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Substaruiation is provided for the possibility of barrier-less nucleation of a drop in supersaturated vapor on 
nuclei of surface-inactive substances soluble in the drop. For the conditions of practical interests — when 
heterogeneous phase transformation occurs with low levels ofsupersafuration of the vapor — a determination 
is made of all of the thermodynamic characteristics of heterogeneous nucleation that arc needed for kinetics 
and are manifest in experiments: the threshold chemical potential of the vapor at which barrier-less 
heterogeneous nucleation becomes possible; the position and half-width of the potential well and potential hilt 
of the nvrk of heterogeneous drop formation; the activation energy for heterogeneous condensation, 
determined by the gradient of the heights of the potential hill and potential well of the work of drop formation. 

Realization of the homogeneous mechanism of phase transformation requires levels of supersaturation of the metastahle 
phase high enough so that such transformations actually rarely occur. More likely is the heterogeneous mechanism of phase 
transformation, whereby foreign parucles that are almost always present in the metastahle phase (albeit in small amounts) serve 
as nuclealion centers for the stable phase. Common examples of such parucles are the salt granules and drops of acid present 
(abundant, even) in the winter atmosphere. Such grains and drops are typically highly soluble in condensing moisture. 

The present article examines the thermodynamics of nucleation of drops of stahle liquid in vapor supersaturated with 
this liquid. Here, nucleation takes place on nuclei that are soluble in the drop but essentially not adsorbed on its surface. The 
key to the study will be the fact, established below, that the main role in heterogeneous condensation occurring with a low level 
of vapor supersaturation is played by drops in which the number of molecules of the condensing substance is many times 

"* greater than the number of molecules or ions of the substance present in the vapor from the condensation nuclei. Thus, the 
drops consist of weak solutions of the substances but have a much higher concentration of the condensate. Not only do these 
circumstances greatly simplify the entire investigation, they also make it unnecessary to assume that the nucleus is completely 
soluble in the drop. 

Although the substance which is present in the solution inside the drop from the nucleus is relatively small, it 
nonetheless reduces the chemical potential of the condensate — the substance condensing into the drop from the vapor. It is 
for this reason that heterogeneous condensation is energetically possible before homogeneous condensation. It is also the reason 
that the activation energy in heterogeneous condensation may completely vanish. 

The quantity which is of decisive importance for predicting whether or not heterogeneous phase transformation is 
energetically possible with a low level of vapor supersaturation is the predicted (by thermodynamics) threshold chemical 
potential of the vapor. Beginning with this potential, heterogeneous nucleation occurs without the overcoming of an activation 
barrier (it occurs in the absence of an activation energy). 

However, the kinetics of the phase transformation is still important in practical terms. A metastahle vapor is not 
usually formed instantaneously under natural or artificial conditions (even in laboratory experiments, such as in a Wilson 
chamber or a diffusion chamber). However, as was shown in (1, 2], effective heterogeneous formation of supercritical (viable) 
drops which can continue to grow unrestrainedly ends long before the moment at which the chemical potential of the vap*>r 
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would reach its threshold value in the absence of vapor absorption by the drops. This in turn means thai, in practice, 
heterogeneous phase transformation occurs by a barrier-less method. Gradual (controlled over time) creation of metastability 
in the parent phase in which heterogeneous phase transformation occurs by the barrier method is useful in engineering 
applications because it allows control of the development of the phase transition over time. 

It should be noted especially that in a lab experiment which permits instantaneous creation of any initial value of vapor 
supersaturation, the level of supersaturation may turn out to be in the "prethreshold" region. In this region, activation energy 
is already substantial but is still not great enough to realize heterogeneous phase transformation. It is in this region of vapor 
metastability that the greatest amount of information can be obtained on the inverse problem — determination of the molecular 
properties of the condensing substance from data obtained in a laboratory experiment. 

Kinetic description of the process by which drops overcome an activation barrier requires that thermodynamics provide 
knowledge not only of the threshold chemical potential of the vapor, but also specific information on the work of heterogeneous 
drop formation: the position and half-widths of the potential well and potential hill of the work; the activation energv, 
determined by the gradient of the heights of the potential hill and potential well. All of this information is obtained in the 
present article for the prethreshold region of vapor metastability. 

The next article will deal specifically with description of the kinetics of condensation on soluble nuclei. It will show 
that the activation energy in heterogeneous condensation is equal to the gradient of the heights of the potential hill and potential 
well of the drop-formation work, rather than simply the height of the potential hill of the work for a critical drop (as it is in 
homogeneous condensation). 

Later articles will study the complex effect of adsorption on heterogeneous condensation, as well as the formation ot 
micelles by a condensation-nucleus substance which is soluble in the drops. 

For now, we will discuss results obtained earlier in regard to the thermodynamics o( nucleation on soluble nuclei. 
Keller [3] was the first to discover the existence of a threshold for barrier-less nucleation on soluble nuclei of surface-

inactive substances. This threshold corresponds to the maximum on the curve describing the dependence of the chemical 
potential of the condensing substance on drop size. The same study also established the following rule: The greater the radius 
of the soluble nucleus, the lower the possible maximum value of supersaturation of the vapor. Keller's thermodynamic analysts 
was subsequently generalized to the case of the dissociation of the substance of a nucleus dissolved in a drop [4, 5J, while the 
rule formulated by Keller was experimentally substantiated in (6], 

"Apart from the threshold value of the chemical potential of the vapor, there has been no investigation of the 
thermodynamic characteristics of condensation on soluble nuclei which are necessary for an understanding of the kinetics ot 
the process (and which are seen experimentally). 

Chemical Potential of the Condensate. We will examine a drop located in vapor and consisting of a solution of the 
substance of a nucleus in a condensate. We will use v to denote the number of condensate molecules in the drop. We will 
use vn to represent the total number of molecules of the nucleus dissolved in the drop or the total number of ions of this 
substance (if it is an electrolyte and dissociates during dissolution). We assume that the substance (if it is an electrolyte) 
dissociates completely. Accordingly, the quantity vD will always be an external parameter of the problem. 

When we represent the drop as a two-component solution, we are assuming that the condensation nucleus is completely 
soluble in the drop. Here, the nucleus may initially be in the solid or liquid state. In the case of a nucleus composed of a 
surface-inactive substance, nearly all of this substance dissolves inside the drop. 

We assume that the temperature of the drop is the same as the temperature T of the vapor surrounding it. The 
assumption that the drop is thermalized is justified by the fact that a large (compared to the vapor) amount of passive gas with 
little capability of exchanging molecules with the drop is almost always present outside the drop. The drop is in mechanical 
equilibrium with the vapor and the passive gas: Pressure in the drop is composed of the external pressure of the vapor and the 
passive gas and capillary pressure. 

We will use R to denote the radius of the drop and b, to represent the chemical potential of the condensate inside the 
drop. We express the chemical potential b„ in thermal energy units kT, where k is the Boltzmann constant. Chemical potential 
*s reckoned from the value corresponding to equilibrium of the condensate with the vapor when their contact surface is planer. 

As will be shown below, the following inequality is observed throughout the region of v that is important for the theory 

v'vn> 1 (1) 
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Fig. 1. Dependence of the chemical potential b, of the 
condensate in a drop on the number of molecules v of the 
condensate. 

Here, relative to the component which is present from the nucleus, the solution in the drop will be weak: The relative 
concentration of the given component will be equal to the small quantity vjv. Thus, the above-assumed dissociation in the 
solution of the substance of the nucleus turns out to be typical (if it is an electrolyte). 

In this case, we have 

R - (3 U/P/4 n) '» s \i> •'» 
(2) 

where V/ is the molecular volume of the condensing liquid; X is a linear parameter (the radius of an equivalent molecular 
sphere). 

We will use the familiar formula from the theory of weak solutions for the chemical potential of the component whose 
concentration in the solution is high (this formula is also valid when the solution is ionic). Accounting for capillary pressure 
in the drop (which is in mechanical equilibrium with the vapor and the passive gas) and considering that this pressure is almost 
always many times greater than the pressure of the vapor and the passive gas when we make allowance tor the low 
compressibility of the liquid we obtain 

/,, '-*-vnv-x +C 3 W (3) 

where 

a = 4rrX3 o/kT 
(4) 

and a is the surface tension of the drop. Since the substance of the nucleus is not surface active, expression (1) means that 
a will almost always coincide with the surface tension of the pure condensing liquid. The quantity a can be regarded as 
dimensionless molecular surface tension (the analog of the Etvesh molar surface tension). 

Having chosen v as the variable to describe the drop, we will study the dependence of b„ on v. We will use the 
subscript 0 to denote values of quantities at the value vQ of the variable v for which the following is valid 

0 bv/d v)0 = 0 (5) 

Using (3), we obtain 

"o =(9vniZa) •' 

026„/3 Vs \0 = -4 a/21 v0
;>. (33*„/a v3 )„ = 52 a/81 v^ 

(6) 
(7) 
(8) 

In accordance with (5) and (8), the chemical potential of the condensate b, reaches its maximum (b,)0
 a t t h e p o m l ' 

= vQ. Thus, the subscript 0 characterizes values of quantities at the maximum of the chemical potential of the condensate 
The existence of this maximum is due to the fact that a decrease in v is accompanied by a decrease in the chemical poten i 
of the condensate of the substance which is formed in the solution inside the drop from the condensation nucleus. 
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Figure 1 shows the dependence of b, on v. The fact that this dependence decreases monotonicauy WIUJ a uccic«.>c ... 
v in the region in which (1) is not observed and chemical potential b, is analytically unknown is a thermodynamic consequence 
of the stability of the solution. Thus, the maximum of b, at v = v0 is unique. The fact that b, approaches - <* at v -*• 0 can 
be explained as follows. When v -* 0, i.e., when the situation which is the opposite of (1) exists, the solution inside the drop 
again becomes weak (and can be described analytically). However, it becomes weak only in relation to the component which 
comes from the vapor. In accordance with the thermodynamics of solutions, the main contribution to b, is made by the term 
In {y/vn). This term also approaches - » at v -* 0. 

The equality 

htr = max b, = (ftt.)0 ' 

obviously determines the threshold value blr of the chemical potential of the vapor b expressed (as b,) in thermal energy units 
kT. This potential is reckoned from the value corresponding to equilibrium of the vapor with the condensing liquid when their 
contact surface is planer. If b ^ blr, then the drop is nucleated on the condensation nucleus in the vapor without'a barrier. 

We can use (7) and (9) to obtain 

I. A /Q ' . . 0 0 ) 

btr~ 4 a'9 vj> 

while (6) also yields 

btr = Z(2a)''-.llvl ( l l ) 

which expresses b^ directly in terms of the number of molecules or ions of the condensation nucleus. Equation (11) is the 
Keller formula [5]. 

Expanding b, into a Taylor series in the neighborhood of the point v - v0 and using (5) and (7)-(8), we obtain 

bv~- avZ s - —o vo ' <»'-»'o): ('2) 

The following is the condition of smallness of the discarded term with the third derivative of by with respect to v at the point 
v = PQ relative to the retained term with the second derivative of b, with respect to v at this point 

l3|i'-i'ol/9«'o<l (13) 

this condition also defining the region in which approximation (12) is valid. 
Equilibrium and Critical Drops. We will use the subscripts e and c to characterize quantities pertaining to the 

equilibrium and critical drops. These drops are in stable and unstable chemical equilibrium with the vapor, respectively. 
We have 

(bv)e = b, (bv)c = b (14) 

(3 fe„/a v)e > 0, (3 bv/b v)c<Q (15) 

(see Fig. 1). 

In the subthreshold region 0 < b < bw, the vapor is metastable and equilibrium and critical drops exist. When b = 
\ t these drops coincide. Above the subthreshold region, i.e., at b > b l r, equilibrium and critical drops are generally absent. 
Below the subthreshold region, i.e., at b < 0, only equilibrium drops exist. 

Since barrier-less drop nucleation occurs in the vapor at b ^ blr> all of the thermodynamic information important for 
kinetics at b ^ b^ is given by the value blr obtained from Eq. (10) (or (11)). Accordingly, we will subsequently be interested 
in the important (for kinetics) subthreshold region of vapor metastability 0 < b < blr. 

We write the chemical potential of the vapor b in the form 

b = b„[\-e\ (Ify 
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where e is its relative deviation from the value \\T. A program we are developing will find all of the thermodynamic 
characteristics needed for the kinetics of heterogeneous nucleation (and manifest in experiments) as functions of c in the 
subthreshold region, where 0 < c < 1. 

Using (12) and (14) and considering (10) and (16), we obtain 

* 

vc = v0 [1 .-(6e) -). vc = v0 [1 + lh t i : ] 

As is clear from (17), observance of condition (13) at v = vt and v = i>c implies that 

H3'9i ibt): < 1 

In accordance with (2), we have the following in the region in which condition (13) is valid: 

iR R„ i /?„ = iv -vu) 3 i'„ 

where 

(17; 

(18) 

(19) 

It follows from (17) and (19) that 

Rn =X 

Re = R0 ( i - C f 3)'z}. RC = RV |1 +(2e 3 i : | 

(20) 

(21] 

Work of Drop Formation. We will use F, in energy units kT, to express the work of heterogeneous formation of 
a drop in vapor on a condensation nucleus. When thermal and mechanical equilibrium exist between the drop and the vapor 
and passive gas, we have the differential relation [7]: 

b Fib v = /,,.. - /; (22) 

which accounts for the fact that the number of molecules or ions of the substance formed from the nucleus remains unchanged 
inside the drop (here, it is also assumed that the drop is not capable of exchanging molecules with the passive gas). 

Equation (22) will be used as the basis for the remainder of our investigation. This relation is valid for any value of 
vapor chemical potential b (both positive and negative). Equation (22) is simple because of its differential form and the use 
of v as the variable to describe the drop. The differential form of (22) — in which the work F is determined only to within 
the constant term — not only turns out to be sufficient, but also makes it easier to obtain all of the important (for the kinetics 
of heterogeneous nucleation) information on nucleation work. All of the calculations would be considerably more difficult it 
we used the finite-difference expression for work. 

Using (22) as our basis and in succession allowing for (14), (15), and (5), we obtain 

{bFbl>\e = Q, [bF'bv)c = 0 
ib2F'bi2)e>0, ib2Fbv2)c<Q 
{b2F/bv7)osO 

(23) 
(24) 
(25) 

Thus, at the points v - vct v = vc, and v = v0, the work has a minimum, maximum, and point of inflection, respectively. & 
a function of v. 

Figure 2 shows the dependence of F on v as follows from (22) and Fig. 1 (and is consistent with (23)-(25). 
considered the fact that F | ,_0 = 0: The condensation nucleus is initially present in tlu- vapor, so that no work is require 
for its formation. As a result, Fe < 0. In accordance with (17), an increase in c <a decrease in supersaturation' ^ 
accompanied by further separation of the points v = vt and v = vc to the left and riizht of the point v - "o (vvnK '' 
independent of c). Here, the minimum Fe and maximum Fc of the work F increase. From this moment on. the inequalii> v 

< 0 is invalid (it was assumed valid in Fig. 2). The inequality Fe < 0 is always valid 
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Fig. 2. Dependence of the work of drop formation F on the 
number of condensate molecules v. 

With allowance for (10) and (16), we find from (12) and (22) that 

.1 /•" 4 j 1 
— = ~ [f - - — U-i',,1- (26) 

throughout the region in which (13) is satisfied. The interval ve 5 v < vc falls within this region when restriction (18) is 

satisfied. 
A quantity which is important in kinetics is the activation energy 

Af- -F l - /> 
(27) 

— the gradient of the heights of the potential hill and potential well of the work F (see Fig. 2). Integrating Eq. (26) over 

from vt to *c and allowing for (17) and (6), we obtain 

AF-[ lo n " n „ f 

Taking into account (23)-(24), we have the approximations 

where 

/- = !r - |H"-' \ I A i'( | : ». i ' - r , i v'- A ;'; » 

Av, = [2.idz/-';dv:)ej'
:. A i/,. = I 2 ld :/"3» , : )<• 

(28) 

(29) 
(30) 

(31) 

The quantities Ave and Avc determine the "half-widths" of the potential well and potential hill of F. We will use the term 

"near-equilibrium" and "near-critical" in describing drops for which the variable v lies within the neighborhoods | v — ve | 

5 Ai>e and | v—vc I 5 Avc of the points v = vt and v = vc. 

As is clear from (26), the below inequalities serve as the condition of smallness of the discarded (in (29) and (30)) 

terms with the third derivative of F with respect to v at v = vc and v = vc relative to the retained (in the same equations) terms 

with the second derivative of F with respect to v at the same two points 

±ve.liv0-i>f)< 1. Atr,3 (ve-vn\< 1 (32) 

These inequalities also express the condition that heterogeneous phase transformation occurs by the barrier method (they express 
complete manifestation of the potential well and potential hill of the work F). Inequalities (32) and the validity of Eq. (26) 
itself at *e-A*e X v 5 vc + Avc (rather than just at vt 5 v 5 *c) will be substantiated in the next section. 

Using (26) and (31) with allowance for (6) and (17), we obtain 

Avt - Arc. = 27 (3.2)' ' ila)" -•'„ t 

Af, (^-iV >= AiyU' r-i'o)= -'(3 A/-"r 

(33) 

(34) 
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Prethreshold Region of Vapor Metastability. As will be shown in the next article, the rate of heterogeneous 
nucleation of supercritical drops which subsequently grow without restraint depends on AF as exp(-AF). Regardless of the 
concentration of condensation nuclei in the vapor, we will be interested only in the part of the pre-threshold region of vapor 
metastability in which 

3 £ A / ^ 3 0 (35) 

In fact, to the right of this region, i.e., at AF •> 30, the exponent exp(-AF) is so small that heterogeneous nucleation almost 
never occurs. To the left of this region, i.e., at AF < 3, inequality (32) is violated (as is clear from (34)) and the exponent 
exp(-AF) is already quite substantial. Heterogeneous nucleation then takes place almost without a barrier, which simplifies 
the kinetics of heterogeneous phase transformation to the extent that only the value of b .̂ given by (10) (or (11)) is needed out 
of all of the thermodynamic information obtained above (the same was true of the region b S blr). 

In accordance with (28) and (35), we have 

€ * - * „ - " (36) 

where we have taken into account that the range of (AF),/3 is considerably narrower than the range of AF. Accordingly, we 
have put (61/2AF/16),/3 - 1. 

As has already been noted, the heterogeneous mechanism of phase transformation merits special study in that it opens 
up Ae possibility of phase transformation at a low level of supersaturation of the parent phase. Focusing on this possibility 
and noting, in accordance with (11), that it arises when the condensation nuclei are sufficiently large, we will henceforth 
assume that 

V > (37) 

We will refer to the region of metastable vapor in which (35) is observed and, thus, in which c , /2 satisfies (36), as the 
"pretfireshold" region. By virtue of (36) and (37), the following is valid in this region 

6 ' < I (38) 

It can be seen from (36M38) that the prethreshold region occupies only a very narrow zone within the subthreshold region 0 
< c < 1. The width of this zone is on the order of the distance of the zone from the upper boundary of the subthreshold 
region. The prethreshold region will be the focus of our next investigation. 

We will show that in this region — specifically, under condition (37) — all of the assumptions used above in the 
analytical theory are still valid. 

It follows from (38) that restriction (18) must be observed. Further, a requirement that inequalities (32) be observed 
follows from (34M35). Then, it is clear from (17) and (38) that the inequalities Avc/vc < < 1, Avc/vc < < 1, are satisfied 
with brgerdomain than inequalities (32). This justifies use of(26) not only at ̂ e ^ : » ' 5 i*c, but also at ^ r - i i ^ £ v ^ vc + bvc. 
Thus, the near-equilibrium and near-critical neighborhoods | v-vt | ^: bvt and | v-vc\ ^. &vc of the points v = vt and v - vc 
do not overlap but do lie near the point v — vQ. 

The foregoing, when considered together with (6) and (37), shows that inequality (1) is observed with a large margin 
of error throughout the region of v that is of importance for the theory pe-Ave <: v <: vc + A^c 

Taking this into account, after (36) we see that extraction of the square root from the latter yields not just an estimate, 
but the approximate equality c , / 4 = va~

vt (we ignore the factor (61/2AF/16),/6 in the right side of this expression, since it 
is nearly equal to unity by virtue of (35)). It follows from (33) and c , / 6 = v~,/4 that 

A*. « A»-c* 27<3.':)' /-<2«rV ' v '* ( 3 9 ) 

in which c is generally omitted. 
In accordance with (37) and (39), we have 
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A ve > 1, Avc>\ (40) 

In particular, the value of inequalities (40) lies in the fact that they permit [8] a continuum treatment of the variable v (which 
is in essence discrete) within the limits of the potential well and potential hill of the work F. 

Discussion of the Thermodynamic Laws of Heterogeneous Condensation. In accordance with (3), the chemical 
potential b, of the condensate in a drop formed on a condensation nucleus that is fully soluble in it has two components. The 
first, always negative, accounts for the effect of the substance of the condensation nucleus on the drop. The second component, 
always positive, describes the effect of capillary pressure on the drop. This component increases relatively slowly with a 
decrease in v. The second component is dominant for sufficiently large values of the variable v, while the first component is 
more important for relatively small values of this variable. The competition between these two contributions to condensate 
chemical potential also explains the existence of the maximum of potential b, in a heterogeneously formed drop. 

In accordance with (22) and the condition F | r = 0 = 0, the greater the chemical potential of the vapor b, the lower 
the work F of heterogeneous drop formation for each value of v. 

If b ^ by. (with bu being equal to the maximum for b,), then, by virtue of (22) and the condition F | K=0 = 0, F 
decreases monotonically with an increase in v throughout the physical region v > 0 from 0 at the point u = 0. This shows 
that heterogeneous phase transformation definitely occurs without a barrier at b ^ blr as well (this result is unaffected by the 
fact that the derivative dF/dv vanishes at the individual point v = v0 of the maximum of by when b = blr). 

Thermodynamic relation (22) and the condition F | r_0 = 0 of course also remain valid in the case of homogeneous 
drop formation. However, in this case the chemical potential of the condensate b, (which coincides with the chemical potential 
of the drop) is on the whole determined only by the contribution which describes the effect of capillary pressure on the drop. 

Using a superimposed tilde to denote quantities for the homogeneous case, we see that the inequalities F | „_0 = 0 
are valid for any value of the variable v describing the drop. The second of these inequalities is invariant to the value of vapor 
chemical potential b, although it is negative (b, and b, are independent of b). The inequality b̂ , < b, is weakened with an 
increase in v. It becomes very weak at v > v0 and for practical purposes is transformed into the approximate equality b,. = 
b,. The latter is more accurate, the greater v is compared to J^. Here, the difference F — F is always negative, becomes 
nearly independent of vy and reaches its limiting value. This value, unimportant in practice, was linked in [9] with the hoped-
for energy benefit from heterogeneous phase transformation compared to the homogeneous mechanism. 

The fact that the maximum of h, turns out to be very small for sufficiently large condensation nuclei nkn explains why 
the heterogeneous condensation process can take place in the region of very low degrees of vapor supersaturation. 

The fact that the chemical potential of the stable-phase nuclei has a component which has a sign opposite that of the 
contribution from capillary pressure and which increases relatively rapidly in absolute value with a decrease in nucleus size 
is also an important characteristic of heterogeneous phase transformation and its energy advantage over homogeneous phase 
transformation. 

Here, the work done in creating the metastable phase of the nucleus in the course of heterogeneous nucleation of the 
•table phase is unimportant. In fact, having been ignored in the above study, this quantity is relevant only to whether or not 
nuclei can exist in the metastable phase. If such nuclei do exist for one or more reasons — a question which is the starting 
Point in the analysis of heterogeneous phase transformation in the volume of the metastable phase (as opposed to its external 
boundaries) — then the entire subsequent development of heterogeneous phase transformation will be completely determined 
oy the work that must be done, during the formation of a nucleus of the stable phase, to attach molecules of the metastable 
Ptese to a nucleus already present in it. In sum, the total amount of work done should be reckoned beginning with the work 
done in creating a nucleus of the stable phase (which is consistent with the condition F | „=0 = 0 cited above). The stipulation 
*at the heterogeneous phase transformation occur in the volume of the metastable phase precludes consideration of the 
boundary" mechanism of this transformation [4] on the external boundaries of the metastable phase. The latter mechanism 

ooes not play any significant role under artificial conditions, when the volume of the metastable phase is large and, even more 
*>• under natural conditions in the winter atmosphere. 

The studies [10, 111 examined the contribution to the chemical potential of the stable-phase nucleus which is opposite 
10 agn to the contribution from capillary pressure and which increases relatively rapidly in absolute value with a decrease in 
•* size of the nucleus. This contribution was examined in a problem concerning heterogeneous condensation on nuclei that 
^ fe not soluble in the drops of stable liquid being formed. That problem differs qualitatively from the problem examined 

• * present article, where the condensation nuclei are conversely assumed to be fully soluble in the drops. As was explained 

tf-
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in (10, 11], the "countercontribution" opposing the contribution of capillary pressure to the chemical potential of the drops is 
due to the disjoining pressure of the liquid film of the drop between the vapor and the insoluble (in the liquid) condensation 
nucleus. This countercontribution has also been shown {10, 11] to be responsible for the existence of the maximum of the 
chemical potential of the drop and, together with this, for the possibility of heterogeneous condensation with low degrees of 
vapor supersaturation. Here, the degree of supersaturation may be lower, the larger the condensation nucleus. 

The laws of heterogeneous phase transformation discovered in {10, 11] and in our study show that the essence of this 
process can be understood by determining the above-mentioned countercontribution to the chemical potential of a 
heterogeneously formed stable-phase nucleus. If this contribution is found, then a thermodynamic and kinetic theory of 
heterogeneous phase transformation can be constructed by the method developed here. Such an undertaking is outside the scope; 
of the present problem, concerning heterogeneous condensation on nuclei fully soluble in the drops of condensate. 

Throughout the above thermodynamic theory of condensation on soluble nuclei (and in earlier studies {3-5] of this 
subject) the pressure of the vapor-gas medium on the drop was ignored compared to capillary pressure in the drop. 
Nevertheless, in the case of large drops and a high concentration of passive gas in the medium, the capillary pressure may be 
comparable to — or even less than — the ambient pressure that was not accounted for in Eq. (3). Taking this pressure into 
account, we obtain the additional contribution v, (pg + p — pM) to the chemical potential of the condensate b„, where pg, p. 
and p^ are the density of the number of molecules of passive gas, vapor, and saturated vapor above the plane surface. Due 
to its independence relative to v, we obtain the same contribution to the threshold value \\r of the chemical potential of the 
vapor. As a result, b^ increases by the amount vypg. Here, we have taken into account that pg > > p — p& when there is 
a high concentration of passive gas in the medium. In this case, the value of v,pg will be limited to the threshold value of vapor 
chemical potential. If inequality (37) is so strong that the quantity in the right side of (11) is much less than v,pg, then v,p^ 
(independent of vB) will also determine the threshold value blt of vapor chemical potential. It will be the lowest value allowed 
by thermodynamics. 

We should also note that many researchers who have examined heterogeneous condensation on soluble nuclei in the 
winter atmosphere {12-14] have been interested in describing the growth of drops with high concentrations of the dissolved 
substance of the nucleus. It was shown in our study that when the condensation nuclei are macroscopic and when there is a 
monotonic decrease in the concentration of the dissolved substance of the nucleus with an increase in the number of condensate 
molecules, drops with a high concentration of the nucleus substance turn out to be subcritical for low levels of supersaturation 
of the vapor and thus play no role in the thermodynamics of heterogeneous phase transformation taking place hy the barrier 
method. This is the situation that prevails for liquid condensation nuclei. 

If the nucleus is solid and if, in the course of its dissolution, equilibrium can be established between the solid residue 
of the nucleus and the substance of the nucleus in solution inside the growing drop, then the concentration of dissolved nucleus 
materia! will increase with a decrease in the size of the nucleus as it undergoes dissolution. This might in turn lead to the 
appearance of an additional maximum on the curve describing the dependence of the chemical potential of the condensate on 
the number of condensate molecules. This maximum would be located to the left of the maximum examined in the present 
article and would correspond to a drop with a higher concentration of dissolved nucleus material. The threshold chemica 
potential of the vapor would then determine the larger of the maxima. The very existence of such an additional maximum and 
he role it might play in the thermodynamics of condensation on soluble nuclei have not been discussed previously. 
juantitative description of this maximum cannot be given without specific representations on the enveloping of the soluble son 
lucleus by the liquid condensing on it. Such a description is a separate problem and concerns condensation on solid nut ei 
hat are not fully soluble. 
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