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Abstract - Strict relationships have been established between the experimentally measurable thermodynamic 
parameters that are necessary in order to describe the effects of the condensation kinetics of a supersaturated vapor 
on the soluble nuclei of a surfactant. These expressions are not restricted to a particular form of adsorption iso­
therm for the matter comprising a nucleus on the surface of a nucleating droplet Using the relationships obtained, 
an algorithm is formulated for the calculation of the thermodynamic characteristics of the condensation kinetics 
as functions of the external parameters involved in the condensation problem. This algorithm is employed for the 
construction of asymptotic thermodynamic characteristics in two limiting cases: (i) very low coverage of the sur­
face of a droplet by adsorbed matter comprising nuclei and (ii) virtually complete adsorption of all the matter com­
prising the nuclei on the surface of a droplet It is shown that both limiting cases can be encountered in practice. 

INTRODUCTION 

The kinetic theory serves as a final link between the­
oretical and experimental investigations of phase trans­
formations. Naturally, the development of the kinetic 
theory is based on data provided by the thermodynamic 
theory of phase transformation. 

A characteristic feature of the heterogeneous nucle-
ation of droplets from a supersaturated vapor on the 
condensation nuclei (which can be either soluble or 
insoluble in the droplets) is the presence of a maximum 
on the curve of the chemical potential of the condensate 
(i.e., of the substance formed from the vapor) versus the 
droplet size [1, 2]. This maximum determines the 
threshold value of the chemical potential of the vapor 
and, hence, the threshold value for supersaturation of 
the vapor. Above this value, the work of the droplet for­
mation on the nucleus monotonically decreases with 
increasing droplet size and, therefore, the vapor con­
denses on the nuclei without surmounting the activation 
barrier. Below the threshold value of the chemical 
potential of vapor, the work of the droplet formation 
does not monotonically decrease with an increase in the 
droplet size, but rather exhibits a potential minimum 
and a potential maximum. In this case, the condensa­
tion of vapor on the nuclei requires an activation energy 
determined by the potential drop between the maxi­
mum and the minimum, which is essentially the work of 
the droplet formation on the nucleus. For the macro­
scopic dimensions of the condensation nuclei (which are 
of practical significance and will be dealt with further), 
the activation energy grows rapidly as the chemical 
potential of vapor decreases below the threshold value. 

This circumstance allows us to establish [1, 3] an 
extremely narrow subthreshold range of values of the 

chemical potential of the vapor (lying slightly below 
the threshold) in which the activation barrier for con­
densation is significant, yet can be surmounted. In this 
range, the barrier mechanism of heterogeneous conden­
sation is of real importance, and (as was shown in [1,3]) 
the kinetic theory of heterogeneous condensation is of 
principal interest. 

This theory was developed earlier in a general 
form [3], independent of the magnitude (and sign) of 
the effect of adsorption of the matter comprising a 
nucleus on the droplet surface. Within the framework of 
this theory, the thermodynamics must provide, in addi­
tion to the threshold chemical potential of the vapor, data 
on the work of heterogeneous droplet formation, that is, 
on the position and halfwidth of the potential minimum 
and maximum, and the activation energy (i.e., the poten­
tial drop between maximum and minimum). 

The present work is devoted to establishing the key 
thermodynamic characteristics of the condensation 
kinetics in the complicated case of surfactant nuclei 
soluble in the droplets. Once these characteristics are 
known, one may readily determine all the other experi­
mentally measurable thermodynamic parameters that 
are necessary for the description of the condensation 
kinetics of a supersaturated vapor in the subthreshold 
range of the chemical potential of the vapor. 

The investigation will not be restricted to a particu­
lar form of adsorption isotherm of the matter compris­
ing a nucleus on the surface of a droplet. Nor will we 
consider a particular form of the two-dimensional 
equation of the state of the adlayer of this substance on 
the droplet surface, which is related to the isotherm by 
the Gibbs adsorption equation. The approach used in 
this work is based on the concepts formulated in [4]. 
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94 SHCHEKIN et al. 

In the case of surface-inactive substances, a similar 
exhaustive (i.e., complete from the standpoint of the 
condensation kinetics) treatment was made in [1]. 
As for the surface-active nuclei, earlier [5 - 7] thermo­
dynamic results referred to a single, albeit principal, 
thermodynamic characteristic of the condensation 
kinetics, i.e., the threshold value of the chemical poten­
tial of vapor. Earlier results were additionally restricted 
by assuming a constant value of adsorption [6], or the 
applicability of the Langmuir adsorption isotherm [7]. 

SUBTHRESHOLD REGION 
OF VAPOR METASTABILITY 

It was shown earlier [6 - 9] that the chemical poten­
tial of condensate in a droplet, as a function of the size 
of that droplet that nucleates on the soluble nucleus of 
the surfactant, may exhibit several maxima rather than 
a single one. The nature of these maxima is related to 
the properties of the surfactant monolayer on the drop­
let surface, the micelle formation in the bulk of the 
droplet, or the effect of the surface forces of the nucleus 
wfien it is incompletely dissolved in the droplet. 
The threshold value of the chemical potential of vapor 
is determined by the greatest maximum. 

In this work, consideration is restricted to the case 
when the greatest maximum falls within the range of 
a completely dissolved nucleus, which leads to the for­
mation of molecular (rather than micellar) surfactant 
solution inside the droplet. Note that even in this case 
the chemical potential of condensate may exhibit more 
than one maximum. 

In the following, bv will denote the chemical poten­
tial of condensate in the droplet (considered as a func­
tion of the number v of condensate molecules), and b, 

the chemical potential of vapor. The chemical poten­
tials 6V and b are expressed in thermal energy units kT 
(where k is the Boltzmann constant and 2" is the temper­
ature of vapor and droplet) and are measured from 
a level corresponding to the equilibrium between the 
vapor and the condensed liquid, provided that a flat 
contact surface is present. 

The threshold value b^ of the chemical potential of 
vapor b is 

b& = max(fcv)0, (1) 
where the subscript 0 indicates the extrema of the 
chemical potential of condensate, and the symbol max 
indicates the greatest extremum (naturally, the maxi­
mum). In the following, the quantities referring to the 
greatest extremum are indicated by the subscript thr. 
The inclusion of minima as well as maxima in the class 
of extrema allows the thermodynamic pattern of heter­
ogeneous condensation to be described completely. 

We will consider, as in [1,3], only an extremely nar­
row range of the chemical potential of vapor (lying 
slightly below the b^ level): 

* = y i - £ ) , (2) 

Chemical potential of condensate bv and the work of droplet 
formation F versus the number of condensate molecules v. 

where e > 0 and e < 1. For simplicity, we assume that 
this domain (called the subthreshold region of vapor 
metastability) lies above all the other extrema (except b^) 
of the chemical potential of condensate bv. In cases 
where e is sufficiently small, this assumption is 
not rigid. 

According to the general thermodynamic relation­
ship [10], for the work F of droplet formation 
(expressed, like bv and b, in thermal units kT), 

dF/dv = bv-b. (3) 

The above assumption implies that the subthreshold 
region of vapor metastability contains a single mini­
mum and a single maximum on the F versus v plot. 
Indeed, the equation 

bv = b, (4) 
which, according to (3), determines the extrema of the 
work F, has only two roots in the subthreshold region. 
These roots, ve and vc, correspond to the minimum and 
maximum of the work F, respectively. The point of 
inflection for the function F occurs between the points 
of extrema. According to equation (3) and the condition 
(dbjdv)^ = 0, the inflection point coincides with v = v^ 
corresponding to the maximum bv of the chemical 
potential of condensate. Apparently, the v,,,, value is 
independent (like bv and unlike v,, and vc) of the chem­
ical potential of the vapor b. 

The plot of bv on v and the related dependence of F 
on v [following from the thermodynamic relation (3)] 
for the subthreshold region of vapor metastability are 
depicted in the figure. The plots refer to the compli­
cated case where bv has more than one extremum 
(specifically, two maxima separated by a minimum). 
The difference AF between the maximum and mini-
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THERMODYNAMIC PRINCIPLES OF CONDENSATION KINETICS 95 

mum work F at the points v = vc and v = ve determines 
the activation energy for condensation AF. 

In the subthreshold region of vapor metastability, 
the activation energy for condensation can be deter­
mined as a function of e. To this end, similar to the 
method employed in [1], we will consider a parabolic 
approximation for bv in the vicinity of the point v = v^: 

*v = 
1 

+ 2 a7 (v -v t h r ) 
thr 

which is valid provided that 

(v -v t h r ) 
d3K fd\ 

/ -
8v3;thr w thr 

< 1. 

(5) 

(6) 

Substituting formulas (2) and (5) into (4), solving this 
equation, and taking into account that (<P-bv/dv2)fo < 0, 
we obtain 

ve = v t h r - ( 2 £ i t h r / | 3 V 3 v 2 | t h r ) 
1/2 

v, = v t h r + ( 2 e 6 t h r / | 3 X / a v ' L ) 
1/2 

(7) 

I thr'' 

By the same token, substituting (2) and (5) into (3), 
integrating the resulting equation with respect to v from 
v = ve to v = vc, and using formulas (7), we arrive at the 
final expression for the activation energy AF: 

AC ^ V2.V2 
AF = x£ b thr [2/\d%/dv\J 

1/2 
(8) 

On substituting the explicit expressions for b^ and 
ffibv/dv2),^ for the case of soluble nuclei of surface-
inactive substances, expressions (7) and (8) are trans­
formed into equations (17) and (28) of [1]. 

The condition that implies the activation barrier for 
condensation is significant but can still be practically 
surmounted appears as 

3 s AF s 30. (9) 

The double inequality (9) with AF, given by equa­
tion (8), determines, according to equation (2), the sub­
threshold region of vapor metastability. In this region, 
the barrier mechanism of heterogeneous condensation 
is of real importance. 

For condition (6) to be valid in the entire interval 
ve < v < vc (where the activation energy AF is deter­
mined), it is necessary, according to equation (7), that 

l (2tbtbIr ?b thr 

3v3 
/ 

thr 

d \ 

3v2 
« 1. (10) 

thr 

In addition to (10), another important condition is 

£ < Ĉ thr - (Ud^thr [(Wo < *dJ- 0 D 
This inequality ensures the validity of the assumption 
that the subthreshold region of vapor metastability lies 
above all other extrema (except for the greatest, b^) 

of the chemical potential of condensate bv. This assump­
tion is required for the applicability of formula (8). 

Inequality (9) determines [taking into account equa­
tion (8)] the lower and upper limits of variation of the 
quantity e in the subthreshold region of vapor metasta­
bility. For the macroscopic dimensions of the conden­
sation nuclei which are of practical importance, the 
upper limit is small enough to be compatible with the 
conditions (10) and e < 1. According to (11), only an 
extremely narrow range of the external parameters of 
the condensation problem has to be excluded from con­
sideration, in which another extremum bv of the chem­
ical potential is very close to the greatest maximum. 
The condition e <̂  1 is indicative of an extremely small 
width of the subthreshold region of vapor metastability. 
For the macroscopic dimensions of the condensation 
nuclei, the lower limit of variation of the quantity e in 
the subthreshold region of vapor metastability is com­
parable, by order of magnitude, with the upper limit. 
This circumstance shows that the subthreshold region 
lies only slightly below b^ 

CHEMICAL POTENTIAL OF CONDENSATE 

Now we will obtain expressions for the chemical 
potential of condensate bv and the first and second 
derivatives of bv with respect to v (the number of con­
densate molecules). 

The chemical potential of the condensate in a drop­
let comprising a solution of v molecules of condensate 
and v„ molecules or ions of the surfactant nucleus 
(initially present in the vapor phase and eventually 
completely dissolved in the droplet) [1,5] can be writ­
ten in the form 

bv = -x + (2/3)av~m, (12) 

where x is the relative surfactant concentration (i.e., the 
surfactant: solvent molar ratio) in the bulk phase of the 
droplet, a = (36nv2)mo/kT is the dimensionless sur­
face tension of the solution (depending on the concen­
tration x), a is the surface tension of the solution, and v, 
is the molar volume of the condensate. The first term in 
equation (12) represents the contribution of osmotic 
pressure (the same as that for a solution with a flat 
surface) to the chemical potential of the condensate. 
The second term accounts for the capillary pressure of 
the curved droplet surface. 

The concentration x entering into equation (12) can 
be determined from the balance equation for the matter 
comprising the nucleus dissolved in the droplet: 

x = v»v_1 - sv~m, (13) 

where s = (36nvf)l/iT„ is the dimensionless value of 
adsorption and F„ is the relative adsorption of the dis­
solved matter comprising the nucleus on the droplet 
surface. The quantity sv2^ represents the total number 
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of molecules or ions of the nucleus adsorbed on the 
droplet surface. Equation (12) is valid under the condi­
tion of a dilute solution, x < 1, which always holds for 
the macroscopic dimensions of the condensation nuclei. 

The possibility of two-dimensional phase transi­
tions in the adsorption layers of soluble surfactants ljas 
been reliably established [11]. Taking this fact into 
account, we may ascertain that, in general, the adsorp­
tion s is not a single-valued function of the concentra­
tion x. At the same time, the concentration x is a func­
tion of the adsorption s that always has a single value. 
Therefore, we select adsorption, rather than concentra­
tion, as a variable describing the state of the droplet. 

At a fixed temperature and small concentration x, 
the Gibbs adsorption equation yields 

da/ds = -d\nx/d\ns. (14) 

This equation determines a as a single-valued func­
tion of s for the given x(s) or, vice versa, determines x 
as'a single-valued function of s for the given a(s). 

Upon differentiating (12) with respect to v, using 
equations (14), and taking into account that 

dx/d\= (dx/ds)ds/dv, 
da/dv = (da/ds)ds/dv, 

(15) 

we obtain 

dbv dads ( 2 _1/i x 
~dv ~ ds dv y 3 5 

2 -4/3 
(16) 

Differentiating (13) with respect to v and using for­
mulas (14) and (15), we have 

ds V V - 2 - ( 1 / 3 ) J V ^ 

dv v- l /3 - (x/s) da/ds 
(17) 

Equations (16) and (17) determine the first deriva­
tive of bv with respect to v. 

In order to obtain the second derivative of bv, we use 
equations (14) and (15) and differentiate expression (16) 
with respect to v: 

d\ 
a7 

-1/3 3 V 8 M da_?s_ 
~a7av* 

da ds 
d~sdv 

Jv-^ + 4n + 

a* v av 
da \ds 
ds J3 v 

8 

27 

(18) 
-7/3 

Then, we differentiate equation (17) with respect to v: 

a^ _ i 
3v2 " v-l/3-(x/s)da/ds\ 3 ' " ' 

2 -3 ~v_v 

3 V I1 2 s ds Y Jdv 
.V*»)*L (19) 

ds2 -- 1 + 
da 

~d~7 
da 
Ts 

ds 

~dv 
Equation (18), together with expressions (17) and 

(19), determines the second derivative of &v with 
respect to v. 

As is seen from equations (16) - (19), the particular 
values of the first and second derivatives of by with 
respect to v depend on the two-dimensional equation of 
the state of the adsorption layer, a = a(s). The thermo­
dynamic formulas (12) - (14) and (16) - (19) provide an 
exhaustive solution of the problem formulated in the 
beginning of this section. 

In order to obtain the threshold value fcto of the 
chemical potential of the vapor and the activation 
energy for condensation AF from equation (8), we must 
know the values of bv and d2^ Idv2 at v = v^. The quan­
tity v,^ is a root of the equation dbv/dv = 0. Unfortu­
nately, this equation is very complicated, as can be seen 
from expressions (16) and (17). Thus, for an arbitrary 
parameter v„ of the nucleus and an arbitrary adsorption 
isotherm, it is impossible to obtain analytical expres­
sions for Vto as a function of v„ or for the functional of 
the adsorption isotherm x = x(s). 

On the basis of strict thermodynamic results 
obtained above, we can formulate an algorithm for the 
calculation of the thermodynamic characteristics b^, 
Vfo, (dPbv/dv2)^, and AF as functions of the external 
parameters of the condensation problem. These charac­
teristics are the key values for die entire condensation 
kinetics. The derivative (d^by/dv2)^ is included in the 
set of characteristics not only because it enters into for­
mula (8) for AF. Once this derivative is known, we can 
readily find from equation (7) the coordinates ve and vc 
for the positions of the minimum and maximum of the 
work F on the v axis. Then, we can use equations (3) 

and (5) to calculate the derivatives (d F/dv2) I v = v and 
€ 

(d2F/d\2) lv = v , which determine (see formulas (31) 
in [1]) the halfwidths Av, and Avc of the potential well 
and the potential maximum, respectively, for the work 
F plotted against v. Note that the conditions of applica­
bility of this method for the determination of Ave and 
Avc (see equation (32) in [1]) and the corresponding 
restriction from below for AF (see equation (34) in [1]) 
are still valid. Therefore, these conditions are satisfied 
in the subthreshold region of vapor metastability, 
whose definition in [1] coincides with inequality (9). 
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Below we will formulate the algorithm for the cal­
culation of the thermodynamic characteristics b^, v to, 
(d2bv/dv2)fy, and AF of the condensation kinetics. 
The algorithm is not restricted to a particular form of 
adsorption isotherm. 

The substitution of (24) and (25) into (18) yields 

Uv2 

9/2 

( S 

V Z 

-1/2 

27(3 -z ) : 
z\\-z) 

ALGORITHM FOR THE CALCULATION 
OF THERMODYNAMIC CHARACTERISTICS 

OF THE CONDENSATION KINETICS 

First, we will derive a number of strict thermody­
namic relations. In what follows, we consider the state 
of the droplet corresponding to an extremum of the chem­
ical potential of condensate, that is, at v=v 0 = 0. Now we 
introduce the quantity 

z = svf/\n ( 0 S z < l ) , (20) 

which represents the adsorbed fraction of the matter com­
prising the nucleus at the point of extremum of the chem­
ical potential of condensate. For simplicity, we will omit 
the subscript 0, which indicates that the adsorption s (and 
the quantities used below, such as the surface tension a, its 
derivative with respect to s, and the concentration x) refers 
to the extremum of the chemical potential of condensate. 

Using the expressions (13), (16), (17), and (20), the 
equation (dbv/cN)0 = 0, which determines the extrema 
of the chemical potential of condensate, can be written 
in the form: 

[2{als)z{\ - z) - (3 - z)2]da/ds = Hals)?. (21) 

Note that, taking (14) into account, this relation is 
equivalent to equation (40) from [5]. 

Equations (12), (13), and (20) give 

(»v)o = 

in 
.-1/2 2az 

3s 
+ z-U, 

.,1/2 / V2 / \ / i \ / 3/2 
V„ = (S /X) (1 -z)/Z . 

(22) 

(23) 
Expressing the derivative da/ds through z by using 

formula (21), taking into account (13) and (20), and sub­
stituting these expressions into (17) and (19), we obtain: 

ds 

av~ 

aV 
3v2. 

s ^^in2(a/s)z(l-z)-(3~z)2 

3 ( 3 - z ) 
(24) 

s V* _ 3 2 ( a / 5 ) z ( l - z ) - ( 3 - z ) 2 

V. r 
9 ( 3 - z V 

x^ 2 ( 6 - z ) +2 — : 4 

1 -z 

5 ( 3 - z ) 

2(a/s) ( l - z ) z - ( 3 - z ) J 

3 -2 

* 2 ( 3 - z ) 2 

J J a ? 

(25) 

4 — z ( l - z ) ( 3 - z ) ( 6 + z) 
w J (26) 

- 6 - ( 3 - z ) 2 ( z 2 + 4 z - 3 ) 
5 

The algorithm for the calculation of the thermody­
namic characteristics b^, v^ , (d^/dv2) ,^, and AF as 
functions of the external parameters of the condensa­
tion problem [the parameter of the nucleus v„ and 
either the form of the adsorption isotherm x = x(s) or 
the equation of the state of the adsorption layer a = a(s)] 
is as follows. 

First, by integrating the Gibbs adsorption equation (14) 
with the given function x(s) [or a(s)], we obtain the 
unknown function a(s) [or x(s)]. The resulting function 
a(s) is substituted into equation (21), which determines 
the extrema of the chemical potential of condensate. 
The expression is considered as a square equation with 
respect to z, and the function z(s) is determined (in gen­
eral terms, rather than uniquely). Then, the functions 
x(s) and z(s) are substituted into equation (23), which 
describes the balance of the matter comprising the 
nucleus that is dissolved in the droplet, and a relation 
between v„ and s is obtained. This equation is solved 
with respect to s, which yields (also in general terms) 
the function i(v„). Finally, the functions a(s), z(s), and 
s(v J are substituted into the strict thermodynamic rela­
tions (22), (20), (26), and (8). Each time, the maximum 
(bv)0 value is determined, yielding, according to (1), the 
threshold value £ to of the chemical potential of the 
vapor. Assuming that the subscripts 0 and thr are iden­
tical, we can determine all the thermodynamic charac­
teristics of the condensation kinetics as functions of the 
external parameters of the condensation problem. 

The realization of the algorithm in the general case 
involving an arbitrary parameter of the nucleus v„ and 
an arbitrary adsorption isotherm (or an arbitrary equa­
tion of the state of the adsorption layer) would obvi­
ously require numerical calculations. Nevertheless, this 
is a more efficient procedure as compared to direct 
numerical calculation of the chemical potential of 
condensate bv in the entire variation range of the param­
eter v, containing all the potential extrema. The main 
disadvantage of direct calculation consists in the inabil­
ity of this method to reveal a relatively complicated pat­
tern of the effects of all the external parameters of the 
condensation problem upon the thermodynamic char­
acteristics of the condensation kinetics. 
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The results of numerical calculation of the thermo­
dynamic characteristics of the condensation kinetics on 
soluble nuclei of a surfactant will be reported in the 
next article. 

THERMODYNAMICS OF CONDENSATION, 
UNDER CONDITIONS OF VERY LOW 

COVERAGE OF THE DROPLET SURFACE 
BY THE ADSORBED MATTER COMPRISING 

THE NUCLEUS 
The next two sections are devoted to the analysis of 

two limiting cases of the condensation on soluble nuclei 
of a surfactant, in which the thermodynamics of conden­
sation can be significantly simplified by asymptotic con­
structions. As will be shown below, both situations 
(especially the latter) may be encountered in practice. 

The first limiting case corresponds to a very low 
coverage of the droplet surface by adsorbed matter 
comprising the nucleus. This condition is expressed by 
the inequality 

slsm < 1, (27) 

where s„ is the adsorption capacity of the surfactant 
monolayer. The algorithm proposed above will be 
strictly followed in calculating the thermodynamic 
characteristics of the condensation kinetics, until the 
entire calculation has been completed. 

If inequality (27) is satisfied, then, according to the 
Henry adsorption law, 

x = ̂ / s . , (28) 

where xa is the characteristic concentration of the solu­
tion such that the ratio xjs„ equals the Henry constant. 
Equation (14) also implies 

da/ds = -l. (29) 

As a rule, the ratio sja (where a is the dimension-
less surface tension of the pure condensate) is well 
below unity. Therefore, condition (27) is supplemented 
with inequality 

si a < 1. (30) 

Integrating equation (29) yields, to within a first-
order correction with respect to the small parameter 
si a in the left-hand part of inequality (30), 

a =5(1 -si a). (31) 

On substituting formulas (29) and (31) into equa­
tion (21), taking into account the conditions given by 
inequalities (30), and 

z « 1 (32) 
[as shown below, the latter inequality follows from (30)], 
and solving the resulting equation using the perturba­
tion technique with respect to z, we obtain 

z = (9s/2a)(l - Isla). (33) 

Note that this result is valid with an accuracy as high as 
that in (31). According to (33), z is of the same small 

order of magnitude as the parameter si a in the left-
hand part of equation (30). This shows evidence that 
inequality (32) holds with the same strength as (30). 

On substituting formulas (28) and (33) into (23), we 
arrive at an equation relating v„ and s. Solving this 
equation with respect to s, using the perturbation tech­
nique, yields in the principal order [provided that ine­
qualities (30) and (32) are valid], with respect to the 
small parameter in the left-hand side of (30), 

s = {2al9YnsJxa\
,J

n 
\n (34) 

Using equation (34), we can readily pass from the 
asymptotics in adsorption s to the asymptotics with 
respect to the number v„ of molecules or ions of the 
nucleus. Inequality (27) can be written in the form of 
the restriction below for v„: 

.VI v ~ > (2al9)mlxa. (35) 

The solutions (33) and (34) to equations (21) and 
(23) are unique. According to (22), this implies the 
uniqueness of the extremum value (bv)0 of the chemical 
potential bv, which is evidently the maximum value. 
Then condition (11) can be omitted and the subscript 0 
can be replaced by thr. Equation (26) can be written as 

U2 
, , , ~Jn ,.~7/2 
4 ( s \ av_ 

27 ZJ (3-zY 

2 3 

(3-z)(3 + 2z) 

\s J ( 3 - z ) (da/ds)2V ds J sZ [ s ) ( 3 - z ) (da/ds)' 

+ 2 
3 

z s 
d2a (36) 

s J ( 3 - z ) (da/ds)3ds2 

On substituting (31) - (34) into (22), (20), (36), 
and (8), and taking into account that (fcv)thr = ^±p w e 

eventually obtain: 

V2 

*,„, = 21—1 4 . 'thr 

V<hr = 

.1/2 '•J 
la 

1/2 

• * « . 

, . i / 2 
, (37) 

9 ^ 3/2 

2a j 

.3^2 1 -
. 0 - .1/2 

2 ( 2a \ s. 
3 I 9 ) xvxn 

, (38) 

^a7 thr 

- .9/2 

H 9 J .7/2 

, o - - 1/2 
4 ( 2a \ s„ 
3{ 9 

1/2 

AF = 
16e^v. 

-1/2 
1 -

5 (2a\ *~ 
1 2 V 9 x v1^ 

(39) 

(40) 
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Expressions (37) - (40) give the thermodynamic 
characteristics of the condensation kinetics as functions 
of the external parameters involved in the condensation 
problem. According to (34), these expressions are 
asymptotic with respect to the small parameter si a 
entering into the left-hand part of (30). Note that these 
asymptotics are strict, despite the fact that formula <34) 
was obtained in the principal order with respect to the 
small parameter si a. This circumstance is explained by 
the fact that the quantities s and z appear in equation (20) 
and in the principal terms of (22), (23), (33), and (36) 
only as the ratio s/z. 

The domain of applicability of asymptotics (37) - (40) 
is restricted by condition (35), which is equivalent to 
inequality (27), determining the validity of the Henry 
adsorption law expressed by (28). The corrections to 
the Henry law, which are of the order of the small 
parameter s/s„ are missing from asymptotics (37) - (40). 
When the adsorption is completely neglected, asymp­
totics (37) - (40) transform into expressions derived 
in[ l ] . 
. For condition (10) to be valid within the entire sub­
threshold region of vapor metastability, as determined 
by the double inequality (9), it is necessary (according 
to (37), (39), (40), and an expression for (33^v/3v3)thr 

obtained in [1]) that v^3 > 1, which implies macro­
scopic dimensions of the condensation nuclei. For the 
values of JC,, which are much smaller than unity (which 
is typical of surfactants), this inequality is ensured with 
considerable reliability by condition (35). 

Now we will assess the degree of validity of ine­
quality (35), which is responsible for the asympto­
tics (37) - (40). The radius of the nuclei of surfactants 
encountered in practice (e.g., those occurring in the 
ambient atmosphere) is of the order 10-7 - 10"3 cm, 
which corresponds to the parameter v„ varying within 
a very wide range: 10 s v„ s 1013. For the typical values 
a = 15 and xa = 10""5, condition (35) can be written in 
the form of an approximate (rather than strong) ine­
quality: v„ a 4 x 1013. Thus, for the external parameters 
selected, asymptotics (37) - (40) correspond to the ulti­
mately large practical dimensions of surfactant nuclei. 
However, restriction (35) is highly sensitive to the 
parameter^. Because the value of this parameter in var­
ious surfactants varies within wide limits (10~5 - 10"3), 
the domain of applicability of asymptotics (37) - (40) 
may also significantly vary (from v„ a 1013 to v„ a 109). 
The value v„ a 109 includes a considerable part of the 
range 10 s v„ £ 1013, where surfactant nuclei are known 
to be encountered in practice. 

Note that asymptotics (37) - (40) are also valid in the 
case of soluble nuclei representing a surface-inactive 
substance. Although in that case the s„ value cannot be 
treated as an independent parameter in the theory, the 
ratio xa /s„ (i.e., the only form in which the quantity s„ 
enters into the asymptotics) still retains the meaning of 

the Henry constant. The sign of this constant for a solu­
tion of a surface-inactive substance is negative. For 
example, a water-soluble NaCl nucleus is characterized 
by xjs„ = -0.092 [12]. Estimation of the relative cor­
rections for adsorption in asymptotics (37) - (40) at the 
lower applicability limit (i.e., at vjjf2 = 35) yields 
values not exceeding 7.5 and 19% for b^ and AF, 
respectively. 

THERMODYNAMICS OF CONDENSATION 
UNDER CONDITIONS OF NEARLY COMPLETE 
ADSORPTION OF THE MATTER COMPRISING 
THE NUCLEUS ON THE DROPLET SURFACE 

Now we will study the second limiting case of con­
densation on soluble nuclei of a surfactant, when the 
condensation thermodynamics are also considerably 
simplified at the expense of the asymptotic construction. 
In this situation, the quantity z defined by equation (20) 
(representing the adsorbed fraction of the matter com­
prising the nucleus at the point of extremum of the 
chemical potential of condensate) falls within the 
immediate vicinity of its upper limit, equal to unity. 

Thus, the case under consideration corresponds to 
z—• l.or 

1-Z<1. (41) 

The following consideration is not restricted to a partic­
ular form of adsorption isotherm. The procedure 
strictly follows the algorithm proposed above for the 
calculation of the thermodynamic characteristics of the 
condensation kinetics. However, certain deviations 
from the algorithm will be adopted that allow it to be 
simplified. As is seen from the comparison of inequali­
ties (32) and (41), and from the fact that 0 < z < 1, the 
situation studied in this section, like that considered 
above, actually represents the extremal case. 

First, equation (14) is integrated for the given func­
tion x(s) (specified adsorption isotherm) or a(s) (speci­
fied equation of the state of the adsorption layer) to find 
the function a(s) [orx(s)]. Then, the function a(s) is sub­
stituted into equation (21). In this case, equation (21) 
is used to determine the derivative da/ds at z = 1, rather 
than to find the z value [which is known from condi­
tion (41) to almost coincide with unity]. Thus, we have 

(3a/aj), = - a , / 2 j „ (42) 

where the subscript 1 refers to the values corresponding 
to z = 1. For the known function a(s), equation (42) 
determines (even uniquely, by virtue of the inequality 
da/ds < 0, typical of surfactants in the range of mono­
layer coverages) the quantities s, and a,. For the 
known function x(s), the quantity xx is also uniquely 
determined. 

According to the algorithm for the calculation of the 
thermodynamic characteristics of the condensation 
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kinetics, this is followed by determination of the func­
tion s{\„) through equation (23). However, this proce­
dure can be omitted because, with high precision, s = Sj, 
where jj is the value determined above. Then, equa­
tion (23) with s = s: and x = xx (the latter value was 
also determined above), with high precision [by virtue 
of (41)], reduces to 

vf= <5rv*,)(i-z). (43) 

This relation allows condition (41) to be written in the 

(44) 

form of the restriction from above for v„: 

1/2 ^ 3/2 , 

The fact that the value of v„ is restricted from above 
rather than from below, as in (35), confirms that the sit­
uation studied in this section, like that considered 
above, actually represents the extremal case. 

By virtue of (41), the quantities z and s are uniquely 
determined (being virtually equal to 1 and s}, respec­
tively). According to (22), this implies the uniqueness of 
the extremum value (bv)0 of the chemical potential bv, 
which is evidently the maximum value (similar to the 
case studied in the previous section). Then, condition 
(11) can be omitted and the subscript 0 can be replaced 
by thr. For the principal order with respect to the small 
parameter given by inequality (41) (i.e., for z = 1, s = sx 
and a = ax), from (11), (20), (26), (8) for (b^ = b^ we 
eventually obtain: 

(45) , ~ 1/2 /1..1/2 

btbT = 2sx al/3vn , 

v£hr = (v /,/5])
M, 

a7 

AF = 

0 7/2 

2sj al 

thr 9v 7/2 
1-lfif^ 

3a, iVds' 

16a,e^v„ 

6 ^ x 3 5 l L 

As]fd2a\ 
-1/2 

u 

(46) 

(47) 

(48) 

Once the function a(s) is determined (or specified) and 
sx is found, the second derivative (32a/3*2)i c a n be 
considered known. Equations (45) - (48), representing 
the principal terms of asymptotics with respect to the 
small parameter 1 - z from the left-hand part of ine­
quality (41), give the thermodynamic characteristics of 
the condensation kinetics as functions of the external 
parameters involved in the condensation problem. 
As a rule, in the range of coverage of the surfactant 
monolayer, dPa/ds2 < 0 (which implies that the curve of 
the surface tension versus the adsorption is convex). 
Therefore, equations (47) and (48) ensure the inequali­
ties (B2bv /dv*)^ < 0 and AF > 0 (which are natural con­
ditions for the maximum chemical potential of conden­
sate and the activation energy, respectively). 

Now we will turn to an analysis of condition (10). 
By differentiating equations (18) and (19) with respect 
to v using equations (14) and (15), passing at v = v0 

from v0 to z with the aid of relation (20), and making 
allowance for inequality (41) while taking into account 
that subscript 0 can be replaced by thr under the condi­
tions studied, for z = 1 we obtain: 

'd b„\ 265,a, r 24 ^i 
l~Yha~l 3v3 5. 

thr 27v 

39 a, 

d2a 

ds' 

rd3a 
(49) 

As a rule, in the range of full coverage of the surfac­
tant monolayer we have d^/ds* < 0 and &a/ds3 < 0. 
According to (49), this yields ( d ^ / c l v 3 ^ > 0 (thus, the 
sign of the third derivative of bv with respect to v at 
v = Van is the opposite of the sign of the second deriva­
tive at the same point). On substituting (45), (47), and 
(49) into (10), the latter inequality reduces to 

13 (6e)1/2 , , , 
— - ^ — [1 - (24*,/13a,) (d2a/ds2), 

-(8*1/39*!) (d3a/ds3)l ] 
-3/2 

(50) 

x [ 1 - ( 4^ /3a , ) (dTa/ds*),] <1. 

Then, using equation (48), we obtain an estimate for 
e from the double inequality (9), which is valid in the 
entire subthreshold region of vapor metastability: 

E y 2 ~ ( 5 , / a I v J w [ l - (4s2 /3a,) tfa/ds2) A™. 
(51) 

According to (51), in the entire subthreshold region 
of vapor metastability, it is required that 

v f > 3.5 [1 - (24^/13aj) (d2a/ds2), 
3 ,~n . ,\i , - . 3 . - (85,/39a,) ( 3 V 3 i ) , ] 

x ] [ l - ( 4 ^ / 3 a , ) 0 2 a / 8 5 2 ) 1 ] ' 

(52) 
4/i 

in order for condition (50) (and, hence, condition [10]) 
to remain valid, and this implies a restriction from 
below for v„. 

Thus, the values of the parameter v„, which are 
admitted by the asymptotic theory for the case of nearly 
complete adsorption of the matter comprising the 
nucleus on the droplet surface [i.e., for condition (41)], 
are restricted from above and below by inequalities (44) 
and (52), respectively. 

Now we will estimate the domains of the parameter v„, 
given by inequalities (44) and (52), for the case when the 
adsorption of a soluble nucleus of a surfactant on the drop­
let is described by the Frumkin adsorption isotherm [13]. 
In the notation of this work, the isotherm has the form 

x = [xasl(s„ - s)]exp(-2xs/ s„), (53) 
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where K is the parameter of lateral interactions in the 
monolayer. On substituting expression (53) into equa­
tion (14) and accomplishing the integration, we obtain 
a two-dimensional equation for the state of the adsorp­
tion layer of the surfactant: 

a = a + U ln ( l - s/sj + K(s/sJ2]. (54) 

At K = 0, this relation is known as the van Laar equa­
tion. In the case of strong adsorption undersaturation 
[i.e., for condition (27)], expressions (53) and (54) 
transform into (28) and (31), respectively. 

Let a = 10 (mis corresponds to water as the conden­
sate at T= 273 K), s„ = 1, and xa = 10"5 (a realistic con­
dition). We also assume that K = 1.95. On one hand, this 
value is below the level K = 2 (where the Frumkin iso­
therm exhibits a phase transition in the monolayer), and 
on the other hand, it is sufficiently large to reveal the 
ultimate role of the lateral interactions. Solving equa­
tion (42) with a given by relation (54), we obtain 
4, = 0.886 (i.e., adsorption on the droplet surface is 
close to saturation) and ax = 9.36. In this case, equa­
tion (53) yields x, = 2.45 x 10"*. Then, condition (44) 

reduces to v1/2 < 3.4 x 105. This can be written in the 
n 

form of an approximate (rather than strong) inequality: 
vr3 - 1 0 3 . 

Using relation (54) and substituting the sx and ax 

values from above into the right-hand part of inequal­
ity (52), the latter condition is reduced to v™ > 6, 
which, in effect, is valid even at v^3 a 10. 

In concluding, note that inequalities (44) and (52) 
are reliably compatible. Their combination determines 
the interval of values for the parameter v„, in which the 

asymptotics (45) - (48) are valid: 10 s v„w s 103 or 
103 s v„ s 109. This interval contains a rather wide (and 
important) part of the entire range (10 =s v„ =s 1013 ) of 
the dimensions of surfactant nuclei encountered in 
practice. 

Note that asymptotics (45) - (48) and the principal 
terms of asymptotics (37) - (40) depend in the same 

manner on v„ (being proportional to v"1^, v3^2, v~7/7, 
and v„, respectively), although the two groups of 
asymptotics refer to the opposite extremal cases. 
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