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INTRODUCTION

It is not a revelation that methods of the theory of
surface phenomena or their analogues prove useful for
consideration of solutions. A field of molecular forces
appears at the boundary between two phases. This field
causes changes in the density, composition, and struc-
ture of substances in the surface layer. As suggested by
Gibbs, such changes are characterized by excess (with
respect to the bulk phase far from the surface) values.
An example is adsorption as material excess per unit
surface area. However, in the bulk of a solution, similar
molecular forces act, and any solution particle (mole-
cule, ion, or colloid particle) can be a source of external
field with respect to other solution particles.

Such phenomena, characteristic of solutions, as
association and solvation are quite similar to adsorp-
tion. We, however, then deal with point rather than sur-
face (or even linear also considered in the theory of sur-
face phenomena) excesses, because substance concen-
tration occurs in all directions from the field source. An
example of such an analysis was given in [1] for the
work of ion solvation in the Born model. It was shown
that the chemical work of solvation (bearing no relation
to interphase electric potential and the work of ion
transfer through an interphase boundary and only
related to solution rearrangement close to an ion) is

given by point excess  of the grand thermodynamic
potential.

The binding of counterions by charged solution par-
ticles is also akin to adsorption. Special attention was
given in the literature to micelles of ionic surface active
substances [2–4]. Starting with fundamental work [2],
a key problem was that of relating point excesses of a
substance to the thermodynamic characteristics of bulk

Ω

 

(homogeneous) solution. For this purpose, the statisti-
cal thermodynamics equations

 

(1)
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were used. Here, 
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M

 

 and  are the concentration and
electrochemical potential of micelles in the bulk phase,

 

c

 

i

 

 is the concentration of ions of kind 

 

i

 

,  

 

and

 

 

 

are the point excesses of micelles and ions of
kind 

 

i

 

 on one micelle, 

 

k

 

 is the Boltzmann constant,
and 

 

T

 

 is the absolute temperature of the solution.
Equation (1) is unquestionable (for nonionic systems,
a similar equation was obtained in [5]). Equation (2)
and the results that follow from it, however, need be
corrected in our view. In this work, we address the
problem of the relation between point excesses and the
equilibrium thermodynamic properties of solutions.

THE THERMODYNAMICS OF POINT EXCESSES

First, let us formulate several general propositions
valid for solutions of any nature. We consider an infinite
homogeneous medium comprising uncharged particles.
At a fixed position, any of them becomes a source of an
external field for the whole medium, and it makes no
difference whether this particle is a constituent of the
medium or is introduced from outside. Let a system
consisting of a substance be inside a sphere with radius

 

R

 

 whose center coincides with the position of the fixed
particle. The 

 

R

 

 value is selected to be much larger than
the effective radius of point field action, and all the
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local properties of the medium in the region of the
boundary of the system remain the same as before the
field was switched on. As far as the whole medium is
concerned, as mentioned above, it is infinite and
extends outside the limits of the system under consider-
ation. The field causes system structuring, and it
changes its energy 

 

U

 

 to 

 

U

 

k

 

, where the index 

 

k

 

 indicates
the kind of the particle and shows that the changed
energy value depends on the kind of the particle as a
source of the field. For a spherically symmetrical sys-
tem, the fundamental equations for 

 

U

 

k

 

 are the same as
in the theory of curved surface layers [6],

 

(3)

(4)

(5)

 

where 
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k

 

 is the entropy of the system; 

 

T

 

 is the tempera-
ture; 
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 are the local values of
the normal and tangential components of the pressure
tensor in the spherical system of coordinates 

 

r

 

, 

 

θ

 

, 

 

ϕ

 

with the origin at the source of the field; and 
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 and 
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are the chemical potential and the number of particles
of the 

 

i

 

th kind. The source of the field acts on medium
particles, and these forces cause changes in the local
density of medium components (

 

i

 

 = 1, 2, …

 

) close to
the source and, therefore, the total number of compo-
nent particles 
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i

 

(

 

k
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 inside the volume 

 

4
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3

 

/3

 

. The 

 

N

 

i

 

(
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number also depends on the kind of the particle (

 

k

 

) cre-
ating the field (which is why this value has two indices).

Equation (5) for intensive values is a generalization
of the Gibbs–Duhem equation for the system under
consideration; it is independent of the selection of the
thermodynamic potential. Conversely, when we pass to
the Helmholtz energy 

 

F

 

k

 

 and the grand canonical poten-
tial 

 

Ω

 

k

 

, Eqs. (3) and (4) take the form

 

(6)
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(8)
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Note that the local pressure tensor value is strictly
defined in statistical mechanics for any inhomoge-
neous system. For this reason, integral equations (4),
(7), and (9) do not contain the quasi-chemical approx-
imation and are exact equations of equilibrium ther-
modynamics.

Let us turn to the derivation of fundamental equa-
tions for point excesses. It is sufficient to subtract from
(3)–(9) the same equations written for a homogeneous
system (in the absence of a field) at the same equilib-
rium T and µi values and, naturally, at the same given R
value. It should be taken into account that, at r = R, the
properties of the medium in the perturbed and unper-
turbed states are equal, and the corresponding terms are
eliminated by subtraction. As concerns the tangential
pressure pT, the usual isotropic pressure p corresponds
to it in a homogeneous medium. Excess values will be
marked by bars. The point excess energy  ≡ Uk – U
is obtained in the form

(10)

(11)

where  ≡ Sk – S is the point excess entropy and

 ≡ Ni(k) – Ni is the point excess of the number of
particles of kind i on a particle of kind k. This value can
also be written as

(12)

where ci(k) = ci(k)(r) is the local concentration of parti-
cles of kind i in the field of a particle of kind k and ci is
the concentration of particles of kind i in a homoge-
neous medium in the absence of a field.

An analogue of Gibbs–Duhem equation (5) for
point excess values is

(13)

The point excess Helmholtz energy  ≡ Fk – F takes
the form

(14)
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(15)

and the point excess grand thermodynamic potential
 ≡ Ωk – Ω is given by

(16)

(17)

Considering (17), Eqs. (13) and (16) coincide. This
means that fundamental equation (16) for point excess
grand thermodynamic potential  simultaneously
plays the role of the Gibbs–Duhem equation and is the
most important equation in the theory of solutions. As
mentioned, the  value itself is the chemical work of
solvation, or, in other words, the work of transfer of a
particle of kind k from a fixed position in the vacuum
into a fixed position in the medium under consideration.
It is shown in statistical thermodynamics [7, 8] that this
work is written through the total activity coefficient γk,
which can in turn be represented as the product of zero

 (when the particle is introduced into a pure solvent)
and concentration fk activity coefficients of the solute,

(18)

Equation (18) shows that the  value plays a central
role in the theory of solutions.

Let us turn to ionic systems. For thermodynamic
equations, this reduces to the formal replacement of the
chemical potentials of ions µi by the electrochemical
potentials

(19)

where e is the elementary positive charge, zi is the
charge number of ions of kind i, and ϕ is the electric
potential at the point of ion location. For equilibrium
homogeneous solutions of electrolytes, ϕ is understood
as an internal phase potential (the Galvani potential).
Therefore, eziϕ is the work of transfer of a charged par-
ticle from infinity in the vacuum into the system under
consideration provided its structure (including homo-
geneous charge distribution) does not change. Note that
this is the work of the first stage of the introduction of
a charged particle. The work of the second stage, when
point excesses are formed, contributes to µi on the
right-hand side of (19), more exactly, to the activity
coefficient (similarly to (18)), which now includes con-
tributions not only of solvation but also of interionic
interactions.
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Note that, if the source of the field is one of the ions
of the system (at its fixed position in space), the speci-
fied work eziϕ is not done. This is the difference
between the introduction of an ion from outside and
bringing one of the system ions to a “stop.” There is one
more difference, namely, whereas bringing an ion to a
stop does not disturb the condition of system electrical
neutrality, the introduction of an ion from outside seem-
ingly violates this condition. However, in reality, this
difference comes to naught. Indeed, if a point charge is
introduced into the electrically neutral system under
consideration, it polarizes the medium. The nearest
polarization charge balances the charge introduced, and
the far polarization charge goes beyond the boundary of
the medium (to infinity), in any event, outside the
boundary of the system with radius R. This leads us to
conclude that, irrespective of the method for creating a
point electric field, the system under consideration
should be considered electrically neutral taking into
account the charge of the source of the field. For a sys-
tem in the absence of a field and in the presence of a
field created by an ion of kind k, the electrical neutrality
condition is written as

(20)

(21)

where the summation is formally over all the compo-
nents (the terms corresponding to uncharged particles
automatically disappear because their charge numbers
are zero).The subtraction of (20) from (21) gives the
electroneutrality condition in terms of point excesses,

(22)

The conclusion can be drawn that all the fundamen-
tal equations obtained in this section are also applicable
to systems of charged particles if chemical potentials
present in them are replaced with electrochemical
potentials. It is well known that the division of the latter
into two terms, as in (19), is fundamentally conven-
tional (although fruitful in practice). The true thermo-
dynamic variables are undivided electrochemical
potentials. Recall that, for a charged particle, (16) takes
the form

(23)

where  is the work of the introduction of a charged
particle from the vacuum into a fixed solution point.
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The chemical work of the solvation and binding of

counterions  is obtained as

(24)

After this, activity coefficients are introduced as shown
in (18).

In this section, we restricted ourselves to consider-
ation of thermodynamic potentials determined for a
given volume. Of course, this does not exhaust thermo-
dynamics, but any other thermodynamic potentials are
trivially related to them and to each other, and the cor-
responding equations can easily be obtained. The sys-
tem of fundamental equations for point excess values
can therefore be considered constructed.

STATISTICAL THERMODYNAMICS EQUATIONS 
AND THE RELATION OF POINT EXCESSES
TO THE EQUILIBRIUM CHARACTERISTICS 

OF SOLUTIONS

These problems require the use of statistical
mechanics equations. Note that all of them will be
related to homogeneous media, or, in other words, to
the bulk phase of a solution of an electrolyte. It is
another matter that these equations will include point
excesses of substances. The strong point of statistical
mechanics is exactly the ability to relate point excesses
to the equilibrium characteristics of solutions. One of
the most important results of statistical thermodynam-
ics is a detailed equation for the chemical potential.
Borrowing it from [8, Eqs. (47.6), (47.7), and denota-
tions (22.29)], let us write the electrochemical potential
of particles of the kth kind (now treated as usual solu-
tion ions rather than separate external field sources) in
the form

(25)

Here, ck is the concentration (number per unit volume)
of particles of the kth kind in a homogeneous solution.

The  value, which depends on temperature and the
mass of particles, is the kinetic part of the partition
function for the translational motion of a particle of

kind k, and  is its contribution to the Helmholtz
energy. The passage from the first to second form of
Eq. (25) (we shall need it below) corresponds to
Eq. (24) and electrical neutrality condition (22).

Let us differentiate (25) on the assumption of con-
stant temperature and mass of particles of the kth kind.
Taking into account fundamental equation (23) (where

Ωk

Ωk Ωk
E
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E
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Λk
3–

kT Λk
3ln

variation symbols should be replaced with differen-
tials), we obtain

(26)

It then follows that

(27)

where δik is the Kronecker symbol and the partial deriv-

ative with respect to the electrochemical potential  is
taken at constant values of the other electrochemical

potentials  ( j ≠ i). Equation (27) is similar to Eq. (6)
in [5] for particles with dissipative interactions (also see
in [8, Eq. (47.4)]). Drawing an analogy between point
excesses and adsorption, the component whose concen-
tration is differentiated in (27) plays the role of a sor-
bent, and the component with respect to whose electro-
chemical potential the differentiation is performed
plays the role of a sorbate component. Relating the
index i to an ion, we can, in particular, state that the

 number characterizes the binding of counterions
if the index k relates to another ion with the opposite
sign and the solvation of the ion if the index k relates to
a neutral solvent component.

At k = i, (27) becomes

(28)

We can then draw an analogy with self-adsorption. If
the index i relates to a neutral solvent component, the
point excess  can have any sign if there are several
such components. Although a determining role is then
played by attraction forces between particles, the
appearance of negative solvation can be caused by com-
petition with other solvation shell components. If the
index i in (28) relates to an ion, we always have  < 0
because of the mutual repulsion of like ions. At the
same time, note that the left-hand side of (28) is always
positive by virtue of thermodynamic stability condi-
tions. It follows that the condition  > –1 should

always be satisfied; for ions,  < 1. We show below
that this condition is indeed fulfilled.

Let us apply (27) to micellar solutions, where
micelles (index M) coexist with monomeric ions and
solvent molecules. In (27), the indices i and k can take
on arbitrary values, including M, which leads to the
equations

(29)
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(30)

(31)

If the index i relates to the solvent (or the system is not
ionic), Eqs. (29)–(31) characterize solvation effects in
micelles. If the index i relates to an ion, the  point
excess, in particular, characterizes the binding of coun-
terions by micelles when the charge of the ion is oppo-
site to that of micelles, and , the binding of

micelles by monomeric ions. Clearly,  gives the
exact excess of the number of micelles on one of them.
Eq. (31) coincides with (1), but (29) and (30) are incon-
sistent with (2) ([2, Eq. (12)]).

For micelles, equation (25) for the electrochemical
potential can be rewritten as

(32)

where zM is the electric charge of a micelle (for a non-
ionic micelle, zM = 0). The work

(33)

is spent to introduce a separate micelle from the vac-
uum into some solution (also containing other micelles)

point with the phase electric potential ϕ. The 
value has the meaning of the kinetic contribution of
translational motion into the Helmholtz energy of a

micelle, and the WM ≡  +  value can also
therefore be understood as the work of the introduction
of one micelle, but including the thermal motion of the
micelle introduced in solution. Using (32), we then
obtain work WM in the form

(34)

Let us differentiate (34) with respect to  at constant
temperature and other electrochemical potentials. Tak-

ing into account that ( )T = δiM and Eq. (29),
we obtain

(35)

Although Eq. (35) plays a key role in the theory of the
coefficients of binding of counterions by an ionic
micelle [2–4], it has not been consistently substantiated
earlier.
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THE TREATMENT OF AN IONIC MICELLAR 
SOLUTION WITH COATED MICELLES

IN THE APPROXIMATION OF IDEALITY

Let us consider an ionic micellar system in more
detail. We have to repeat the calculations performed in
[2]; the main idea of that work was the independent der-
ivation of Eq. (27) taking into account electric contribu-
tions only from the conditions of solution electrical
neutrality and ideality. Note that, in this section, we do
not turn to dilute solutions and consider solutions of the
same concentration as previously. We simply pass to
another method of description, another model, and
another formalism. This will be done as follows. A mul-
tiple-charge micelle formed by surface active ions of
one sign is called “naked” in the literature. Just this
micelle with charge zM creates a strong field around it
and point excesses Ni(M) of other particles described in
the preceding sections. Suppose that the excesses of
counterions partially become bound (when the mean
electric interaction energy becomes higher than kT) in a
strong micelle field, and excess values become aggre-
gation numbers ni. The charge number of the micelle
then decreases to

(36)

Clearly, ni < , because otherwise we would have
zM* = 0 according to (22). It can nevertheless be
expected that zM* � zM. Such micelles are called coated;
they will be denoted by M*.

The approaches used in this and previous sections
are different because, in this section, we deal with
coated micelles. As far as strict equations of the preced-
ing section are concerned, they are equally applicable
to naked and coated micelles. Equations (29)–(31) take
the form

(37)

(38)

(39)

where excesses with bars relate to coated micelles and
are therefore much smaller in magnitude than for naked
micelles. These point excesses relate to particles
weakly bound by the electric field. For counterions, the
difference of excesses for naked and coated micelles at
equal electrochemical potentials is just their aggrega-
tion number,

(40)
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(this concept is absent in the formalism of naked
micelles).

According to the main postulate of the approach
used in this section, the charge of coated micelles and
initial concentrations of free ions decrease to the extent
that their interaction with each other is insignificant. In
other words, coated micelles and monomeric ions form
an almost ideal mixture at aggregation equilibrium. As
a first approximation, we can ignore interactions
between dissolved particles in this mixture and approx-
imately assume that the concentration activity coeffi-
cient fk is one, while the zero activity coefficient is some

function of temperature. We then obtain  = 0 from
(18) at the given temperature. According to (25), the

electrochemical potential  for arbitrary j is

(41)

(it must be borne in mind that, at j = M*, zj and  are

replaced with zM* and ). In essence, Eq. (41)
ignores kTdlnfj compared with kTdlncj.

For the present (up to Eq. (54)), let the index i char-
acterize the kind of particles the electrochemical poten-
tial of which varies as ϕ changes when other chemical
potential stay fixed. We then have

(42)

(43)

It follows from (41) and (43) that

(44)

The solution electroneutrality condition remains valid
as potential ϕ is varied. That is, the condition
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or (taking into account (44))
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is met. It follows from (41) and (46) that
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The ionic strength of solution,

(48)

can be introduced to represent (47) in the form

(49)

Substituting (49) into (44) yields

(50)

It follows from (46) and (49) and definition (48) that

(51)

Equations (50) and (51) yield

(52)

(53)

These equations describe the mutual influence of parti-
cles of different kinds caused by phase potential varia-
tions ϕ in (41). Clearly, (52) and (53) can be combined
to obtain

(54)

This equation is valid not only at k ≠ i but also at k = i
(unrelated to the constraint imposed in (43)), also when
k or i relates to coated micelles. This is the equation that
we sought. It is correct under taking into account the
electric contributions and the solution ideality.

Let us compare (27) and (54). The derivatives on
their left-hand sides are taken under equal conditions.
We can therefore equate the right-hand sides of these
equations. This gives

(55)

According to (55), as expected, the sign of the 
point excess is opposite to the sign of the zkzi product,
and the point excess of the ith ion disappears at infinite
dilution (as ci  0) in the presence of background
electrolyte.

Applying (55) to coated micelles (the i and k indices
can then be M*), we obtain

(56)
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(57)

(58)

These equations determine the point excesses of coated
micelles in terms of the charges and concentrations of
ions and coated micelles. Equation (58) coincides with
Eq. (11) from [2] except that, in the latter, I f in the
denominator stands for twice ionic strength (48).

After the multiplication of both sides of (55) by zi

and the summation over i, it is easy to see using defini-
tion (48) that (55) satisfies electrical neutrality condi-
tion (22). Ionic strength definition (48) also allows us to
state that the  point excess is always smaller than
one in magnitude, that is, the requirement that follows
from (28) is fulfilled.

DIRECT CALCULATIONS OF POINT EXCESSES 
BY THE DEBYE–HÜCKEL METHOD

We will show how point excesses  can be found
by the Debye–Hückel method if only electric contribu-
tions to  are taken into account. Clearly, with
micellar solutions, we must restrict our consideration to
coated micelles whose charges are not very large. As far
as naked micelles are concerned, their high charges pre-
vent us from applying the Debye–Hückel theory to
them in the region of concentrations of interest for prac-
tice. Suppose that a charged particle of kind k is intro-
duced from outside into some point inside a homoge-
neous medium that satisfies the electrical neutrality
condition

(59)

and contains charged particles of various kinds in a
nonconducting solvent.

Let us introduce a spherical system of coordinates
with the origin at the center of the particle introduced
and radial variable r. We assume that system particles
can approach the particle introduced by distances no
less than r0, which is the radius of repulsive core caused
by short-range forces (this radius does not appear in the
final results). The introduced particle of kind k creates
a spherically symmetrical cloud of all charged system
particles around it. The concentrations ci(k) in the cloud
are functions of the distance r from the center of the
cloud. As r ≥ r0, the exact excess (12) definition can be
written as

(60)

The electric potential created by the cloud and the
charge introduced ezk will be denoted by Φ. This poten-
tial also depends on r and also on k (for brevity, this
dependence is omitted).

The solution is considered dilute to the extent that
the mean Coulomb interaction energy of two particles
is much smaller than their mean kinetic energy. Using
the Boltzmann distribution for the concentrations ci(k) in
the cloud and linearizing the distribution, we obtain

(61)

where it is taken into account that Φ  0 and ci(k)  ci

as r  ∞. Using (59) and (61), we obtain the charge
density ρ in the cloud in the form

(62)

Substituting (62) for charge density ρ in the Poisson
equation, we obtain the linearized Poisson–Boltzmann
equation for the cloud,

(63)

where κ is the inverse Debye length defined as

(64)

(here, ε is the permittivity, also absent from the final
result). A physically admissible solution to (63) is

(65)

where A is the constant of integration. According to
(65), the normal component of induction on the surface

r = r0 is εA/  (it is taken into account that, for dilute
solutions, κr0 � 1 holds with much safety). At r ≤ r0,
the induction is fully determined by the charge intro-
duced into the solution, and the normal induction com-

ponent is ezk/  on the r = r0 surface. The A constant in
(65) can be found from the continuity of the normal
induction component. This gives

(66)

in agreement with the Debye–Hückel theory. Equa-
tion (66) substantiates the limiting behavior Φ  0 as
r  ∞ used in (61).
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Let us find the charge of the cloud qk. We have

(67)

Using (62), (64), and (66), (67) and the condition κr0 � 1
for integral calculations, we obtain qk = –ezk, as
expected. Indeed, according to (66), the induction flux
through a spherical surface with an infinite radius r is
zero. For the total charge inside this surface, which is
the sum of the charge qk of the cloud and the charge ezk

of the particle introduced, we then have qk + ezk = 0,
which gives qk = –ezk. As the particle introduced is not
a constituent of the system but only creates an external
electric field (and repulsive core field) in it, it cannot
violate electrical neutrality of the whole system. For
this reason, in addition to the charge qk, the charge –qk

is also formed in an electrically neutral medium. This
charge is, however, smeared over such a large volume
at infinite medium dimensions that the condition

 = 0 is in reality fulfilled at some distance
from the particle introduced. This was already men-
tioned in the first section.

Using (61) and (62), we can write

(68)

(this equation does not contain the potential Φ). Let us
integrate both sides of (68) over the region r ≥ r0. On the
left-hand side of the resulting equality, we take into
account (60), and, on the right-hand side, (67) and the
equality qk = –ezk . This gives

(69)

Equation (69) with definition (48) substantiates (55).
The above reasoning clarifies the conditions of the
applicability of (55). Equation (69) only includes elec-
trical contributions because, in dilute solutions, short-
range contributions are small compared with long-
range electrical contributions.

Suppose that any of the charged particles of the ini-
tial medium, for instance, a particle of kind k, is the
center of the formation of the screening cloud of other
charged medium particles around it. This is just what
occurs in the Debye–Hückel theory. Clearly, all equa-

qk 4π ρr2 r.d
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Ni k( )
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tions (59)–(69) will as previously be valid. However,
because the particle in the center of the cloud is now a
medium constituent, the sum of its charge ezk and cloud
charge qk (67) gives the charge of the whole medium.
The equality qk + ezk = 0 then corresponds to electro-

neutrality condition. The  value in (60) and (69) is
now the excess of the number of particles of kind i in
the screening cloud around any of the charged particles
of kind k in the medium.

Equation (69) can be applied not only to ordinary
but also to micellar solutions provided micelles are
coated, because linearization (61) is possible for such
solutions. A comparison of (69) and (55) (bearing in
mind definition (48)) shows that, for monomeric ions of
a given concentration, they coincide. When applied to
coated micelles, (69) takes the form of (56)–(58). It fol-
lows that the Debye–Hückel theory substantiates the
results obtained in the preceding section.

Note in conclusion that, although we concentrated
on calculations of exact excesses of the numbers of par-
ticles of various kinds present in the system, the results
of the first section and Eq. (55) allow us to obtain equa-
tions for point excess entropy and other thermodynamic
values.
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