as the prethreshold region. The
approximate relation (4.24) defines the quantity e 1=2 char-
acteristic of this region. According to inequality (4.25), if
condensation nuclei are macroscopic, the prethreshold region
of vapormetastability occupies within the entire subthreshold
region 0 < e < 1 only a very narrow gap with a width of the
order of the distance between the gap and the lower limit e � 0
of the subthreshold region.

The fulfillment of inequality (4.20) follows from inequal-
ity (4.25). Likewise, expression (4.23) accounts for the
fulfillment of inequalities (2.18) and (4.22). The latter inequal-
ity, in conjunction with expression (4.21), ensures that the
conditions (2.17) are met. Opposite limitations on e and DF
specified in the preceding section are therefore satisfied in the
prethreshold region of vapor metastability in the event of
macroscopic condensation nuclei.

According to Eqns (4.17), (4,25), and (4.3), one obtains

ne � nc �
�
9nn
2a

�3=2

: �4:26�

According to relations (4.18) and (4.24), we find that

Dne � Dnc � 27

�
3

2

�1=4

�2a�ÿ3=2n 7=6n : �4:27�

Expressions (4.27) and (4.6) account for the fulfilment of
conditions (2.19).

4.4 Generalization to the case of nuclei consisting
of soluble surfactants
In Sections 4.1 ± 4.3, we disregarded nuclear matter adsorp-
tion at the droplet surface. In conditions of practical interest,
the condensation on soluble nuclei occurs at low vapor
saturation. It has been shown earlier that, in this situation,
droplets with a low concentration of nuclear matter in the
solution play a definitive role. Therefore, the above assump-
tion of the smallness of absolute adsorption is quite
acceptable for nuclei consisting of inorganic acid salts. Such
nuclei are always present in the Earth's atmosphere, and their
role as centers of condensation has been extensively discussed
in the scientific literature [13, 17, 30, 48].

Nuclei consisting of soluble surface-active substances
(surfactants) are as widespread as those of inorganic acid
salts [49 ± 52]. Surfactant adsorption at the surface of newly-
formed droplets is noticeable even for a very low concentra-
tion of the solution. We shall present below a generalization
of the thermodynamic theory to fully soluble nuclei, taking
into account adsorption of nuclear matter at the droplet
surface. In the first place, it will concern soluble surfactant
nuclei. But thereafter, it will be shown that the approach
being developed allows us to elaborate this theory for nuclei
consisting of surface-inactive substances too. We shall base
our approach on the results reported in Refs [53 ± 60].

Taking into consideration nuclear matter adsorption at
the droplet surface, expression (4.2) for the condensate
chemical potential in a droplet is written as

bn � ÿx� 2

3
a�s�nÿ1=3 ; �4:28�

where the relative concentration x of the dissolved nuclear
matter depends on the balance between its content in the bulk
of the droplet and at its surface:

x � nnnÿ1 ÿ snÿ1=3 ; �4:29�

where s � �36pv 2a �1=3Gn is the dimensionless adsorption, Gn

is the Gibbs adsorption of the dissolved nuclear matter at
the droplet surface, and a�s� is the surface tension of the
solution in the droplet, dependent on adsorption s. It should
be noted that the quantity sn 2=3 gives the total number of
molecules or ions of nuclear matter adsorbed at the droplet
surface.

The existence of two-dimensional phase transitions in the
adsorbed layers of soluble surfactants having been defini-
tively proved [61], it is reasonable to assume that the
adsorption s is not, in the general case, a single-valued
function of concentration x. At the same time, the concentra-
tion x is invariably a single-valued function of the adsorption
s. This accounts for the choice of adsorption s as a variable in
the description of the droplet state.

It follows from the Gibbs adsorption equation at a fixed
temperature and small x that

qa�s�
qs
� ÿ q ln x

q ln s
: �4:30�

This defines a�s� as a single-valued function of s for a given
adsorption isotherm x�s� and, vice versa, defines x as a single-
valued function of s for a given equation for a�s� characteriz-
ing the state of the droplet surface layer.
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The differentiation of expression (4.28) with respect to n
and the use of Eqn (4.30) bring about

qbn
qn
� qa

qs
qs
qn

�
2

3
nÿ1=3 � x

s

�
ÿ 2

9
a�s�nÿ4=3 ; �4:31�

where the derivative qs=qn is given by differentiating relation
(4.29) with respect to n and taking into consideration Eqn
(4.30):

qs
qn
� ÿ nnnÿ2 ÿ �1=3�snÿ4=3

nÿ1=3 ÿ �x=s� qa=qs : �4:32�

Also, we shall need an expression for the second n-derivative
of bn. Differentiation of Eqn (4.31) with respect to n and the
use of Eqn (4.30) give
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27
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where the derivative q2s=qn 2 is obtained by differentiating
Eqn (4.32) with respect to n and taking into account (4.30)
as

q2s
qn 2
� 1

nÿ1=3 ÿ �x=s� qa=qs
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In order to find the threshold value bth of the vapor
chemical potential, it is necessary to know the extreme values
of bn corresponding to the roots of equation (2.25), taking
into consideration Eqns (4.31) and (4.32). The largest of such
extrema corresponds to the threshold bth value. The quan-
tities ne, nc, Dne, Dnc, and DF in the prethreshold region of
vapor metastability defined by Eqn (4.23) can then be
obtained [as follows from Eqns (4.13) ± (4.15)] knowing only
the derivative q2bn=qn 2, with n corresponding to the highest bn
maximum.

As this section is concerned with the droplet state
associated with an extreme value of the condensate chemical
potential, i.e. at n � n0, the quantity

z � sn 2=30

nn
�04 z4 1� ; �4:35�

needs to be introduced, being the fraction of the total amount
of the nuclear matter in the droplet accounted for by the
adsorbed matter of condensation nucleus for the extreme
value of chemical potential of the condensate. For simplicity,
we do not use the index 0 to emphasize that the adsorption s as
well as surface tension, its derivatives with respect to s, and
concentration x mentioned below are also taken at the
extrema of the condensate chemical potential.

Equation (2.25) defining the extrema of the chemical
potential of the condensate may be written, with regard for

Eqns (4.31), (4.32), (4.29), and (4.35), as�
2
a�s�
s

z�1ÿ z� ÿ �3ÿ z�2
�
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� 2
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s
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From Eqns (4.28), (4.29), and (4.35), it directly follows that
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n 1=2n � s 3=2

x

1ÿ z

z 3=2
: �4:38�

If the derivative qa=qs is expressed by z with the aid of Eqn
(4.36) and Eqns (4.29) and (4.35) are taken into account, then
Eqns (4.32) ± (4.34) lead to�

q2bn
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Collectively, the relations (4.35) ± (4.39), (4.30), and
(4.13) ± (4.15) may be used to realize the following algorithm
for obtaining bth, zth, n0, �q2bn=qn 2�0, ne, nc, Dne, Dnc, and DF
when taking into consideration the adsorption of condensa-
tion nucleus matter. First, from a given adsorption isotherm
x�s� or the equation of state for a�s�, the functions a�s� and
x�s�, respectively, are found by integrating Eqn (4.30). The
function a�s� is then substituted into Eqn (4.36) which is
solved as a quadratic equation for z. This gives the multi-
valued function z�s�. Furthermore, using the functions x�s�
and z�s� in Eqn (4.38), an equation relating nn to s is obtained.
The solution of this equation with respect to s brings about
the multivalued function s�nn�. Finally, all the aforemen-
tioned thermodynamic characteristics depending on the
external data of the condensation problem are found using
the functions a�s�, z�s�, s�nn� in rigorous thermodynamic
relations (4.37), (4.35), (4.39), and (4.13) ± (4.15) and distin-
guishing each time the largest of the �bn�0 values. The results
of the calculation of these characteristics using the model
Langmuir and Frumkin adsorption isotherms are reported in
Refs [54, 57, 59, 60].

In two extreme situations, z5 1 and 1ÿ z5 1, pertaining
to weak adsorption and the adsorption of almost all nuclear
matter at the droplet surface, respectively, relations (4.35) ±
(4.39) along with (4.30) may be used to find asymptotic
expressions for thermodynamic characteristics of nucleation
[53]. These extreme situations are realized in the presence of
large and small condensation nuclei; they are characterized by
a unique extremum of the condensate chemical potential. A
situation with z5 1 is realized if the strong inequality�

2a

9

�1=2 jHj
n 1=2n

5 1 �4:40�

is fulfilled, where a is the dimensionless surface tension of a
pure condensate, and H is the dimensionless Henry constant
for a given solution. In this situation, in the first approxima-
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tion with respect to the small parameter given by relation
(4.40), one obtains

bth � 2

�
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In the case of soluble nuclei consisting of a surface-inactive
material, the Henry constant H in asymptotics (4.41) ± (4.45)
is negative. It is positive in the presence of nuclei consisting of
surfactants.

The other extreme situation, 1ÿ z5 1, is realized only for
the condensation on the nuclei of soluble surfactants,
provided the strong inequality

x1n
1=2
n

s
3=2
1

5 1 �4:46�

is satisfied, where the subscript 1 characterizes quantities at
z � 1. To the leading order in the small parameter given by
Eqn (4.46), one finds
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The comparison of formulas (4.41) and (4.47) and also
(4.45) and (4.51) leads to several interesting conclusions.

When practically all nuclear matter is adsorbed at the droplet
surface, the quantity s1 is by definition equal to the number of
surfactant molecules over an area as large as the effective area
of one solventmolecule. The size of the solventmolecules (e.g.
water molecule) being usually smaller than the transverse
diameter of surfactant molecules, it may be expected that
s1 < 1. Because in the case of surfactant adsorption a1 < a, it
follows from Eqns (4.41) and (4.47) that the threshold values
of the vapor chemical potential during condensation on
relatively small nuclei consisting of soluble surfactants may
be significantly smaller than the threshold values in con-
densation on similarly sized nuclei consisting of soluble
surface-inactive materials. At the same time, it follows from
expressions (4.45) and (4.51) that, at given e and nn, the
activation energy in the case of surfactant nuclei may be
significantly higher than that for the condensation at nuclei
consisting of surface-inactive materials. This means that in
the presence of soluble surfactants in the nuclei, the prethres-
hold vapormetastability region is narrowed. These inferences
are confirmed by the results of a numerical study on the
dependence of the threshold value of condensate chemical
potential in a droplet and the activation energy on the nuclear
size in the case of condensation on the nuclei consisting of
soluble surfactants [54].

5. Kinetics of nucleation on soluble nuclei

Based on what has been said in the previous sections, it is now
time to turn to an in-depth kinetic analysis of nucleation on
soluble nuclei. For definiteness, we confine ourselves to the
practically important case of completely soluble nuclei
consisting of a surface inactive substance. The kinetics of the
initial stage of droplet formation on such nuclei has been
described in Ref. [62], and the nucleation stage itself in Refs
[63 ± 66, 45]. The principle of generalization to the case of
soluble nuclei consisting of a surface-active material will be
described at the end of Section 7.5.

5.1 Kinetic characteristics of nucleation on soluble nuclei
In conformity with relations (4.10) and (4.25), the current
vapor supersaturation in the prethreshold metastability
region is, with high accuracy, given by

z � zth : �5:1�
Because the relation mentioned immediately above is valid at
z � z� too, it follows from this relation and Eqn (3.16), also
with high accuracy, that

F� � zth : �5:2�

The kinetic theory of nucleation is considerably simplified
by virtue of expression (5.2) obtained, in the presence of
macroscopic condensation nuclei, for the reference value F�
of ideal vapor supersaturation, which has in its right-hand
side the quantity zth known from the thermodynamic relation
(4.7). In particular, this expression simplifies the method for
the consistent determination of parameters t1 andm entering
the power-like approximation (3.2) described in Section 3.5,
which allows F� to be taken as equivalent to the known value
zth.

Expression (5.2) is sufficiently accurate to find quantities
weakly depending onF� and behaving as a power series inF�.
Also important in the kinetic theory of nucleation are
quantities strongly dependent on F� through a small devia-
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tion zth ÿ F�. Our immediate objective is to define expression
(5.2) more precisely as well as (4.24), necessary for finding
such quantities.

According to Eqn (3.38) and the equality Dne � Dnc
ensuing from Eqns (4.14) and (4.18), one obtains

exp
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���
z�F�

�
�

h

6p ln 2
Dt
ts
�h4 1� ;

1

6p ln 2
Dt
ts
�h5 1� :

8>><>>: �5:3�

Taking the logarithm of the last expression, we obtain with an
even higher accuracy:

DF
���
z�F�
�

ln

�
Kh
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where we put

K � Dt
ts
: �5:5�

Similar to Eqn (3.38), the activation energy DF
��
z�F�

expressed according to Eqn (5.4) through parameters K and
h does not depend on the growth regime of supercritical
droplets. It will be shown in Section 7.1 that this expression
also retains its universal form for the nucleation on macro-
scopic nuclei of arbitrary nature.

Let us denote as ~e the value of e determined from Eqn
(4.10) at z � F�. Then, one has

~e � zth ÿ F�
zth

: �5:6�

Using the thermodynamic relation (4.19) in (5.4) and taking
into account definition (5.6), we obtain

~e 1=2 � qnÿ1=3n ; �5:7�

where
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According to the last formula, the quantity q (same as
DF
��
z�F� ) is a function of the dimensionless parameters K and

h. It will be shown in Section 5.2 that these parameters are a
convenient choice in the construction of a kinetic theory of
nucleation as independent, free parameters compatible,
naturally, with the applicability conditions and limitations
h4 1 and h5 1 used in the theory. In order to simplify the
notation, we shall omit the limitations h4 1 and h5 1 in the
formulas (unless they are important).

Although the parameters K and h are not initial ones with
respect to the theory, it will be shown in Section 5.2 that they
allow us to easily determine the characteristic time t1 of
vapor metastable state formation and the initial concentra-
tion Z�ÿ1� of condensation nuclei, both being initial
parameters of the theory.

The quantity ~e derived using formula (5.6) is important
because it serves to express the parameter G by means of the

relation

G � qDF
qe

����
e�~e

�5:9�

ensuing from Eqns (3.4), (4.10), and (5.2). The quantity ~e is
also important because it may be employed to express the
time ts with the aid of relations (3.35) and (4.18). Both the
parameter G and the time ts exemplify quantities which
strongly depend on F� through a small deviation zth ÿ F�.

Relation (5.7) is a more explicit variant of formula (4.24)
which defines the quantity e 1=2 characteristic of the interval
(4.23), i.e. the prethreshold vapor metastability region. This
refinement can be presented in the form

~e 1=2 � qe 1=2 : �5:10�

Sections 5.3 and 5.4 will illustrate the validity of the
approximate equality

q � 1 : �5:11�
It follows from formulas (5.10) and (5.11) that there is, besides
inequality (4.25), a new constraint

~e 1=2 5 1 : �5:12�
The use of relation (5.7) in conjunction with Eqn (5.6)

allows us to easily give a more precise definition to expression
(5.2) for the reference valueF� of ideal vapor supersaturation.
This correction is, however, very small because of inequality
(5.12). It is unimportant when theF�-dependence is weak and
power-like in F�. We therefore forbear from presenting a
more elaborate version of the expression (5.2).

Let us now turn to the principal objective of this section.
The substitution of Eqn (4.19) into (5.9) and the use of Eqn
(5.7) results in

G � 24

61=2
qn 2=3n : �5:13�

Expressions (3.35), (3.37) give [taking into account Eqns
(4.8), (4.18), (4.26), (5.2), and (5.7)] the time
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Expressions (3.3), (5.2), and (4.7) are used to find
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[it is adopted in the theory that time is reckoned from the
moment at which F � 0 according to the power-like approx-
imation (3.2)].

A line of further reasoning depends on whether free-
molecule or diffusive growth of supercritical droplets pre-
dominates at the nucleation stage.

Let us first consider the case of free-molecule growth of
supercritical droplets. The use of Eqns (5.2), (5.13), and (4.7)
in (3.10), (3.11) brings about
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It follows from Eqn (3.47), taking into account Eqns (4.7),
(4.8), (4.18), (4.26), (5.2), and (5.7), that

Dr
rc
� n 1=3n

61=2q

Dt
ts
: �5:18�

Owing to Eqns (4.6) and (5.11), relation (5.18) indicates that
condition (3.46) is satisfied with ample reserve provided
condition (3.39) is fulfilled too.

Formulas (3.12) ± (3.14), (3.17), (3.22), (3.23), and (5.15)
taken together with expressions (4.7), (5.2), (5.16), and (5.17)
give all the most important kinetic characteristics of nuclea-
tion on soluble nuclei under the free-molecule growth of
supercritical droplets.

Let us now consider the case of the diffusive supercritical
droplet growth. Based on Eqns (5.2), (5.13), and (4.7) in
(3.28), (3.29), we find
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It was shown in Section 3.4 that condition (3.46) is satisfied
with ample reserve for the diffusive growth of supercritical
droplets.

Formulas (3.12) ± (3.14), (3.17), (3.23), (3.30) and (5.15)
taken together with expressions (4.7), (5.2), (5.19), and (5.20)
give all the most important kinetic characteristics of nuclea-
tion on soluble nuclei under the diffusive growth of super-
critical droplets.

Comparison of Eqns (3.22) and (5.16) with (3.30) and
(5.19), respectively, indicates that the expressions for time Dt
have a similar form for free-molecule and diffusive growth of
supercritical droplets.

5.2 Parametrization of the characteristic time of vapor
metastable state formation
It has been stated in the previous section that the expression
for time Dt ensuing from Eqns (3.22) and (5.16) and,
respectively, from (3.30) and (5.19) is identical for the free-
molecule and diffusive growth of supercritical droplets. Using
this expression and taking into account relations (4.7), (5.2),
and (5.14), we shall have in either case

Dt
ts
� 2

27

�
25=2

27

�1=m at1
mt

a �4m�3�=�2m�

n �4m�1�=�2m�n

: �5:21�

By expressing t1 from Eqn (5.21) and using definition (5.5),
the formula

t1 � 27

2

�
27

25=2

�1=m Kmt
a

n �4m�1�=�2m�n

a �4m�3�=�2m�
�5:22�

is obtained which parametrizes the characteristic time t1 of
vapor metastable state formation, i.e. expresses it through the
parameter K.

It follows straightforwardly from the definition (5.5) and
relation (5.14) that

Dt �
�
3

2

�7=2 Kt
qa

n 4=3n

a 2
: �5:23�

The further consideration will be first concerned with the
free-molecule growth of supercritical droplets. The substitu-
tion of Eqn (5.22) into Eqns (5.16) and (5.17) yields

c � 31=22
qa 1=2

Kn 5=6n

; �5:24�

h � 27

4

Z�ÿ1�
q 2n1

K 3 n 11=3n

a 3
: �5:25�

The use of Eqns (3.13),(3.17), taking into account (5.24) and
(5.25), gives

N � 4

27

q 2n1
K 3

a 3

n 11=3n

�h4 1� ; �5:26�
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By solving expression (5.25) for Z�ÿ1� one arrives at

Z�ÿ1� � 4

27

q 2n1h
K 3

a 3

n 11=3n

: �5:28�

The expression

N � 4

27

q 2n1h
K 3

a 3

n 11=3n

�h5 1� �5:29�

is found with the aid of Eqns (3.14) and (5.28).
Parameters K and h on which the quantity q depends, in

agreement with Eqn (5.8), are chosen as independent, free
parameters of the kinetic theory of nucleation, in conformity
with what has been said in Section 5.1. Formulas (5.22) and
(5.28) then express the time t1 and concentration Z�ÿ1�
through the parameters K and h. In turn, formulas (5.23),
(5.26), (5.27), and (5.29) express kinetic characteristics of
nucleation Dt, N, and Dr through the parameters K and h.

The kinetic picture of nucleation described by expressions
(5.22), (5.23), and (5.26) ± (5.29) depending on the parameters
K and h is as demonstrative as it were if represented as
dependent on the initial parameters of the theory: t1 and
Z�ÿ1�. However, the parameters K and h were used to
construct the kinetic theory of nucleation in the analytical
form and are therefore believed to be more convenient than
t1 and Z�ÿ1�.

Let us consider the case of diffusive growth of super-
critical droplets. The substitution of Eqn (5.22) into Eqns
(5.19) and (5.20) yields

c � 31=2 2
qatDa 1=2

Ktn 5=6n

; �5:30�

h � 81p 1=2

2 7=2 3 1=4

Z�ÿ1�
q 1=2n1

�
Kt
atD

�3=2 n 29=12n
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The use of Eqns (3.13), (3.17), taking into account
formulas (5.30) and (5.31), gives

N � 27=2 3 1=4

81p 1=2
q 1=2n1

�
atD
Kt

�3=2
a 9=4

n 29=12n

�h4 1� ; �5:32�
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2

Kt
qatD

n 5=6n

a 1=2
: �5:33�
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By solving expression (5.31) for Z�ÿ1� one finds

Z�ÿ1� � 27=2 3 1=4

81p 1=2
q 1=2n1h

�
atD
Kt
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The relation

N � 27=2 3 1=4

81p 1=2
q 1=2n1h

�
atD
Kt

�3=2
a 9=4

n 29=12n

�h5 1� �5:35�

is obtained with the aid of Eqns (3.14) and (5.34).
Formulas (5.22) and (5.34) express the time t1 and

concentration Z�ÿ1� through the parameters K and h. In
turn, formulas (5.23), (5.32), (5.33), and (5.35) express the
kinetic characteristics of nucleationDt,N, andDr through the
parameters K and h. It can be seen that the parameters K and h
allowed the kinetic theory of nucleation to be constructed in
an analytical form for the diffusive growth of supercritical
droplets and are therefore believed to be more convenient
than t1 and Z�ÿ1�.

Expression (5.5) indicates that the principal applicability
condition (3.39) of the kinetic theory responsible, in particu-
lar, for the fulfilment of conditions (3.40), (3.46) may be
written as

K4 1 : �5:36�
Parameter K makes it possible to use inequality (5.36) to
directly estimate the fulfilment of condition (3.39), while
parameter h may be used to directly estimate the fulfilment
of the inequalities h4 1 and h5 1 employed in the theory.
This is another important advantage of the parameters K and
h over t1 and Z�ÿ1�.

5.3 Method for the calculation of kinetic characteristics of
nucleation on soluble nuclei under free-molecule growth of
supercritical droplets
Bearing in mind what has been said in Section 5.2, we assume
in the proposed method that parameters K and h are free, but
restricted by condition (5.36) and the inequalities h4 1 or
h5 1. The fact that the method right away covers the entire
range of applicability of the theory suggests its high efficiency.

The case of free-molecule supercritical droplet formation
considered in the present section is characterized by an
additional limitation imposed by condition (3.42). Let us
make explicit this limitation. It follows from Eqns (3.43) and
(5.27) that
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(in estimates, numerical values are not rounded off to make it
easier to follow them). The use of Eqn (5.37) in Eqn (3.42),
taking into account approximate equality (5.11), yields
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Expressions (5.36) and (5.38) are compatible if

2
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1

a�n1 � ng�va
a 1=2

n 5=6n

4 1 : �5:39�

If the last inequality containing the initially given parameters
of the theory in its left-hand side is satisfied, then formulas

(5.22), (5.23), and (5.26) ± (5.29) are valid in the ranges of
variation of parameters K and h, permitted by the constraints
(5.36), (5.38), and h4 1 or h5 1. These formulas provide a
basis for further calculations.

Let us choose the following values of the initial para-
meters of the theory:

a � 10 ; a � 10ÿ1 ; n1 � 1017 cmÿ3; ng � 1019 cmÿ3;

va � 10ÿ23 cm3; t � 5:4� 10ÿ7 s; n 1=3n � 10 ; m � 1 :

�5:40�
These values are realistic for a typical condensable liquid,
namely, water and its saturated vapor at ordinary tempera-
tures. They are equally realistic for a passive gas at a pressure
close to atmospheric. According to equality (2.29), the value
of quantity a corresponds to the surface tension g of
77 dyn cmÿ1. The chosen n 1=3n value is sufficiently large to
ensure that the condition (4.6) of macroscopicity soluble of a
nucleus is satisfied; at the same time, it is so small that the
value zth � 2:1� 10ÿ1 of the vapor threshold supersaturation
given by formula (4.7) is still amenable to reliable control in
experiment. According to the power-like approximation
(3.2), the value of parameter m corresponds to the well-
representative linear-in-time growth of ideal supersaturation
F.

Let us use the method suggested for the calculation based
on parameters (5.40). In this case, the inequality (5.39) is
satisfied. It follows from Eqns (5.36) and (5.38) that

15 K5 103 ; �5:41�

which determines the admitted region of parameter K
variations.

According to Eqns (5.22), (5.15), and (5.23), one finds

t1 � 6:5K s ; �5:42�
t� � 1:4K s ; �5:43�
Dt � 4:1� 10ÿ3qÿ1K s : �5:44�

Units of measurement of dimensional quantities are specified
explicitly. The dependence of q on K and h is given by equality
(5.8). Time moments ton and toff are easy to find using
approximate relations (3.23).

Finally, Eqns (5.26) ± (5.29) result in

N � 1:5� 108q 2Kÿ3 cmÿ3 �h4 1� ;
1:5� 108q 2hKÿ3 cmÿ3 �h5 1� ;

�
�5:45�

Dr � 8:7� 10qÿ1K ; �5:46�
Z�ÿ1� � 1:5� 108q 2hKÿ3 cmÿ3 : �5:47�

The radius R of a droplet is more convenient to use in
experiment than its size r introduced by equalities (2.2) and
(3.7). The radius can be obtained from expressions (2.2), (3.7)
as

R �
�
3va
4p

�1=3

r : �5:48�

Taking advantage of the proportionality between R and r
reflected by this equation, we receive for the width DR of the
supercritical droplet size spectrum on the R-axis:

DR �
�
3va
4p

�1=3

Dr : �5:49�
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It follows from relations (5.46), (5.49) that

DR � 10ÿ6qÿ1K cm : �5:50�

Let us show how conditions (3.40) and (5.11) are fulfilled.
In a situation with h4 1, Eqns (5.4) and (5.8) indicate that
condition (3.40) is satisfied over the entire range established
by inequalities (5.41). Likewise, approximate equality (5.11)
is fulfilled unless the inequality h4 1 is too strong. That it
cannot be too strong follows from the fact that the growth of
parameter h is accompanied by a rise [in agreement with Eqn
(5.47)] in the concentration Z�ÿ1� which, however, does not
normally exceed 105 cmÿ3 under practical conditions.

In a situation where h5 1, it follows from expressions
(5.4) and (5.8) that Eqns (3.40) and (5.11) are satisfied only
near the upper limit of the range (5.41).

5.4 Method for the calculation of kinetic characteristics of
nucleation on soluble nuclei under diffusive growth of
supercritical droplets
Now we consider the parameters K and h to be free as before
but restricted via condition (5.36) and the inequalities h4 1
and h5 1.

The case of diffusive supercritical droplet growth ana-
lyzed in the present section is characterized by an additional
limitation imposed by condition (3.44). Let us make explicit
this limitation. It follows from Eqns (3.45) and (5.33) that
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� 31=2

2q

Kt
tD

n 5=6n

a 1=2
a�n1 � ng�2v 2a �5:51�

(in estimates, numerical values are not rounded off to make it
easier to follow them). Bearing inmind equalities (3.9), (3.27),
and the kinetic relation D � lvT=3 for gases and also taking
into consideration the estimate given by relation (3.41) for the
mean free path l traveled by a vapor molecule in the vapor ±
gas medium, we have

t
tD
�n1 � ng�va � 1 : �5:52�

Expression (5.51) can be represented with the aid of the last
estimate as
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� 31=2
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a�n1 � ng�vaK n 5=6n

a 1=2
; �5:53�

which at first sight coincides with formula (5.37) although the
quantities r and rl are now defined by relations (3.25) and
(3.45) which are different from Eqns (3.7) and (3.43). The use
of relation (5.53) in inequality (3.44) and taking into account
approximate equality (5.11) gives
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31=2
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a�n1 � ng�va
a 1=2

n 5=6n

: �5:54�

This inequality is opposite to that given by (5.38) as the
limiting case of the diffusive supercritical droplet formation
itself is opposite to that of free-molecule growth.

Formulas (5.22), (5.23), and (5.32) ± (5.35) will hold in the
range of variation of parameters K and h, permitted by the
most rigorous inequality out of (5.36) and (5.54) and
constraints h4 1 or h5 1. These formulas form a basis for
further calculations.

Let us choose the following values of the initial para-
meters of the theory:

a � 10 ; a � 1 ; n1 � 1017 cmÿ3; ng � 1019 cmÿ3;

va � 10ÿ23 cm3; t � 5:4� 10ÿ7 s ; D � 1 cm2 sÿ1;

tD � 8:9� 10ÿ11 s ; n 1=3n � 10 ; m � 1 : �5:55�
The values given in the last set are different from those in Eqn
(5.40) only in that a � 1 is assumed instead of a � 10ÿ1.
However, this difference is responsible for the transition from
the free-molecule to diffusive growth of supercritical droplets.
The possibility that the coefficient a is close to unity ensues
from some experimental findings reported in Ref. [67] and
molecular dynamics studies [68, 69]. The value of D given in
set (5.55) is quite realistic. For the sake of completeness, the
time tD is included among the set of initial parameters even
though it is a function of n1, va, and D, in agreement with
formula (3.27). The value of tD was found with the aid of
relation (3.27).

Let us employ the method under consideration for the
calculation based on the data from set (5.55). In this case, the
inequality (5.54) is more rigorous than (5.36). According to
the former inequality, one obtains

K4 102 ; �5:56�

which determines the admitted region of parameter K
variations.

According to Eqns (5.22), (5.15), and (5.23), we have

t1 � 6:5� 10ÿ1K s ; �5:57�
t� � 1:4� 10ÿ1K s ; �5:58�
Dt � 4:1� 10ÿ4qÿ1K s : �5:59�

The units for measuring dimensional quantities were speci-
fied. The dependence of q on K and h is given by the equality
(5.8). The time moments ton and toff are easy to find using
approximate equalities (3.23).

Finally, relations (5.32) ± (5.35) give

N � 1:8� 104q 1=2Kÿ3=2 cmÿ3 �h4 1� ;
1:8� 104q 1=2hKÿ3=2 cmÿ3 �h5 1� ;

�
�5:60�

Dr � 2:1� 106qÿ1K ; �5:61�
Z�ÿ1� � 1:8� 104q 1=2hKÿ3=2 cmÿ3 : �5:62�

The surface area A � 4pR 2 of a droplet is more con-
veniently used in experiment than its size r introduced by
equalities (2.2), (3.25). The area can be obtained from the
immediately mentioned expressions as

A � �36pv 2a �1=3r : �5:63�

Taking advantage of the proportionality between A and r
reflected by this equation, we receive for the width DA of the
supercritical droplet size spectrum on the A-axis:

DA � �36pv 2a �1=3Dr : �5:64�

It follows from Eqns (5.61), (5.64) that

DA � 4:6� 10ÿ9qÿ1K cm2 : �5:65�
Let us show how conditions (3.40) and (5.11) are fulfilled.

In a situation with h4 1, relations (5.4) and (5.8) indicate that
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condition (3.40) is satisfied over the entire range (5.56).
Likewise, approximate equality (5.11) is fulfilled (at least for
the purpose of estimation) unless the inequalities (5.56) and
h4 1 are too strong. If the inequality (5.56) were too strong,
i.e. parameter Kwere too large, the time t� would be very large
as well [in accordance with relation (5.58)] and consequently
of little practical interest. If the inequality h4 1 were too
strong, the concentration Z�ÿ1� would be very high [in
agreement with relation (5.62) and for a not too large
parameter K substantiated] although as was noted it does
not normally exceed 105 cmÿ3 under practical conditions.

In the situation where h5 1, it follows from the expres-
sions (5.4) and (5.8) that inequality (3.40) and approximate
equality (5.11) are satisfied over the entire range (5.56) with
the exception of too large values of the parameter K
[corresponding, in agreement with Eqn (5.58), to a very
large time t�].

5.5 Accounting for the polydispersity of soluble nuclei
In the kinetic theory of nucleation presented in Sections 5.1 ±
5.4 of this review, soluble condensation nuclei were assumed
to be identical, i.e. monodispersed.When condensation nuclei
are represented by a single type of microscopic heterogeneous
centers of condensation (ions, isolated molecules, etc.), the
problem of polydispersity is nonexistent. It arises, however, in
the case of macroscopic condensation nuclei. The macro-
scopic size is a characteristic feature of soluble nuclei.

The polydispersity of condensation nuclei implies that the
distribution of their initial concentrations over the number nn
of molecules (or ions) contained in them needs to be taken
into consideration. Let us adopt the quite realistic assumption
that the density of this distribution is practically zero for
nn > nn but appreciably different from zero for nn < nn, where
nn is the number of molecules (ions) in the largest of the nuclei
occurring in practice. It is unessential for further reasoning
how the density of distribution of the initial nuclei concentra-
tions depends on nn for nn < nn. It is important, however, that
its dependence on nn be relatively weak compared with a
`jump' it experiences during transition from values nn < nn to
nn > nn.

Bearing in mind the estimative character of further
reasoning, we shall use the approximate equality (5.11)
without making additional note of it. Expressions (4.10) and
(4.24) give the width Dz of the vapor prethreshold metast-
ability region on the z-axis:

Dz � nÿ2=3n zth : �5:66�

Expressions (4.10) and (4.25) indicate that, with a change of
number nn, the vapor prethreshold metastability region shifts
along the z-axis at an approximate rate of qzth=qnn which,
according to formula (4.7), is determined from the relation

qzth
qnn
� ÿ zth

nn
: �5:67�

As the vapor metastable state is being formed, its super-
saturation z occurs in the prethreshold region not only with
respect to the nuclei for which nn � nn but also with respect to
all the nuclei for which nn lies within the interval
nn ÿ Dnn < nn < nn of width Dnn satisfying the estimate

Dz
���
nn � nn

�
���� qzthqnn

����
nn � nn

Dnn : �5:68�

All these nuclei are likely to become centers around which
supercritical droplets will form.

It follows from Eqns (5.66) ± (5.68) that

Dnn
nn
� n ÿ2=3n : �5:69�

This expression gives the estimate of the width Dnn of the
interval nn ÿ Dnn < nn < nn in which supercritical droplets are
actually formed. In accordance with the latter expression and
the macroscopic nucleus size condition (4.6), one arrives at

Dnn
nn

5 1 : �5:70�

This means that the width of the interval nn ÿ Dnn < nn < nn
is relatively small.

The total number of newly-formed supercritical droplets
being the most important kinetic characteristic of the
nucleation process, the following condition must be satisfied
in order that the kinetic theory of nucleation as described in
Sections 5.1 ± 5.4 be applicable in the case of polydispersity of
soluble condensation nuclei:���� 1N qN

qnn

����
nn � nn

Dnn 5 1 : �5:71�

This latter condition warrants the smallness of a relative
change of the number of droplets N with changing nn in the
range nn ÿ Dnn < nn < nn.

According to formula (3.12), the dependence ofN on nn is
especially strong when h4 1. In the same case, this depen-
dence turns out to be the strongest of all the nn-dependences of
the kinetic characteristics of nucleation. Therefore, the
condition (5.71) at h4 1 provides a criterion by which to
judge that the polydispersity of condensation nuclei does not
practically affect the kinetic characteristics of nucleation over
the interval nn ÿ Dnn < nn < nn.

When the nucleation stage is dominated by the free-
molecule supercritical droplet growth, it follows from rela-
tions (3.13), (5.17) at h4 1 that

qN
qnn
� 14m� 9

6m

N

nn
: �5:72�

Using Eqns (5.69) and (5.72), condition (5.71) can be reduced
to the inequality

14m� 9

6m
n ÿ2=3n 5 1 : �5:73�

For soluble macroscopic condensation nuclei, inequality
(5.73) is satisfied if the parameter m is not too small.

When the nucleation stage is dominated by the diffusive
growth of supercritical droplets, it follows from relations
(3.13), (5.20) at h4 1 that

qN
qnn
� 7m� 9

12m

N

nn
: �5:74�

Using Eqns (5.69) and (5.74), condition (5.71) can be reduced
to the inequality

7m� 9

12m
n ÿ2=3n 5 1 : �5:75�
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For soluble macroscopic condensation nuclei, inequality
(5.75) is satisfied if the parameter m is not too small.

Thus, the polydispersity of soluble condensation nuclei
may be taken into consideration in the kinetic theory of
nucleation detailed in Sections 5.1 ± 5.4 of the present
review. To this end, it is necessary in all the formulas of this
theory to understand by nn the quantity nn [in agreement with
inequality (5.70)] and by Z�ÿ1� the total initial concentration
of condensation nuclei for which nn lies within the interval
nn ÿ Dnn < nn < nn where the formation of supercritical
droplets occurs. The width Dnn of this interval is given by
relation (5.69). It is worthwhile to note that the inequalities
(5.73) and (5.75) are equivalent to inequality (5.70) to within
factors �14m� 9�=�6m� and �7m� 9�=�12m�, respectively, as
can be seen from approximate equality (5.69).

It may be concluded that the macroscopic size of soluble
condensation nuclei underlying their polydispersity accounts
for the very possibility of taking this property into considera-
tion.

6. Thermodynamics of nucleation on insoluble
wettable nuclei

Let us now pass to the consideration of thermodynamics of
nucleation on macroscopic wettable nuclei insoluble in the
condensate. There are two scenarios for the formation of a
droplet on an insoluble macroscopic condensation nuclei.
According to the first, the process starts from the formation
of a uniformly thin film of the condensate around the nucleus.
As the condensation progresses, this film becomes thicker and
turns into amacroscopic droplet with a central nucleus. In the
alternative scenario, isolated small liquid lenses with a finite
angle of contact first arise at the nucleus surface. As they
increase in size, theymay coalesce into a thick continuous film
coating the nucleus, which further develops into a droplet.
The first of these scenarios of heterogeneous nucleation is of
special interest because it allows one to observe an intense
nucleation process at a very low vapor supersaturation.
Therefore, it will be the central issue of the forthcoming
discussion. An obvious distinction between the two scenarios
is due to the difference in nuclear sizes and peculiar features of
surface wetting. The latter depend on surface forces at the
solid ± vapor, solid ± liquid, and liquid ± vapor interfaces.
Investigations into conditions for the realization of these
scenarios and the role of surface forces in the nucleation
process constitute the main task of thermodynamics of
heterogeneous nucleation on macroscopic wettable nuclei
and will be a subject-matter of further discussion.

6.1 Disjoining pressure and the work of wetting of
an insoluble nucleus
The mutual interference between surface layers on the
opposite sides of the film is an important issue in the
description of the thin film of the condensate enveloping an
insoluble wettable macroscopic condensation nucleus. Fol-
lowing Refs [31, 70, 71], we shall regard this reciprocal
influence as overlap of the droplet surface layers located
between the condensation nucleus and the vapor.

It has been shown in Ref. [31] that the effect of over-
lapping the surface layers of a thin film in nucleation
thermodynamics can be described in terms of disjoining
pressure [72, 73] and the work of nucleus wetting in the
droplet which depends on its size.

Thus, let an R-radius droplet being formed have a central
insoluble, wettable, incompressible, and uncharged nucleus
of radius Rn (see Fig. 1). Another variable in the description
of the droplet, besides R, is n determined by relation (2.2) and
indicating the number of condensate molecules which the
droplet could contain had it no condensation nucleus at all.
By nn is meant the number of condensate molecules in the
nucleus volume:

nn � 4pR 3
n

3va
: �6:1�

Evidently, the difference nÿ nn is the true number of
condensate molecules in the droplet. The difference Rÿ Rn

stands for the film thickness h (we hope that the use of the
symbol h in a sense different from that which it has in Sections
3, 5, and 7 will cause no misunderstanding).

If the disjoining pressure of an h-thick film is denoted as
P�h�, the dimensionless chemical potential bn of the con-
densate in a droplet can be represented in the form [74, 31]

bn � 2

3
anÿ1=3 ÿ vaP�h�

kBT
: �6:2�

For stable films, the isotherm P�h� > 0, and the disjoining
pressure lowers the chemical potential of the condensate [in
agreement with Eqn (6.2)], whereas the capillary pressure, on
the contrary, raises it. As a result, the qualitative behavior of
the n-dependence of bn given by relation (6.2) corresponds to
that shown in Fig. 2.

The dimensionless work F of formation of an R-radius
droplet on an insoluble wettable macroscopic nucleus of
radius Rn can be written, on account of Eqns (2.2) and (6.1),
as [31]

F � an 2=3 ÿ b�nÿ nn� � f ; �6:3�

where f is the work of wetting of the nucleus, depending on the
droplet size and expressed in kBT units. Taking into
consideration the relationship between the work of droplet
formation and the chemical potential and integrating relation
(2.22) with the boundary condition

F
���
n� nn
� 0 ; �6:4�

we arrive, bearing in mind formulas (2.2) and (6.1), at an
expression linking the work of wetting to the disjoining
pressure [31]:

f � ÿ 4p
kBT

�R
Rn

eR 2P� eRÿ Rn� d eRÿ an 2=3n : �6:5�

It follows from the last expression that asR!1, we have
f! f�, where

f� � ÿ 4p
kBT

�1
Rn

eR 2P� eRÿ Rn� d eRÿ an 2=3n : �6:6�

On the other hand, as R!1, the work of wetting of a
nucleus in the bulk liquid is described by the DupreÂ formula

f� � 4pR 2
n �sga ÿ sgb�
kBT

; �6:7�
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where, sga and sgb stand for the surface tensions at the
nucleus ± condensate and nucleus ± vapor interfaces, respec-
tively. The comparison of relation (6.6) with (6.7), taking into
account Eqn (6.1) and the definition (2.29), allows for the
conclusion that

1

R 2
n

�1
Rn

eR 2P� eRÿ Rn� d eR � sgb ÿ sga ÿ g : �6:8�

The quantity

S � sgb ÿ sga ÿ g �6:9�
is called the coefficient of spreading. For the case of complete
wetting, when the film entirely and uniformly covers the
substrate, S > 0. It should be noted that the definition of
this quantity includes nonequilibrium surface tension sgb over
the nucleus surface having no adsorbed vapor molecules. For
this reason, the coefficient of spreading obtained in this way is
nonequilibrium too. This explains why it may be either
negative or positive, unlike the equilibrium coefficient of
spreading, Se � s �e�gb ÿ sga ÿ g, found at equilibrium surface
tension s �e�gb which occurs at the nuclear surface with an
equilibrium adsorption layer. For the equilibrium coefficient
of spreading, one always finds Se 4 0 [75].

It follows from relations (6.2), (6.3), and (6.5) that
condensation around insoluble wettable nuclei represents a
situation in which the construction of thermodynamics may
be started either from the derivation of an expression for the
condensate chemical potential in a droplet (namely, for the
contribution of disjoining pressure to the chemical potential)
or from giving an explicit expression for the dependence of the
work of droplet formation (namely, a work of nucleus
wetting) on the thickness of the film condensing on the
nucleus.

6.2 Formation of a film uniform in thickness and
constraints on the coefficient of condensate spreading and
the size of the condensation nucleus
Depending on the surfacewetting conditions and nucleus size,
the condensed film can be either uniform in thickness [14, 31,
76] or stratified into a thin wetting layer and a lens droplet
attached to it [5, 12, 76]. Certainly, the disjoining pressure
isotherm totally determines not only the wettability condi-
tions but also the exact film thickness profile [72, 77 ± 79].
However, it is difficult to measure the disjoining pressure
isotherm as a whole, and its theoretical description also poses
a complicated problem because surface forces depend on
many factors which acquire significance in different thick-
ness intervals [72]. At the same time, it is not necessary to
know the entire disjoining pressure isotherm in the theory of
heterogeneous nucleation when discussing the conditions of
droplet formation in the form of films uniform in thickness at
S > 0. In many cases, these conditions may be estimated
knowing only the initial segment of the disjoining pressure
isotherm P�h� on the h-axis.

The disjoining pressure isotherm for a fairly thin film
depends on the surface adsorption properties. For flat
adsorption films, the dependence of adsorption G on the
vapor molecule concentration n in the initial portion of the
isotherm may be presented in the form [80]

G � KG n
1=w ; �6:10�

where KG is a certain constant which depends on the nuclear
matter and adsorbate and can be determined experimentally;
the parameter w is unity for an energetically uniform

adsorbing surface (the Henry isotherm) and does not exceed
5 for an energetically nonuniform adsorbing surface (the
Freundlich isotherm).

The adsorption asymptotics of the disjoining pressure
P�h�, corresponding to the adsorption isotherm (6.10), have
the form [81, 82]

P�h� � ÿwkBT

va
ln

h

lA
; �6:11�

where lA � KGva n
1=w
1 is a certain characteristic thickness of

the adsorption film. Despite the minus sign in the right-hand
side of Eqn (6.11), P�h� > 0 because the asymptotics (6.11)
hold for h < lA where the logarithm is negative.

The substitution of Eqn (6.11) into (6.5) leads to an
expression for the adsorption asymptotics of the work of
wetting of a nucleus at h5Rn:

f �h� � ÿ 4pR 2
nwh

va

�
1ÿ ln

h

lA

�
ÿ an 2=3n : �6:12�

Such asymptotics for the work of wetting are valid in the
region of very thin films a few angstroms in thickness,
whereas exponential asymptotics for the work of wetting
hold for thicker films (some ten angstroms or more). These
asymptotics are conditioned by the structural forces [72, 73,
31]

f �h� � f�

�
1ÿ C exp

�
ÿ h

l

��
; �6:13�

where l is a parameter having the sense of a correlation length
in a liquid film around the nucleus, and C is a positive
constant. Relation (6.13) implies a monotonic trend towards
a limiting work of wetting f�. It follows from Eqns (6.5), (6.8),
and (6.9) thatP�h�5 0 and S > 0. The asymptotics (6.13) are
applicable to the curved surface of a nucleus of radius Rn on
condition that

Rn

l
4 1 : �6:14�

Evidently, the inequality (6.14) has the sense of the macro-
scopicity condition for insoluble nuclei.

Regarding the exponential asymptotics (6.13) as valid to
the smallest film thickness, as in Ref. [31], it is possible to
formulate the necessary condition for the presence of a
maximum in the chemical potential curve of the condensate
in an embryo. Indeed, it follows from formulas (6.5) and
(6.13) that the derivative P 0�h� of disjoining pressure with
respect to film thickness, taking into account inequality
(6.14), takes the form

P 0�h� � kBT

4pR 2

f�C
l 2

exp

�
ÿ h

l

�
: �6:15�

On account of Eqns (6.2), (2.2), (6.15), and (6.7), Eqn (2.25)
may be written as an equation in the radius R0:

2g
R 2

n

� �sgb ÿ sga�C
l 2

exp

�
ÿR0 ÿ Rn

l

�
: �6:16�

The constantC can be found with the aid of condition (6.4) as

C � S

sgb ÿ sga
: �6:17�
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The substitution of relation (6.17) into Eqn (6.16) gives

R0 � Rn � l ln
SR 2

n

2gl 2
: �6:18�

In order to have R0 > Rn, it is necessary to fulfill the
condition

S >
2gl 2

R 2
n

; �6:19�

which is apt to be easily broken at a fairly small but positive
coefficient S of spreading. If this condition is violated, the
chemical potential maximum cannot be realized at a
physically meaningful (positive) film thickness.

Condition (6.19) should be understood as a constraint on
the applicability of the exponential asymptotics (6.13) for the
work of wetting of the nucleus at a small film thickness, since
this condition is linked to the finite P 0�h� value for the
exponential asymptotics as h! 0. Because in reality
P 0�h� ! ÿ1 as h! 0, the equation for the maximum
chemical potential of the condensate in an embryo always
has a physically meaningful root.

This gives reason to assume that there is a thickness hp
such that the adsorption approximation (6.12) operates for
h < hp, and the exponential approximation (6.13) to the work
of wetting does for h > hp, the latter being characterized by a
constant C 0 which, generally speaking, differs from the
constant C determined from formula (6.17). The require-
ment of continuity of the work of wetting and its derivative at
the point hp leads, taking into account Eqns (6.1) and (2.29),
to a system of equations

f�

�
1ÿ C 0 exp

�
ÿ hp

l

��
� ÿ 4pR 2

nwhp
va

�
1ÿ ln

hp
lA

�
ÿ 4pR 2

n

kBT
g ;

f�
C 0

l
exp

�
ÿ hp

l

�
� 4pR 2

nw

va
ln

hp
lA
: �6:20�

In this system, the thickness hp of patching and constant
C 0 are unknown. The use of the second equation excludes the
constant C 0. Then, the first equation in the system (6.20),
taking into account relations (6.7) and (6.9), assumes the form

�l� hp� ln hp
lA
� hp ÿ Sva

wkBT
: �6:21�

Bearing in mind that approximation (6.12) holds for h < lA, it
may be concluded that physically correct solutions corre-
spond to negative values of the left-hand side of Eqn (6.21).
Hence the solvability condition for the system (6.20) in the
form

S >
wkBT lA
va

: �6:22�

The last condition can be interpreted in the following way.
Setting the behavior of the curve of P�h� at a fairly small
thickness h by the adsorption asymptotics (6.11), we thus give
the integral

� h
0 P�x� dx for small h. In our case, this integral is

positive because approximation (6.11) holds for h < lA where
the integrand is positive. Taking into consideration formula
(6.11), we have� lA

0

P�x� dx > wkBT lA
va

: �6:23�

According to Eqns (6.8) and (6.9), the following relation must
be fulfilled for a stable film uniform in thickness in the limit of
a flat nucleus surface �Rn !1�:

S >

� lA

0

P�x� dx : �6:24�

Hence, using relation (6.23), inequality (6.22) ensues as a
necessary condition of complete wetting.

We shall now discuss the constraints imposed on the
condensation nucleus size by the requirement of uniform
film thickness. To this end, films nonuniform in thickness
need to be included into consideration.

The equation of the droplet profile, describing the
property of constancy of the chemical potential across the
film surface, assumes the form

PL ÿP � DP � const ; �6:25�

where PL and P are local capillary and disjoining pressures,
respectively, and DP is the pressure difference between the
bulk liquid and gaseous phases at a given chemical potential.

Let us now assume that the profile of a droplet nonuni-
form in thickness formed on an insoluble nucleus under
incomplete wetting has the form of a small lens in contact
with the thin film coating the nucleus. In the top part, at
h � H, this lens is almost spherical and has a certain curvature
radiusRd. In the lower part, it features a transition zone to the
uniform thin film of thickness he. Then, it follows from
relation (6.25) that

2g
Rd
ÿ 2g
Rn � he

� P�H� ÿP�he� : �6:26�

It is immediately obvious that a monotonically decreasing
P�h� cannot satisfy Eqn (6.26). Consideration of the limiting
case of a flat substrate asRn !1 leads to the conclusion that
the curve P�h� must have a negative portion if a lens-like
droplet is to be formed. A typical isotherm of disjoining
pressure in the case of incomplete wetting is shown in Fig. 6.

If the film thickness h is so small that it falls on the starting
branch of the disjoining pressure isotherm with
P�h� > P�hmax�, such a film cannot layered into an even
thinner film and a lens-droplet. Otherwise, it would be in
conflict with Eqn (6.26). If the nucleus is so small that the film
which condensates on it corresponds to the chemical potential
maximum and enters the aforementioned region of very thin

hmin

hmax h

P�h�

Figure 6. Typical isotherm of the disjoining pressure P�h� for the case of
incomplete wetting.
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films, the layering is feasible only during further embryo
growth. In this case, the vapor threshold supersaturation
giving the barrierless nucleation condition is determined in
the samemanner as in the case of condensation on completely
wettable nuclei.

According to Eqns (2.25), (6.2), (2.2), and (2.29), the film
thickness h0 for an embryo with the maximum chemical
potential of the condensate is defined as

P 0�h0� � ÿ 2g

�Rn � h0�2
: �6:27�

Assuming that the derivative P 0�h� grows monotonically on
the initial part of the curve, the condition of a critical embryo
falling into the said region of small film thicknesses can be
written as

P 0�h0� < P 0�h1� ;
where h1 is the smallest root of the equation P�h� � 0, or in
the form

2g

�Rn � h0�2
> ÿP 0�h1� :

This condition is reduced to a constraint on Rn from above:

Rn � h0 <

�������������������
ÿ 2g
P 0�h1�

s
: �6:28�

There is no such constraint when conditions (6.19) and (6.22)
of the applicability of exponential approximation (6.13) to the
films completely wetting nuclei are satisfied.

Deryagin and Zorin [73] have demonstrated that water
films on quartz have h1 � 70 A

�
and P 0�h1� �

ÿ7� 1013 dyn cmÿ2. If g � 70 dyn cmÿ1, then
Rn � h0 < 140 A

�
. Because h0 9 h1, this complies with very

small nuclei going almost beyond the condition of disjoining
pressure applicability to the description of the properties of
thin films formed on these nuclei.

If the difference between the maximum and minimum
disjoining pressures is denoted as DP, then DP �
P�hmax� ÿP�hmin� for the isotherm in Fig. 6. Because
P�H� ÿP�he�4DP, the following inequality can be written
using Eqn (6.26) and taking he 5Rn:

Rn

Rd
ÿ 14

Rn DP
2g

: �6:29�

Analysis of this inequality shows that rather a large lens-
droplet may cover a major part of the nucleus. When the
lense-droplet radiusRd is bigger than that of the nucleus (Rn),
the droplet spreads over the entire nuclear surface giving rise
to a film uniform in thickness. In this situation, the capillary
pressure appears to supersede the fine structure of disjoining
pressure. Conversely, whenRd 5Rn, it follows from inequal-
ity (6.29) that Rd 0 2g=DP and therefore Rn 4 2g=DP.
According to Ref. [73], for water films on quartz one can
find DP � 5� 103 dyn cmÿ2. If g � 70 dyn cmÿ1, then
g=DP � 10ÿ2 cm and the inequality Rn 4 2g=DP is equiva-
lent to Rn 4 10ÿ2 cm.

It follows from what has been said before about the
situation when the radius Rd is larger than Rn that

Rn 9
2g
DP

: �6:30�

This inequality reflects the condition that a liquid film should
uniformly spread over the nucleus. Note that the bigger DP
[i.e. the deeper the P�h� minimum or the larger the angle of
contact], the narrower the nuclear size region satisfying
condition (6.30).

To summarize, if the constraining conditions (6.19) and
(6.22) imposed on the initial spreading coefficient are
satisfied, there is a range of condensation nucleus sizes within
which it is possible to use the exponential approximation
(6.13) to the work of wetting of a nucleus in the theory of
nucleation. If condition (6.19) is violated, the adsorption
asymptotics (6.12) for the work of wetting of a nucleus may
be employed in calculations. If condition (6.22) is violated,
the range of condensation nucleus sizes over which the
adsorption and exponential asymptotics of disjoining pres-
sure are operative in the theory of nucleation for uniformly
thick films is significantly restricted by condition (6.28). For
all that, the process of heterogeneous nucleation by means of
formation of uniformly thick films around nuclei proceeds
over the entire range of nuclear sizes satisfying the condition
(6.30), even in substances with finite angles of contact.

6.3 Thermodynamic characteristics of nucleation on
insoluble wettable nuclei in the prethreshold region of
vapor metastability
Let us now assume that either conditions (6.19) and (6.22) or
(6.28) and (6.30) are fulfilled. Then, the chemical potential of
a fluid condensed on the insoluble wettable nucleus in a
droplet is described by formula (6.2) and shows a maximum
depending on the droplet size. The linkage between the
coordinates of this maximum in variables R and n is
established, in accordance with formula (2.2), by the equation

n0 � 4pR 3
0

3va
: �6:31�

Because of relation (6.2) and the usually satisfied condi-
tion

vaP�h0�
kBT

5
2a

3n 1=30

; �6:32�

there appears an equation

bth � 2a

3n 1=30

�6:33�

for the threshold value bth of the vapor chemical potential,
above which the barrierless droplet formation on condensa-
tion nuclei occurs. On the assumption that

n 1=30 4
2a

3
; �6:34�

from Eqn (6.33) follows bth 5 1. Then, taking into account
relation (2.21) in agreement with Eqn (6.33), the vapor
threshold supersaturation zth is given by

zth �
2a

3n 1=30

: �6:35�

Let us use relation (4.10), as in Section 4.2 above, to assign
the vapor supersaturation z through its deviation e from the
threshold value zth. In the subthreshold region of vapor
metastability, 0 < z < zth, we have 0 < e < 1.
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Let us introduce p0 by the formula

p0 � 39

23
n 70
a 3

����� q2bnqn 2

����
0

�3

: �6:36�

The use of Eqns (6.33) and (6.36) in the general relations
(4.13) ± (4.15) yields

ne � n0
ÿ
1ÿ 21=23 p

ÿ1=6
0 e 1=2

�
; �6:37�

nc � n0
ÿ
1� 21=23 p

ÿ1=6
0 e 1=2

�
;

Dne � Dnc � 2ÿ1=4 3aÿ1=2n 2=30 p
ÿ1=12
0 eÿ1=4 ; �6:38�

DF � 27=2

3
an 2=30 p

ÿ1=6
0 e 3=2 : �6:39�

It follows from (6.39) that in the prethreshold region
(4.23) of vapor metastability one finds

e 1=2 � aÿ1=3nÿ2=90 p
1=18
0 ; �6:40�

where it is taken into consideration that the range of �DF �1=3
variation is significantly narrower than that of DF variation;
therefore, it is roughly assumed that�

3DF
27=2

�1=3

� 1 :

A more refined variant of the relation (6.40) which defines a
characteristic quantity e 1=2 in the region (4.23) will be given in
Section 7.1.

According to Eqns (6.38) and (6.40), it is readily shown
that

Dne � Dnc � 2ÿ1=4 3aÿ1=3n 7=90 p
ÿ1=9
0 : �6:41�

Expression (4.23) implies that inequalities (2.18) and
(4.22) are fulfilled. The latter inequality taken together with
equality (4.21) (which is independent of specific nature of
macroscopic condensation nuclei) from Section 4.2 ensures
the fulfilment of conditions (2.17) for the applicability of
quadratic approximations to the work of formation of near-
equilibrium and near-critical droplets.

In the exponential approximation (6.13) to the work of
wetting of a nucleus, expressions (6.2), (6.5), (6.7), (6.17),
(6.31), and (6.36) collectively lead to

p0 � n0
k
; �6:42�

where k is determined from the equality

k � 4pl 3

3va
: �6:43�

If the logarithm in Eqn (6.18) is not too large and the
macroscopic nucleus size condition (6.14) is fulfilled, then we
get

R0 � Rn : �6:44�
This relation is satisfied with good accuracy even without the
assumption of the exponential approximation to the work of
wetting of a nucleus. It can be seen from formulas (6.31) and
(6.44) that n0 is approximately equal to the number of liquid
molecules in a volume equivalent to the nuclear volume.

In accordance with Eqns (6.31), (6.42) ± (6.44), one
obtains

p0 �
�
Rn

l

�3

; �6:45�

which allows p0 to be found fromRn and l in the framework of
the exponential approximation to the work of wetting of a
nucleus. It follows from relation (6.45) and the condition
(6.14) of nucleus macroscopicity that

p
1=3
0 4 1 : �6:46�

The strong inequality (6.46) is valid even without the
assumption of the exponential approximation to the work of
wetting of a nucleus.

If relations (6.40) and (6.41) are represented with the aid
of Eqns (6.31), (6.44) and (6.45) as

e 1=2 �
�

3

4p

�2=9

aÿ1=3
�
v
1=3
a

l

�2=3�
l

Rn

�1=2

; �6:47�

Dne � Dnc � 2ÿ1=4 3
�
4p
3

�7=9

aÿ1=3
�

l

v
1=3
a

�7=3�
Rn

l

�2

�6:48�

and characteristic estimates a � 10 and v
1=3
a =l � 10ÿ1 are

taken into consideration, condition (6.14) of macroscopic
nuclear size also underlies inequalities (4.25) and (2.19).

It follows from Eqns (6.2), (6.5), (6.7), (6.13), (6.17),
(6.31), (6.37), and (6.45) that the inequality

1

3

�
2eRn

l

�1=2

5 1 �6:49�

must be fulfilled, if the applicability condition (4.12) for
parabolic approximation (4.11) over the interval ne 4n4nc
is to be satisfied in the case of exponential approximation to
the work of wetting of a nucleus. Taking into account relation
(6.47) and the characteristic estimates a � 10 and
v
1=3
a =l � 10ÿ1, leads to the conclusion that the inequality
(6.49) really holds.

It follows from Eqns (6.37), (6.46), and (4.25) that

ne � n0 ; nc � n0 : �6:50�

Evidently, relations (4.25), (2.19), and (6.50) hold true
regardless of the exponential approximation to the work of
wetting of a nucleus.

Let us take the quantities n0 and p0 as initial parameters of
the kinetic theory of nucleation. The relationship between n0
and Rn is easy to establish from Eqns (6.31) and (6.44). Also,
the relationship between p0 and l is easily found from
approximate equality (6.45) using the exponential approx-
imation to the work of wetting of condensation nuclei; this,
however, requires jq2bn=qn 2j0 to be known in the general case,
in agreement with formula (6.36). It is possible to do both
thermodynamically (using the whole disjoining pressure
isotherm in thin liquid films at a surface corresponding to
the nucleus) and based on experimental nucleation kinetics
data (by solving the inverse problem of nucleation kinetics).

The choice of quantities n0 and p0 as initial parameters
of the kinetic theory of nucleation on insoluble wettable
nuclei provides a basis for the development of this theory in
Section 7 in a form independent of whether the exponential
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approximation to the work of wetting of a nucleus is valid
or not.

7. Kinetics of nucleation
on insoluble wettable nuclei

We now pass to consideration of the nucleation kinetics of
droplets having the form of liquid films enveloping insoluble
wettable nuclei. The mechanisms of film formation at a late
stage of nucleation (the Ostwald ripening stage) have been
described in Refs [83, 84]. Specific features of island films in
multicomponent systems have been subjected to analysis in
Refs [84, 85]. Condensation kinetics for the instantaneous
creation of vapor supersaturation creation on insoluble
charged nuclei have been constructed in Refs [40, 86 ± 94],
and for gradual vapor supersaturation in Refs [35 ± 39, 95,
96]. Sections 7.1 ± 7.5 will be based on the results of kinetic
studies of continuous film nucleation on insoluble macro-
scopic wettable nuclei reported inRefs [41, 97]. The process of
nucleation on insoluble wettable nuclei will be considered
using the same approach as in Sections 5.1 ± 5.5 concerning
soluble nuclei.

7.1 Kinetic characteristics of nucleation
on insoluble wettable nuclei
In the case of macroscopic wettable nuclei, relation (5.1) for a
current vapor supersaturation at the nucleation stage remains
valid regardless of their nature. Moreover, expression (5.2)
also holds by virtue of inequality (3.16). Comments on
formula (5.2) also remain true.

According to Eqn (3.38) and the equality Dne � Dnc, the
former expression (5.4) holds good in the case of the parabolic
approximation (4.11) to the condensate chemical potential
(regardless of the growth regime of supercritical droplets and
the nature of condensation nuclei).

Similar to Section 5.1, ~e indicates the value of e at z � F�
introduced in agreement with relation (4.10). In other words,
~e is defined by formula (5.6), as before.

The use of the thermodynamic relation (6.39) in Eqn (5.4),
taking into consideration formula (5.6), yields

~e 1=2 � qaÿ1=3nÿ2=90 p
1=18
0 ; �7:1�

where

q �

�
3

27=2
ln

�
Kh

6p ln 2

��1=3
�h4 1� ;�

3

27=2
ln

�
K

6p ln 2

��1=3
�h5 1� :

8>>><>>>: �7:2�

According to the last equation, the quantity q (as well as
DF
��
z�F� ) is a function of dimensionless parameters K and h.

Again, these parameters are a convenient choice as indepen-
dent free parameters of the theory, compatible, naturally,
with its applicability conditions and the limitations h4 1 or
h5 1 used in it. These limitations will be omitted in the
formulas, to simplify their presentation.

Equation (7.1) defines more precisely the relation (6.40)
which determines the quantity e 1=2 characteristic of the
interval (4.23), i.e. the prethreshold region of vapor metast-
ability. This clarification can be represented, as above, in the
form of the approximate equality (5.10), although quantities
~e 1=2, e 1=2, and q are now different from those in the case of
soluble nuclei. It will be shown in Sections 7.3 and 7.4 that the

approximate equality (5.11) remains valid in the case of
insoluble wettable nuclei too. It follows from this equality
and (5.10) that inequalities (5.12) and (4.25) also hold as
before.

Substituting (6.39) into (5.9) and using relation (7.1), we
obtain

G � 25=2qa 2=3n 4=90 p
ÿ1=9
0 : �7:3�

It follows from formulas (3.35), (3.37) taking into account
Eqns (4.8), (5.2), (6.38), (6.50), and (7.1) that

ts � 3

23=2

t
qa

n 8=90

a 2=3p
2=9
0

: �7:4�

It can be foundwith the aid of Eqns (3.3), (5.2), and (6.35) that

t� �
�
2

3

�1=m

t1
a 1=m

n 1=�3m�0

: �7:5�

It seems appropriate to proceed from the consideration of
the free-molecule growth of supercritical droplets. The use of
Eqns (5.2), (6.35), and (7.3) in (3.10), (3.11) yields

c � 23=2 3

�
3

2

�1=m
qmt
at1

n �7m�3�=�9m�0

a �m�3�=�3m�p 1=9
0

; �7:6�

h � 1

12

�
2

3

�3=m Z�ÿ1�
q 2n1

�
at1
mt

�3
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It follows from formula (3.47) taking into account Eqns
(4.8), (5.2), (6.35), (6.38), (6.50), and (7.1) that
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After representing �n0=p0�2=9 with the aid of formulas (6.42)
and (6.43) as�

4p
3

�2=9�
l

v
1=3
a

�2=3

;

and taking account of the approximate equality (5.11) and
characteristic estimates a � 10, l=v

1=3
a � 10, it is evident that

the coefficient of the ratio Dt=ts in Eqn (7.8) is much greater
than unity. According to formula (7.8), in this case condition
(3.46) is fulfilled with ample reserve provided condition (3.39)
is satisfied.

Because the radius Rc of the critical droplet is bigger than
the radius Rn of the condensation nucleus, it follows from the
fulfilment of condition (3.46) that at the nucleation stage the
characteristic radius of the droplet is much greater than the
nuclear radius Rn. Therefore, at this stage, the quantity n
defined by equality (2.2) corresponds, with a high accuracy, to
the true number of vapor molecules condensed by a droplet
containing the insoluble condensation nucleus. This is an
important premise of the kinetic theory of nucleation.

Formulas (3.12) ± (3.14), (3.17), (3.22), (3.23), and (7.5)
taken together with expressions (5.2), (6.35), (7.6), and (7.7)
give all the most important kinetic characteristics of nuclea-
tion on insoluble wettable nuclei in the case of the free-
molecule growth of supercritical droplets.

Let us now consider the diffusive growth of supercritical
droplets. Using Eqns (5.2), (6.35), and (7.3) in (3.28), (3.29),
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we obtain
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It has been mentioned in Section 3.4 that condition (3.46)

is fulfilled with ample reserve in the case of diffusive growth of
supercritical droplets. At the nucleation stage, the quantity n
defined by equality (2.2) coincides, with a good accuracy, with
the true number of vapor molecules condensed by a droplet
containing the insoluble nucleus. The importance of this fact
for the kinetic theory of nucleation has been emphasized in
previous sections.

Formulas (3.12) ± (3.14), (3.17), (3.23), (3.30), and (7.5)
taken together with expressions (5.2), (6.35), (7.9), and (7.10)
give all the most important kinetic characteristics of nuclea-
tion on insoluble wettable nuclei in case of the diffusive
growth of supercritical droplets.

A comparison of Eqns (3.22) and (7.6) with (3.30) and
(7.9), respectively, shows that the expression for time Dt has
an identical form in the case of free-molecule and diffusive
growth of supercritical droplets. An analogous inference was
deduced in Section 5.1 with regard to the nucleation on
soluble nuclei.

7.2 Parametrization of the characteristic time
of vapor metastable state formation
The use of formulas (3.22), (7.6), taking into account Eqns
(5.2), (6.35), and (7.4), leads in the case of free-molecule
growth of supercritical droplets to
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An analogous equality can be obtained from formulas (3.30),
(7.9) for the diffusive supercritical droplet growth, taking into
consideration Eqns (5.2), (6.35), and (7.4). The solution of
Eqn (7.11) with respect to t1, using definition (5.5), gives

t1 � 2
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which parametrizes the characteristic time t1 of vapor
metastable state formation by expressing it through the
parameter K.

It directly follows from definition (5.5) and relation (7.4)
that
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It seems appropriate to proceed from the consideration of
the free-molecule growth of supercritical droplets. The
substitution of relations (7.12) into (7.6) and (7.7) yields
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It follows from relations (3.13), (3.17), taking into
consideration Eqns (7.14) and (7.15), that
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The solution of the relation (7.15) with respect to Z�ÿ1�
gives
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The use of Eqns (3.14) and (7.18) yields

N � 3

2

q 2n1 h p
7=9
0

K 3a 2=3n 22=90

�h5 1� : �7:19�

Formulas (7.12) and (7.18) express the time t1 and
concentration Z�ÿ1� through the parameters K and h,
whereas formulas (7.13), (7.16), (7.17), and (7.19) express
the kinetic characteristics of nucleationDt,N, andDr through
the parameters K and h.

Let us now consider the diffusive growth of supercritical
droplets. The substitution of relation (7.12) into formulas
(7.9) and (7.10) gives

c � 21=3 3
q atD p

2=9
0

Kta 1=3n 5=90

; �7:20�

h � �3p�
1=2

2 5=4

Z�ÿ1�
q 1=2 n1

�
Kt
atD

�3=2 a 1=6n 29=180

p
4=9
0

: �7:21�

It follows from relations (3.13), (3.17), taking into
consideration Eqns (7.20) and (7.21), that
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The solution of the relation (7.21) with respect to Z�ÿ1�
produces
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The use of Eqns (3.14) and (7.24) yields
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Formulas (7.12) and (7.24) express the time t1 and concen-
tration Z�ÿ1� through the parameters K and h, whereas
formulas (7.13), (7.22), (7.23), and (7.25) express the kinetic
characteristics of nucleation Dt, N, and Dr through the
parameters K and h.

It can be seen that in the diffusive growth of supercritical
droplets too, the parameters K and hmay be used to construct,
in an analytical form, the kinetic theory of nucleation;
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moreover, they are more convenient for the purpose than the
parameters t1 and Z�ÿ1�.

As in the case of nucleation on soluble nuclei, an
additional advantage of K and h over t1 and Z�ÿ1� consists
in the following. The parameter K in conjunction with
inequality (5.36) allows one to judge directly whether the
main applicability condition of the kinetic theory (3.39)
responsible, in particular, for the fulfilment of the conditions
(3.40), (3.46) is satisfied. On the contrary, parameter h allows
one to directly estimate the satisfaction of inequalities h4 1
and h5 1 used in the theory.

7.3 Method for the calculation of kinetic characteristics of
nucleation on insoluble wettable nuclei under free-molecule
growth of supercritical droplets
The method for the calculation of kinetic characteristics of
nucleation remains the same as for soluble condensation
nuclei. Certainly, the application of this method to insoluble
wettable nuclei implies the use of specific formulas.

As in Section 7.2, the parameters K and h are regarded as
free but restricted by condition (5.36) and the inequalities
h4 1 or h5 1. The present section considers the case of free-
molecule growth of supercritical droplets with an additional
limitation imposed by condition (3.42). Let us make explicit
this limitation. It follows from relations (3.43) and (7.17)
that
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(in estimates, numerical values are not rounded off to make it
easier to follow them). The use of the last formula in
inequality (3.42), taking into account the approximate
equality (5.11), yields
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The inequality

21=2

a�n1 � ng� va
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needs to be satisfied to ensure a fit between formulas (5.36)
and (7.27). If inequality (7.28) containing the initially given
parameters of the theory in its left-hand side is satisfied,
formulas (7.12), (7.13), (7.16) ± (7.19) are valid in the ranges of
variation of parameters K and h, permitted by constraints
(5.36), (7.27) and inequalities h4 1 or h5 1. These formulas
provide a basis for further calculations.

Let us choose the following values of the initial para-
meters of the theory:

a � 10 ; a � 10ÿ1 ; n1 � 1017 cmÿ3; ng � 1019 cmÿ3 ;

va � 10ÿ23 cm3 ; t � 5:4� 10ÿ7 s ; n 1=30 � 90 ;

p0 � 1:7� 103 ; m � 1 : �7:29�

The values of a, a, n1, ng, va, t, and m given in the last
set are the same as in Eqn (5.40). The reality and
representativeness of these values were emphasized in
Section 5.3. The values of n 1=30 and p0 satisfy inequalities
(6.34) and (6.46). The value of n 1=30 corresponds to
Rn � 10ÿ6 cm, in conformity with Eqns (6.31) and (6.44).

In the case of the exponential approximation to the work of
wetting of a nucleus, the value of p0 corresponds, in
agreement with estimate (6.45), to l � 10ÿ7 cm, which is
very close to reality [73]. The value of Rn � 10ÿ6 cm is
sufficiently large to ensure that the condition (6.14) of
nucleus macroscopicity is satisfied; at the same time, it is
so small that the vapor threshold supersaturation
zth � 7:4� 10ÿ2 given by the relations (6.31), (6.35), and
(6.44) remains amenable to reliable control in experiment.

Let us use the method under consideration for the
calculation based on the set (7.29). In this case, inequality
(7.28) is satisfied. It follows from inequalities (5.36) and (7.27)
that

15 K5 2� 102 ; �7:30�

which determines the permitted region of the parameter K
variation.

According to formulas (7.12), (7.5), and (7.13), one
obtains

t1 � 7:7� 102K s ; �7:31�
t� � 5:8� 10 K s ; �7:32�
Dt � 3:8� 10ÿ2qÿ1K s : �7:33�

The units of measurement of dimensional quantities were
specified. The dependence of q on K and h is given by equality
(7.2). The time moments ton and toff are easy to find using
approximate equalities (3.23).

Finally, formulas (7.16) ± (7.19) give

N � 4:9� 104q 2Kÿ3 cmÿ3 �h4 1� ;
4:9� 104q 2hKÿ3 cmÿ3 �h5 1� ;

�
�7:34�

Dr � 5:3� 102qÿ1K ; �7:35�
Z�ÿ1� � 4:9� 104q 2hKÿ3 cmÿ3 : �7:36�

The radius R of a droplet is more conveniently used in
experiment than its size r introduced by equalities (2.2), (3.7).
Using relations (5.49) and (7.35), we receive for the width DR
of the supercritical droplet size spectrum on the R-axis:

DR � 7� 10ÿ6qÿ1K cm : �7:37�

Let us show how conditions (3.40) and (5.11) are
fulfilled. In a situation with h4 1, relations (5.4) and (7.2)
indicate that inequality (3.40) is satisfied over the entire
range (7.30). Likewise, the approximate equality (5.11) is
fulfilled unless the inequality h4 1 is too strong. That h4 1
cannot be too strong follows from the fact that the growth
of parameter h is accompanied by a rise [in agreement with
Eqn (7.36)] in the concentration Z�ÿ1� which, however,
does not normally exceed 105 cmÿ3 under practical condi-
tions.

In the situation where h5 1, it follows from expressions
(5.4) and (7.2) that conditions (3.40) and (5.11) are satisfied
only near the upper bound of region (7.30). Therefore, the
realization of a situation in which h5 1 is actually incompa-
tible with the notion of a significant activation barrier to
nucleation. However, such a notion would hold true if the
coefficient a and density ng in the set (7.29) were lowered and
the upper limit of region (7.30) were raised, accordingly, in
compliance with inequality (7.27).
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7.4 Method for the calculation of kinetic characteristics of
nucleation on insoluble wettable nuclei under diffusive
growth of supercritical droplets
The parameters K and h are regarded to be free, as before, but
restricted by condition (5.36) and the inequalities h4 1 or
h5 1. The present section considers the case of the diffusive
growth of supercritical droplets with an additional limitation
imposed by condition (3.44). Let us make explicit this
limitation. It follows from relations (3.45) and (7.23) that
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(in estimates, numerical values are not rounded off to make it
easier to follow them). Using the approximate equality (5.52),
expression (7.38) can be represented as
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resembling relationship (7.26), although the quantities r and
rl are defined by relations (3.25) and (3.45) which differ from
(3.7) and (3.43). The use of the above formula in inequality
(3.44), taking into account approximate equality (5.11), yields
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This expression is opposite to restriction (7.27) as the limiting
case of diffusive supercritical droplet formation is opposite to
that of the free-molecule growth.

Formulas (7.12), (7.13), and (7.22) ± (7.25) hold good in
the regions of variations of parameters K and h permitted by
the most rigorous inequalities out of (5.36) and (7.40) and by
constraints h4 1 or h5 1. These formulas form the basis for
further calculations.

Let us choose the following values of the initial para-
meters of the theory:

a � 10 ; a � 1 ; n1 � 1017 cmÿ3; ng � 1019 cmÿ3;

va � 10ÿ23 cm3 ; t � 5:4� 10ÿ7 s ; D � 1 cm2 sÿ1 ;

tD � 8:9� 10ÿ11 s ; n 1=30 � 90 ; p0 � 1:7� 103; m � 1 :

�7:41�

The values in the last set differ from those in set (7.29) only
by the assumption of a � 1 instead of a � 10ÿ1. This
difference is however responsible for the transition from the
free-molecule growth of supercritical droplets to the diffusive
one. It is a very likely possibility that coefficient a is close to
unity as has been noted in Section 5.4. The value ofD given in
set (7.41), same as in the second set (5.55), is quite realistic.
For completeness, the time tD is included in the initial
parameters although, according to formula (3.27), it is a
function of n1, va, and D. The value of tD given in set
(7.41), the same as in set (5.55), has been found with the aid
of relationship (3.27).

Let us use the method under consideration for the
calculation based on data from set (7.41). In this case, the
inequality (7.40) is more rigorous than (5.36). According to
the former inequality, one obtains

K4 2� 10 ; �7:42�

which determines the permitted range of parameter K
variations.

According to Eqns (7.12), (7.5), and (7.13), we find

t1 � 7:7� 10 K s ; �7:43�
t� � 5:8 K s ; �7:44�
Dt � 3:8� 10ÿ3qÿ1K s : �7:45�

The units of measurement of dimensional quantities were
specified. The dependence of q on K and h is given by the
equality (7.2). Timemoments ton and toff are easy to find using
approximate equalities (3.23).

Finally, equations (7.22) ± (7.25) give

N � 1:1� 103q 1=2 Kÿ3=2 cmÿ3 �h4 1� ;
1:1� 103q 1=2hKÿ3=2 cmÿ3 �h5 1� ;

�
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Dr � 3:2� 106qÿ1K ; �7:47�
Z�ÿ1� � 1:1� 103q 1=2hKÿ3=2 cmÿ3 : �7:48�

Surface area A � 4pR 2 of the droplet is more conveni-
ently used in experiment than its size r introduced by
equalities (2.2) and (3.25). Using relations (5.64) and (7.47),
we receive for the width DA of the supercritical droplet size
spectrum on the A-axis:

DA � 7� 10ÿ9qÿ1K cm2 : �7:49�

Let us show how conditions (3.40) and (5.11) are fulfilled.
In a situation with h4 1, formulas (5.4) and (7.2) indicate
that inequality (3.40) is satisfied over the entire range (7.42).
Likewise, approximate equality (5.11) is fulfilled (at least as
an estimate) unless the inequalities (7.42) and h4 1 are too
strong. If the inequality (7.42) were too strong, i.e. parameter
K were too large, the time t� would be very large as well (in
agreement with relation (7.44)) and of little practical interest.
If the inequality h4 1 were too strong, the concentration
Z�ÿ1� would be very high [in agreement with relation (7.48)
and at not too large parameter K] although it does not
normally exceed 105 cmÿ3 under practical conditions (see
above discussion).

On the contrary, in the situation where h5 1, it follows
from the expressions (5.4) and (7.2) that relationships (3.40)
and (5.11) are satisfied over the entire range (7.42) with the
exception of too large values of the parameter K [correspond-
ing, to a very large time t�, in agreement with relation (7.44)].

The similarity of physical substantiations of the condition
(3.40) and relation (5.11) in Sections 5.3, 5.4 and 7.3, 7.4
confirms the universal character of themethod for calculating
kinetic parameters of nucleation, described in these sections.

7.5 Accounting for the polydispersity
of insoluble wettable nuclei
The kinetic theory put forward in Sections 7.1 ± 7.4 implies
that insoluble wettable condensation nuclei are identical, i.e.
monodispersed. Let us now consider how the polydispersity
of insoluble wettable nuclei can be taken into account.

Nucleus polydispersity requires that the distribution of
their initial concentrations by radius Rn be taken into
consideration. Let us proceed from a quite realistic assump-
tion that the density of this distribution is practically zero for
Rn > Rn and significantly different from zero for Rn < Rn,
where Rn is the radius of the largest nuclei existing under
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practical conditions. How the distribution density of the
initial concentrations of nuclei depends on Rn for Rn < Rn is
immaterial for the further discussion. It is only important that
its Rn-dependence be weak compared with a `jump', i.e. the
transition from Rn < Rn to Rn > Rn values.

Bearing in mind the estimative nature of the further
reasoning, the approximate equality (5.11) and the relation
(6.42) valid for the exponential approximation to the work of
wetting of a nucleus will be used, making no additional
mention of the fact. Expressions (4.10) and (6.40) give an
estimate of the width Dz of the prethreshold region of vapor
metastability on the z-axis:

Dz � aÿ2=3nÿ4=90

�
n0
k

�1=9

zth : �7:50�

Expressions (4.10) and (4.25) indicate that the prethreshold
region of vapor metastability shifts along the z-axis at a rate
of about qzth=qRn as the radius Rn increases. According to
formulas (6.31), (6.35), and (6.44), this rate can be estimated
from the relation

qzth
qRn
� ÿ zth

Rn
: �7:51�

As the vapormetastability state is being formed, the vapor
supersaturation z obviously falls into the region which is the
prethreshold one with respect not only to a nucleus for which
Rn � Rn but also to all the nuclei within the interval
Rn ÿ DRn < Rn < Rn, whose width DRn satisfies the relation

Dz
����
Rn�Rn

�
���� qzthqRn
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Rn�Rn
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All these nuclei are the potential centers of supercritical
droplet formation.

Expressions (7.50) ± (7.52) submit an estimate
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where it is not shown, for simplicity, that n0 refers to the value
Rn of the nuclear radius Rn. The last relation provides an
estimate of the width DRn of the interval
Rn ÿ DRn < Rn < Rn of nuclear radii Rn, within which
supercritical droplets actually form. According to the
approximate formula (7.53), the following relation holds for
macroscopic nuclei:

DRn

Rn

5 1 : �7:54�

This means that the width of the interval
Rn ÿ DRn < Rn < Rn is relatively small.

A principal kinetic characteristic of nucleation being the
total number of newly-formed supercritical droplets, the
following condition must be fulfilled if the kinetic theory of
nucleation discussed in Sections 7.1 ± 7.4 is to be employed
when dealing with polydispersed insoluble wettable nuclei:���� 1N qN

qRn

����
Rn�Rn

DRn 5 1 : �7:55�

This condition guarantees the smallness of the relative change
in the number of droplets N associated with the variation of
Rn within the interval Rn ÿ DRn < Rn < Rn.

It follows from formula (3.12) that the dependence of N
on Rn is especially strong when h4 1. In the same situation,
this dependence turns out to be the strongest of all other Rn-
dependences of nucleation kinetic characteristics. Therefore,
condition (7.55) for h4 1 may serve as a criterion for the
practical absence of effect of nucleus polydispersity on the
kinetic characteristics of nucleation within the interval
Rn ÿ DRn < Rn < Rn.

When the stage of effective formation of supercritical
droplets is dominated by their free-molecule growth, it
follows from relations (3.13), (7.7) for h4 1, taking into
account formulas (6.31), (6.44), that
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Using relationships (7.53) and (7.56), condition (7.55) can be
reduced to the inequality

4m� 3
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(it is not shown that n0 refers to the value Rn of the nuclear
radius Rn). In the case of insoluble macroscopic wettable
condensation nuclei, inequality (7.57) is fulfilled if the
parameter m is not too small.

However, when the stage of effective formation of super-
critical droplets is dominated by their diffusive growth, it
follows from formulas (3.13), (7.10) for h4 1, taking into
account relations (6.31), (6.44), that

qN
qRn
� 2m� 3

2m

N

Rn
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Using the same relationships (7.53) and (7.58), condition
(7.55) can be reduced to the inequality

2m� 3

2m
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(it is not shown that n0 refers to the value Rn of the nuclear
radius Rn). In the case of insoluble macroscopic wettable
condensation nuclei, inequality (7.59) is fulfilled if the
parameter m is not too small.

Thus, the polydispersity of insoluble wettable condensa-
tion nuclei may be taken into account in the kinetic theory
exposed in Sections 7.1 ± 7.4. For this, in all the formulas of
this theory,Rn should be understood asRn [in agreement with
inequality (7.54)], and Z�ÿ1� as the total initial concentra-
tion of condensation nuclei whose radii Rn lie in the interval
Rn ÿ DRn < Rn < Rn within which supercritical droplets are
formed. The width DRn of this interval is given by relation
(7.53). It is worthwhile to note that inequalities (7.57) and
(7.59) are equivalent to inequality (7.54) up to factors
�4m� 3�=m and �2m� 3�=�2m�, as is clear from estimate
(7.53).

To conclude, the macroscopic size of insoluble wettable
condensation nuclei, responsible for their polydispersity, also
made it possible to take into account this polydispersity. This
inference was equally true in the case of soluble macroscopic
condensation nuclei.

The kinetic theory of nucleation on insoluble wettable
nuclei constructed in Sections 7.1 ± 7.4, in which quantities
n0 and p0 were taken as the initial parameters, may be used
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to generalize the kinetic theory of nucleation on soluble
nuclei composed of a surface-inactive substance (see
Sections 5.1 ± 5.4) to nuclei of a surfactant. Indeed, such a
generalization can be accomplished, taking advantage of
general relations (4.13) ± (4.15), by finding the quantities n0
and bth in the formulas of Sections 7.1 ± 7.4 and the quantity
p0 determined by formula (6.36) with the aid of the
algorithm formulated in Section 4.4 for the calculation of
the thermodynamic characteristics of nucleation on nuclei
of surfactants.

8. The theory of nucleation on partially soluble
wettable nuclei and nuclei of mixed composition

Thermodynamic characteristics of heterogeneous nucleation
under condensation on completely soluble nuclei and wetta-
ble macroscopic nuclei insoluble in newly-formed droplets,
considered in Sections 4 and 6, represent limiting physical
situations. In practice, the following three intermediate
situations are feasible. One arises when the size of the nuclei,
even composed of matter readily soluble in the condensate, is
such that its maximum chemical potential is reached before
the nuclei are completely dissolved in the droplets. In the
second case, the nuclei may be composed of a poorly soluble
material, but even small amount of it in the solution inside the
droplets markedly affects their nucleation potency. In the
third situation, nuclei of mixed composition contain both
soluble and insoluble components [13, 98 ± 100]. In what
follows, we shall show with reference to papers [101 ± 103]
and the thermodynamic approach presented in Sections 4 and
6 how heterogeneous nucleation can be described in these
three intermediate physical situations. To avoid misunder-
standing, we shall assume here and hereinafter in this section
that the soluble component of a nucleus is a surface-inactive
substance although all the results can easily be generalized to
a soluble surfactant component.

8.1 Sufficient condition for the applicability of the theory
to the case of complete nucleus dissolution in a droplet
Let us first formulate a sufficient condition of validity of the
nucleation thermodynamics discussed in Section 4 in the case
of complete dissolution of the nucleus in a droplet.

Consider a monocomponent nucleus partially or comple-
tely dissolved in the liquid condensed from vapor. Regardless
of the regime of matter exchange between the droplet and the
vapor (free-molecule, diffusive or intermediate), the condi-
tion _n0 0 for bn 0 b holds for the rate _n at which the number
of condensate molecules in the droplet changes with time. Let
bth be the vapor threshold chemical potential when the nuclei
are completely dissolved in the droplets. This value guaran-
tees that the inequality _n > 0 is fulfilled in the case of
incomplete nucleus dissolution too, regardless of the value
of the vapor chemical potential b > bth, if

bn < bth �8:1�

at all n values at which the nucleus is incompletely dissolved in
the droplet.

The removal of nuclear matter in the course of its
dissolution in the droplet with a rise in the number of
condensate molecules n is responsible for the inhomogeneity
of the nonequilibrium concentration of nuclear matter in the
liquid film between the yet undissolved nuclear residue and
the vapor ± gas medium around the droplet. The chemical

potential bn of the condensate in the liquid film remains as
inhomogeneous as the nuclear matter concentration until a
perfect equilibrium is achieved inside the droplet. The matter
exchange between the droplet and the surrounding medium
will naturally depend on the bn value at the surface of the
former.

Let us assume that absorption of vapor molecules by a
droplet results in an enhanced chemical potential bn at the
droplet surface. This will induce a release of vapor molecules
from the droplet to the surrounding medium, hence the
weakening of the inequality _n > 0 and slowdown in the
condensation process. Also, it will facilitate the establish-
ment of internal equilibrium in the dissolved nuclearmatter of
the droplet, adsorption equilibrium at its surface, and
equilibrium with the nuclear residue. The latter will require
that the residue size adjust itself to the either of equilibria
[104]. Therefore, the violation of the inequality _n > 0 must be
preceded by a close-to-equilibrium situation in which the
concentration x of dissolved nuclear matter in the droplet is
practically homogeneous and coincides with the solubility of
the residual nucleus. The chemical potential bn of condensate
under condition (8.1) should be referred to this solubility. The
inequality _n > 0 will not be violated if condition (8.1) is
fulfilled.

Let xn be the solubility of a nucleus of radius Rn. It is
related to the equilibrium concentration x1 of nuclear matter
in a solution on a flat substrate by the Ostwald ±Freundlich
formula

xn � x1 exp

�
2gnvn
RnkBT

�
; �8:2�

where gn is the mechanical surface tension at the nucleus ±
solution interface, and vn is the molecular volume of nuclear
matter. Because the surface curvature of the residual nucleus
exceeds the initial nuclear surface curvature, then, at
incomplete dissolution of the nucleus, we have

x > xn : �8:3�

In the range of n variation, in which the nucleus is only
partly dissolved and the solution concentration x does not
necessarily satisfy the inequality x5 1, the droplet radiusR is
no longer proportional to n 1=3 as in the case of complete
nucleus dissolution. For the purpose of this section, the
following inequality may be adopted:

R > Rn : �8:4�

Inequalities (8.3) and (8.4) impose a limitation from below
on the solubility xn, necessary to satisfy condition (8.1). This
limitation may be regarded as the sufficient usability condi-
tion for nucleation thermodynamics in the case of complete
nucleus dissolution in a droplet.

In the region of incomplete nucleus dissolution, the
contribution to the chemical potential bn in a droplet comes
not only from the capillary and osmotic pressure but also
from the disjoining pressure. Note that the contribution of the
latter pressure is negative. Assuming as valid the approxima-
tion for a diluted solution, at which the contribution of
osmotic pressure to bn is ÿx and taking into account
inequality (8.3) to estimate this contribution and inequality
(8.4) to estimate the contribution of capillary pressure to bn,
there is the following inequality in the region of incomplete
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nucleus dissolution:

bn < ÿxn � 2gva
Rn kBT

: �8:5�

According to Eqns (4.5), (8.2), (8.5), and (2.29), with

nn � 4pR 3
n

3vn
�8:6�

condition (8.1) is satisfied if

x1 >
2gva

Rn kBT
exp

�
ÿ 2gnvn
Rn kBT

�"
1ÿ 2

9

�
6gvn

Rn kBT

�1=2
#
; �8:7�

which imposes the necessary limitation from below on the
solubility x1. It is important that the assumption of dilute
solution used to derive inequality (8.7) also be observed at a
solution concentration which presets the lower limit on x1.
Indeed, this guarantees the fulfilment of condition (8.1) at a
solution concentration specifying the lower bound of the
limitation on x1. At the same time, it guarantees the
fulfilment of condition (8.1) at higher concentrations of the
solution too, at which the assumption of dilute solution is no
longer true. This is a thermodynamic consequence of solution
stability, which accounts for a decrease in the chemical
potential of the solvent with a rise in the solution concentra-
tion. Thus, the limitation (8.7) is unrelated to whether the
assumption of dilute solution is observed at all concentrations
x1 satisfying inequality (8.7) or not.

The bigger the condensation nuclei, the smaller the right-
hand part of inequality (8.7) setting the lower bound of
limitation on x1. When the condensation nucleus is suffi-
ciently large, the approximation to a dilute solution in a
droplet is inevitably valid at the lower bound of this
limitation. Then, the limitation itself comes into effect.
Condition (8.7) does not take into consideration the disjoin-
ing pressure of the liquid film although it admits the fact that
this pressure weakens the limitation on solubility. This
accounts for the universal character of this restriction
unrelated to concrete notions of disjoining pressure iso-
therms and mechanisms of wetting of condensation nuclei.

In agreement with Eqns (4.3), (2.29), and (8.6), the
solution concentration nn=n0 in a droplet at the maximum
chemical potential of the condensate is small if the following
condition is met:

Rn 0
2gva
kBT

�
vn
va

�1=3

: �8:8�

However, the fulfilment of inequality (8.8) which details the
condition (4.6) of macroscopicity of soluble nuclei does not
ensure the applicability of limitation (8.7). According to the
aforesaid, it is necessary that the concentration setting the
lower bound of limitation (8.7) be much smaller than unity. It
is clear from Eqn (8.7) that this is possible if

Rn 4
2gva
kBT

: �8:9�

The last inequality determines the nuclear size range for
which the limitation on solubility (8.7) holds and, accord-
ingly, the sufficient condition for the validity of the theory in
the case of complete nucleus dissolution in the droplet is
satisfied.

8.2 Maximum of the condensate chemical potential
in a droplet under incomplete nucleus dissolution
Let us now turn to the situation in which the solubility of a
nucleus is low, and limitation (8.7) is likely to be violated at
certain nuclear sizes satisfying inequality (8.9).

Let n 0n be the number of molecules or ions in the
undissolved spherical nuclear residue in a droplet, and R 0n be
the radius of this residue. Then, one obtains

n 0n �
4pR 0n

3

3vn
: �8:10�

Accordingly, the number n of the condensate molecules in the
droplet can be represented as

n � 4p�R 3 ÿ R 0n
3�

3va
: �8:11�

As before, the quantity va, the surface tension g, and
disjoining pressure parameters in the liquid film around the
nucleus in the case of dilute nuclear matter solution are
assumed to be the same as in a pure condensate.

By virtue of formulas (8.6), (8.10), and (8.11), the relative
concentration of the solution in a droplet can be written in the
form

x � va
vn

R 3
n ÿ R 0n

3

R 3 ÿ R 0n
3
: �8:12�

It has been shown in the preceding section that the concentra-
tion of the solution in a droplet may be regarded as equivalent
to the equilibrium concentration at the nuclear residue
surface (at least on examination when condensation on an
incompletely dissolved nucleus begins to proceed through
barrierless mechanism). Writing formula (8.2) for the equili-
brium with the residual nucleus and taking into account Eqn
(8.12), we obtain

R 3
n ÿ R 0n

3

R 3 ÿ R 0n
3
� vn
va

x1 exp

�
2gnvn
R 0nkBT

�
: �8:13�

This relation links the radius R 0n of the residual nucleus to the
droplet radius R. The latter quantity is conveniently used
instead of n as a variable in the description of the droplet.

At the initial stage of nucleus dissolution, the chemical
potential of the condensate in the droplet is a sum of
contributions coming from three sources: capillary pressure,
osmotic pressure, and disjoining pressure. In analogy to
representations (4.2) and (6.2), it can be written for a dilute
solution in the droplet that

bR � ÿx� 2gva
RkBT

ÿ vaP
kBT

: �8:14�

Bearing in mind, in the first place, aqueous solutions and
other strongly structured liquids, we shall use for the
disjoining pressure of solution film an approximation ensu-
ing from the exponential asymptotics (6.13) (in the film
thickness h � Rÿ R 0n) of the work of wetting of a nucleus. It
will be shown below that in the interval of droplet radius �R�
variation important for the theory the following inequality is
fulfilled:

R4 h : �8:15�
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In other words, the filmmay be regarded as flat. In agreement
with formulas (6.5) and (6.13), one obtains

P � K exp

�
ÿ h

l

�
; �8:16�

where parameters K and l are considered to be empirical.
The qualitative dependence on R of the condensate

chemical potential bR in the droplet and contributions to it
from osmotic, capillary and disjoining pressures are depicted
in Fig. 7 by the solid and dashed (1, 2, and 3) lines,
respectively. The point of inflection of the solid line and
dashed line 1 partitions the regions of incomplete and
complete nucleus dissolution in the droplet (there is no
contribution of the disjoining pressure to bR in the complete
dissolution region). Which of the two maxima (tentatively
depicted in Fig. 7) of the condensate chemical potential bR is
the highest constitutes the subject-matter of the forthcoming
discussion.

By detailing the equation�
qbR
qR

�����
R�R0

� 0 �8:17�

which determines the location of chemical potential maxima
on the R-axis we find, taking into account formulas (8.14),
(8.12), (8.13) and (8.16), that��

2x1gnvn
R 0n

2
exp

�
2gnvn
R 0nkBT

�
ÿ vaK

l
exp

�
ÿ h

l

��
qR 0n
qR

ÿ 2gva
R 2
� vaK

l
exp

�
ÿ h

l

�������
R�R0

� 0 : �8:18�

The condition xn 5 1 of poor nucleus solubility can be
written, by virtue of relation (8.2), in the form

x1 exp

�
2gnvn
R 0nkBT

�
5 1 : �8:19�

Differentiation of relationship (8.13) with respect toR, taking
into consideration inequality (8.19), leads to

qR 0n
qR
� ÿx1 vnR

2

vaR 0n
2
exp

�
2gnvn
R 0nkBT

�
: �8:20�

Taking into account the approximate equality

R 0n � R ; �8:21�
which ensues from Eqn (8.15), we arrive at the inequality���� qR 0nqR

����5 1 : �8:22�

It can be seen directly from formulas (8.13) and (8.19) that
the approximate equality

R 0n � Rn �8:23�

is fulfilled with a much higher accuracy than the approximate
equality (8.21). The physical reason for this consists in that
the film thickness and the droplet radius at a low concentra-
tion of the solution are largely determined by an inflow of
matter into the film from the vapor rather than from the
nucleus. This reason also makes the weak influence of the
degree of nucleus dissolution on variations of the solution
concentration understandable.

It follows from inequality (8.22) that the item with
derivative qR 0n=qR plays no important role in Eqn (8.18). If
this item is neglected and approximate equality (8.23) taken
into account, it becomes clear that the film thickness h0 for the
maximum chemical potential of the condensate in the region
of incomplete nucleus dissolution in a droplet is given by

h0 � l ln

�
KR 2

n

2lg

�
: �8:24�

The last relation indicates that at large condensation
nucleus radii, Rn 4 l, of considerable practical interest, such
that ensure condensation at low vapor supersaturations, one
has Rn 4 h0. This inequality, in conjunction with formulas
(8.21) and (8.22), justifies inequality (8.15) at the point
corresponding to the maximum of the condensate chemical
potential and, consequently, in the neighborhood of this
point, important for the theory. Moreover, this inequality
justifies the use of the Ostwald ±Freundlich formula (8.2)
inapplicable to very small nuclei.

According to Eqns (8.14), (8.24), (8.16), (8.12), (8.13),
(8.21), and (8.23), the maximum chemical potential bR0

of the
condensate in the region of incomplete nucleus dissolution in
a droplet is

bR0
� ÿx1 exp

�
2gnvn
RnkBT

�
� 2gva
RnkBT

ÿ 2gval
R 2

nkBT
: �8:25�

To conclude, if the solubility x1 of a macroscopic nucleus
material is so low that inequality (8.7) fails to be fulfilled, the
largest maximum of the condensate chemical potential (in the
incomplete nucleus dissolution region) has coordinate
Rn � h0 [see relation (8.24)] on the droplet size R-axis. This
maximum is defined by formula (8.25). Accordingly, the
vapor threshold chemical potential for barrierless nucleation
is determined by the right-hand side of Eqn (8.25). In this
case, barrier-assisted nucleation occurs in the prethreshold
region of vapor metastability close to the threshold value bR0

.
Quantities ne, nc, Dne, Dnc, and DF required by barrier
condensation kinetics can be easily found from formulas of
Section 4.2 with the help of Eqns (8.14), (8.12), (8.16), (8.24),
and (8.25). The nucleation kinetics in the case of gradual
formation of the metastable vapor state are described by

3

1

2

bR

R

Rn
0

Figure 7. Dependence of the condensate chemical potential bR (solid line)

and contributions to it by osmotic (curve 1), capillary (curve 2), and

disjoining (curve 3) pressures on the droplet radius R.
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formulas given in Sections 7.1 ± 7.4, where the quantity n0 is
found for the droplet radius R0 � Rn � h0, bth � bR0

, and the
quantity p0 is determined fromEqns (6.36) and (8.14) with the
use of formulas of this section. When inequality (8.7) is
fulfilled, the highest maximum of the condensate chemical
potential has coordinate n0 [see Eqn (4.3)] in the region of
complete nucleus dissolution on the droplet size n-axis. This
maximum is defined by formula (4.5). Accordingly, the vapor
threshold chemical potential is determined by the right-hand
side of Eqn (4.5). In this case, quantities required by barrier
condensation kinetics have been found in Section 4.2 and
nucleation kinetics for the gradual vapor metastable state
formation described in Section 5.

8.3 Accounting for an insoluble nucleus component
In the Earth's atmosphere, condensation nuclei contain
insoluble components, besides soluble ones. This is especially
true of nuclei containing surfactants formed at the surface of
insoluble aerosol particles in photochemical reactions pro-
ceeded in the atmosphere [49, 50]. Let us consider the role of
insoluble nucleus components in the process of nucleation.

Assume that an insoluble nuclear residue of radius Rnn

consists of nnn molecules of a substance practically insoluble
in the condensate:

nnn � 4p
3vnn

R 3
nn ; �8:26�

where vnn is the volume of molecules in the insoluble nuclear
residue. The number of molecules of the soluble nucleus
component is denoted by nns. Evidently, the results of
previous sections may be safely used if nns 4 nnn. A more
interesting situation occurs at nns 9nnn.

Assuming that the solution in a droplet is diluted in the
region of complete dissolution of the surface-inactive soluble
nucleus component, we have

bn � ÿ nns
n
� 2gva
RkBT

; �8:27�

where the relationship between the droplet radius R and the
number of condensate molecules n in the droplet is given by
formula (8.11) at R 0n � Rnn, and the surface tension g of the
droplet practically coincides with that of the pure solvent
droplet. The coordinate R0 of the maximum chemical
potential bn on the R-axis is determined, taking into account
Eqns (8.27), (2.25), and (2.29), from the solution of the cubic
equation

R0

�
1ÿ R 3

nn

R 3
0

�
� 3

�
3va
4p

�1=3�nns
2a

�1=2

: �8:28�

If the strong inequality

va
vnn

�
9nns
2a

�3=2

4 nnn �8:29�

is fulfilled, relations (8.28) and (8.26) give R0 4Rnn. For n0
and �bn�max, formulas (4.3) and (4.5) are obtained, respec-
tively, in which, however, nn is replaced by nns. It is easy to see
that the strong inequality (8.29) is compatible with the
condition nns 9nnn if nns satisfies the condition

n 1=2ns 4
vnn
va

�
2a

9

�3=2

: �8:30�

Provided this condition is fulfilled, the solution concentration
nns=n in the droplet, corresponding to the maximum chemical
potential of the condensate, is much smaller than unity as was
suggested when equality (8.27) was used to find the maximum
of bn.

The same line of reasoning as in Section 8.1 leads to the
conclusion that the sufficient condition of validity of
nucleation thermodynamics in the case of complete dissolu-
tion of a nucleus with the initial radius Rn in the droplet has
the form

x1 >
2gva

RnkBT
�8:31�

(evidently, the quantity x1 characterizes here only the
solubility of the soluble nucleus component). When condi-
tions (8.29) ± (8.31) are satisfied, the thermodynamics and
kinetics of nucleation on nuclei containing insoluble compo-
nents are described in the same way as in the case of
completely soluble nuclei, with the sole exception that the
total number of molecules nn in the nucleus in all formulas
should be substituted by the number of molecules nns of the
soluble component.

When (8.31) is fulfilled while nns decreases or nnn increases,
the following strong inequality opposite to Eqn (8.29) is
satisfied:�

va
vnn

�1=3�nns
2a

�1=2

5 n 1=3nn : �8:32�

It follows from Eqn (8.28) that under these conditions

R0 � Rnn �
�
3va
4p

�1=3�nns
2a

�1=2

; �8:33�

nns
n0
�
�
va
vnn

�2=3�
2a

9

�1=2 n 1=2ns

n 2=3nn

;
nns
n0

5 1 : �8:34�

Then, the maximum of the condensate chemical potential is
estimated as

�bn�max �
2gva

RnnkBT
: �8:35�

This relation holds even if the surface of an insoluble nuclear
residue is not readily wettable. Therefore, even a relatively
small number nns of the soluble component molecules can
provide effective wetting of condensation nuclei containing
an insoluble residue and barrierless nucleation on such nuclei.

9. Conclusions

The main results of recent theoretical studies on heteroge-
neous nucleation presented in this review demonstrate the
possibility of constructing an adequate quantitative descrip-
tion of this complicated and varied phenomenon. The
elucidation of universal laws of kinetics and thermody-
namics of barrier and barrierless heterogeneous nucleation
for representative types of condensation centers opens new
prospects for both experiments on heterogeneous nucleation
and practical applications of its theory.

In the present review, the classical scheme for the
construction of the nucleation theory has been adopted in
which the thermodynamics of new phase embryos is
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employed to calculate the key kinetic characteristics of
nucleation under conditions of gradual formation of the
initial phase metastable state. Special attention was given to
the formulation and control of self-consistency of the
usability conditions for all thermodynamic and kinetic
elements of the theory. We also placed great emphasis on
the discussion of the peculiarities of the thermodynamics and
kinetics of heterogeneous nucleation on condensation centers
of different nature.

A number of important issues related to the theory of the
phenomenon under consideration remained beyond the scope
of the review. They include nucleation in binary and multi-
component vapors, nucleation in the presence of several types
of nuclei in a vapor ± gas medium, nucleation on charged
soluble nuclei whose matter dissociates upon dissolution,
specific kinetic features of nucleation on incompletely wetted
nuclei, etc. Many interesting problems await further study.

It seems that an interest in barrier nucleation on
macroscopic wettable nuclei has long been suppressed by the
absence of a kinetic theory of nucleation under conditions of
gradual formation of metastability, which is almost invari-
ably associated with barrier nucleation. Despite the obvious
fact that the conditions for the gradual formation of
metastable states are widespread both in nature and engineer-
ing, no special nucleation experiments have thus far been
undertaken under such conditions. This accounts for the
absence of the discussion of experimental findings in this
review. The authors hope that its publication will give an
incentive to relevant experimental studies.

This work was supported by the Competition Center for
Basic Natural Sciences of the RF Ministry of Education
(grant 97-0-14.2-31) and the Programme `Universities of
Russia Ð Basic Research' (project No. 992809).
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