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An expression for the work of formation of a spherical droplet condensing on a soluble condensation
nucleus out of a solvent vapor is derived. The dependence of the formation work on the solvent
vapor chemical potential and the droplet and the nucleus residue sizes is analyzed. The balance of
the solute matter between the liquid film and the nucleus residue and the effect of overlapping the
surface layers of the thin film have been taken into account. It is shown that the equations of the
chemical equilibrium of a solute and a solvent in the droplet, resulting from the generating
properties of the formation work, coincide with the generalized Gibbs–Kelvin–Köhler and Ostwald–
Freundlich equations. The numerical solution of these equations at a fixed number of molecules of
the nucleus matter �at an initial size of the nucleus specified� has been performed in the case of the
solvent vapor undersaturated over the bulk liquid solvent phase. The solution links the equilibrium
sizes of the droplet and the soluble nucleus residue with the chemical potential or the pressure of the
solvent vapor saturated over the droplet. It also determines the limiting sizes of the droplet with
small nucleus residue above which the chemical equilibrium of the residue surface and the solution
film does not exist. The existence of the limiting sizes is responsible for the specific behavior of the
droplet thermodynamic characteristics and the work of droplet formation at deliquescence transition
from the droplet state with a partly dissolved nucleus to the state of complete dissolution of the
nucleus. © 2008 American Institute of Physics. �DOI: 10.1063/1.3021078�

I. INTRODUCTION

The initial stage of nucleation on soluble solid particles
in the atmosphere of a solvent vapor with formation of drop-
lets consisting of the liquid solution film around incom-
pletely dissolved particles �the deliquescence stage� attracted
recently a considerable attention of experimentalists.1–4 In
the case of the solvent vapor undersaturated over the bulk
liquid solvent phase, the experiments1–4 reported a hysteresis
behavior of isotherms for the solvent vapor pressure versus
droplet size at a fixed initial radius of the condensation
nucleus and existence of the deliquescence �associated with a
dissolution� and efflorescence �associated with a crystalliza-
tion� thresholds for transitions between the droplet states
with partially and completely dissolved condensation
nucleus.

In the atmosphere of a supersaturated solvent vapor,
soluble solid particles serving as condensation nuclei dis-
solve completely in growing supercritical droplets on subse-
quent nucleation stages. However, the deliquescence stage is
the only stage of nucleation in the atmosphere of the under-
saturated solvent vapor. This stage finishes with establishing
the aggregative equilibrium between nucleated droplets with
partially and completely dissolved condensation nuclei.

The theory of the deliquescence stage has been consid-
ered in the literature within the frameworks of
one-dimensional5–7 and two-dimensional8–13 approaches. The
one-dimensional approach assumes that the solute equilib-

rium between the surface of the condensation nucleus residue
and the liquid solution film within a droplet establishes faster
than the droplet radius changes in the nucleation process
through the chain of intermediate equilibria. If the tempera-
ture and the initial size of a condensation nucleus are fixed,
the intermediate equilibrium state of the droplet and the cor-
responding nucleus residue can be characterized with the
help of a single variable. It may be, for instance, the droplet
radius.

The two-dimensional approach is more general because
it admits that the solute equilibrium between the surface of
the nucleus residue and the surrounding solution film may be
not reached for larger �critical or supercritical� droplets for
thermodynamic or kinetic reasons. We need two independent
variables �for instance, the radii of the droplet itself and of
the nucleus residue inside it� to describe thermodynamic pe-
culiarities of the droplet formation in this case.10 A corre-
sponding nucleation path may also be different from the
equilibrium one.

Relying upon the previous deliquescence theory5–10 and
the results14–16 on the chemical potential at the surface of a
solid nanoparticle, we will reconsider in this paper the ther-
modynamics of formation of a droplet with a spherical solu-
tion film on a soluble solid nucleus in the atmosphere of a
solvent vapor. The paper continues the investigation started
in Ref. 17. We will present a new analysis of a two-
dimensional expression for the minimal work of formation of
a solution film around a nucleus residue with focusing on the
case of a droplet with a thin film �when the properties of the
bulk liquid phase are not reached within the film� and a largea�Electronic mail: akshch@list.ru.
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nucleus residue and the case of a droplet with a thick film
and a small nucleus residue. We will show that the equations
of the equilibrium with respect to a solute and a solvent in
the droplet, resulting from the generating properties of the
nucleation work, coincide with the generalized Gibbs–
Kelvin–Köhler and Ostwald–Freundlich equations derived in
Ref. 17 for an equilibrium spherical liquid film of solution on
a soluble nanoparticle with account of the disjoining pressure
of the film. A numerical solution of these equations at a fixed
number of molecules of the nucleus matter �at an initial size
of the nucleus specified� will be performed to describe ex-
plicitly the dependence of thermodynamic nucleation charac-
teristics on the film thickness and the nucleus residue size.
The list of such characteristics includes the chemical poten-
tials of a solvent and a solute in the solution film, the solvent
saturated vapor chemical potential, and the solvent saturated
vapor pressure. The numerical solution will allow us to de-
termine the limiting sizes of the droplet above which the
chemical equilibrium of the nucleus residue surface and the
solution film does not exist. It will be shown that the exis-
tence of the limiting sizes is responsible for the specific be-
havior of the droplet thermodynamic characteristics and the
work of droplet formation at deliquescence transition from
the droplet state with a partly dissolved nucleus to the state
of complete dissolution of the nucleus and provides a ther-
modynamic reason for the two-dimensional nucleation
theory of the deliquescence stage.

II. WORK OF DROPLET FORMATION ON A
PARTIALLY DISSOLVING CONDENSATION NUCLEUS

Let us consider a closed system in its initial state with a
solid spherical condensation nucleus of nonvolatile one-
component matter and the vapor of another component
within a given volume V at an absolute temperature T. The
vapor can condense on the nucleus surface to form an envel-
oping liquid film where the matter of the nucleus is soluble.
We also consider the final state of the system �at the same
values of V and T� with a droplet consisting of a solution film
around the partially dissolved nucleus residue in the atmo-
sphere of the solvent vapor. Our first goal is finding an ex-
pression for the minimal work required for heterogeneous
formation of such a droplet.

In the case under consideration, the formation work W is
determined through the difference between the free energies
�2 and �1 of the whole system in its final and initial states
as follows:

W � �2 − �1. �1�

The free energy �1 can be written as

�1 = ��N + �n�n + �1, �2�

where �� is the vapor chemical potential of solvent mol-
ecules, N is the total number of the solvent molecules, �n is
the chemical potential of molecules of the matter inside the
solid nucleus in its initial state when the number of these
molecules equals �n, and �1 is the grand thermodynamic
potential of the whole system in its initial state. The system
free energy �2 in the final stage can be written in a similar
way,

�2 = ���N − �� + ��� + �n��n� + �n
���n − �n�� + �2, �3�

where � is the number of solvent molecules condensed in the
droplet out of the vapor, �� and �n

� are the chemical poten-
tials of the solvent and solute molecules in the liquid solution
film, respectively, �n� and �n� are the solute chemical potential
and the number of solute molecules inside the solid nucleus
residue, respectively, and �2 is the grand thermodynamic
potential of the whole system at its final state. It is admitted
in Eq. �3� that the droplet formation affects negligibly the
solvent vapor chemical potential ��. This fulfills for a suffi-
ciently large system.

Assuming the shapes of a condensation nucleus and its
residue to be spherical and using Gibbs’ approach to inter-
faces, we can represent the grand potentials �1 and �2 of the
system in its initial and final states as

�1 = f�V1
� − p��V − V1

�� + 4�Rn
2	�� − �n�n, �4�

�2 = f�V2
� − p��V − VR� − p��VR − V2

�� − �n��n�

+ 4�Rn�
2	�� + 4�R2	�� + �
, �5�

where f� is the density of the free energy of the solute in the
solid state �this quantity does not vary at dissolving a rigid
solid�, V1

� and V2
� are the volumes of the initial solid nucleus

and its residue in the droplet, respectively, VR=V2
�+V� is the

total volume of the droplet, and V� is the volume of the
liquid solution film. The superscripts �, �, and � refer to the
liquid, gas, and solid phases, respectively, whereas the
double superscripts ��, ��, and �� refer to the interfaces
between corresponding phases. We consider the solvent va-
por pressure p� �as well as the chemical potential ��� be the
same in the initial and final states of the system. The quan-
tities 	��, 	��, and 	�� in Eqs. �4� and �5� are the surface
tensions at the corresponding interfaces; 4�Rn

2, 4�Rn�
2, and

4�R2 are the surface areas of the spherical surfaces with the
radii Rn�R��, Rn��R��, and R�R��, respectively, and p� is
the pressure in the bulk liquid solution at the same values of
the chemical potentials �� and �n

� as in the solution film
around the nucleus residue. The pressure p� does not coin-
cide with the pressure in the film if the film is thin and the
opposite surface layers overlap.17–20 The effect of surface
layers overlapping is also taken into account by the last term
�
 in Eq. �5�. An explicit form of the term will be revealed
below.

Let us introduce the quantity

x =
�n − �n�

�
. �6�

With neglecting adsorption on the opposite film sides, the
quantity x coincides with the relative concentration in the
bulk solution at the same values of the chemical potentials
�� and �n

� of the solvent and solute as in the film around the
nucleus residue. Neglecting adsorption also means the inde-
pendence of surface tensions 	�� and 	�� from the solution
concentration.

The partial molecular volumes �� and �n
� of the solvent

and solute in the solution are determined by the following
relations:
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� ���

�p�� = ��, � ��n
�

�p� � = �n
�. �7�

Assuming the liquid phase to be incompressible, we may
neglect the dependence of the partial volumes �� and �n

� on
concentration x and pressure p�. For a nonvolatile solute
with a negligible adsorption at the film boundaries, the num-
ber � of solvent molecules in a droplet with a partially dis-
solved condensation nucleus can be related to the droplet
volume VR, the volume V2

� of the nucleus residue, the partial
volumes v� and vn

�, the numbers �n and �n� of the solute
molecules in the nucleus and its residue as

� = �VR − V2
� − �n

���n − �n���/�
�. �8�

With the spherical form of a droplet, a nucleus and its resi-
due, we have

VR =
4�

3
R3, V1

� =
4�

3
Rn

3, V2
� =

4�

3
Rn�

3, �9�

�n =
4�Rn

3

3�n
, �n� =

4�Rn�
3

3�n
. �10�

Using Eqs. �9� and �10� together with Eqs. �8� and �6� deter-
mines a relation between �, �n, �n�, and x and radii R, Rn, Rn�.

For weakly compressible solutions, the solvent and sol-
ute chemical potentials �� and �n

� can be represented as
functions of pressure p� and concentration x by the following
relations:21

���p�,x� = �� − kBTx + ���p� − p�� , �11�

�n
��p�,x� = �n�

� + kBT ln
x

x�

+ �n
��p� − p�� , �12�

where �� and p� are the values of the solvent chemical
potential and the saturated vapor pressure over a flat surface
of a pure solvent, respectively, �n�

� and x� are the values of
the solute chemical potential and concentration, respectively,
in the solution saturated over a flat surface of the solid phase
of a pure solute at the same pressure p�, and kB is the Bolt-
zmann constant. The value �n�

� equals the value �n� of the
solute chemical potential in the solid phase15,16 and is related
to the solid free energy density f� as

�n�
� = �n� = �n�f� + p�� . �13�

Substituting Eqs. �11�–�13� into Eqs. �2�–�5� and recog-
nizing Eqs. �1�, �9�, and �10�, lead to the following expres-
sion for the work of droplet formation around a partly dis-
solved condensation nucleus:

W = − ���� − ��� − kBT�x + kBT��n − �n��ln
x

x�

+ 4�Rn�
2	�� + 4�R2	�� − 4�Rn

2	�� + �


+ �VR − VRn
��P� − P�� . �14�

The term �
 in Eq. �14� stands for the contribution of the
disjoining pressure of a thin liquid film with overlapping
surface layers.18 The disjoining pressure 
 may be defined

for a spherical liquid film with the inner and outer radii Rn�
and R as20


 � pN�Rn�,h� − p�, �15�

where pN is the normal component of the film pressure ten-
sor, and h�R−Rn� is the thickness of the film. Using an
analogy with the case of a spherical one-component film on
a wettable substrate and neglecting the dependence of the
disjoining pressure on the concentration of the weak solu-
tion, the term �
 can be written in the following form:22,23

�
 = 4�Rn�
2�

R−Rn�

�


dh . �16�

It is recognized in Eq. �16� that the substrate and droplet
surfaces are the concentric spheres with radii Rn� and R.

Substituting Eq. �16� into Eq. �14�, taking into account
Eq. �6�, and neglecting term �VR−V1

���p�− p�� as relatively
small with respect to other contributions in Eq. �14�, we
obtain the final expression for the formation work W,

W = − ���� − ��� + kBT��n − �n���ln
x

x�

− 1�
+ 4�Rn�

2	�� + 4�R2	�� − 4�Rn
2	��

+ 4�Rn�
2�

R−Rn�

�


dh . �17�

Evidently, we have Rn�=0 and �n�=0 in the case of complete
dissolution of the condensation nucleus in the droplet. As
follows from Eq. �16�, �
=0 in this case and we can rewrite
Eq. �17� in the following form:

W = − ���� − ��� + kBT�n�ln
x

x�

− 1� + 4�R2	��

− 4�Rn
2	��, �18�

which is known in the theory on nucleation on completely
soluble nuclei.

Another limiting situation is realized in the case of an
insoluble condensation nucleus. Setting �n�=�n and Rn�=Rn,
we have x=0 in accordance with Eq. �6�. Then Eq. �17�
reduces, in the case of an insoluble condensation nucleus, to
the following form:22,23

W = − ���� − ��� + 4�R2	�� + 4�Rn
2�	�� − 	���

+ 4�Rn
2�

R−Rn

�


�h�dh . �19�

III. GENERATING PROPERTIES OF THE FORMATION
WORK: THE GENERALIZED GIBBS–KELVIN–KÖHLER
AND OSTWALD–FREUNDLICH EQUATIONS

The work of the droplet formation possesses generating
properties in the thermodynamics of nucleation because the
work is expressed via the difference of thermodynamic po-
tentials for the initial and final states of a system. For ex-
ample, the partial derivatives of work W with respect to the
solvent molecular number � �at a fixed number �n� of mol-
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ecules in the nucleus residue� and with respect to �n� �at a
fixed �� equal the chemical potential differences ��−�� and
�n�−�n

�,

	 �W

��
	

�n�
= �� − ��, 	 �W

��n�
	

�

= �n� − �n
�. �20�

Let us use Eq. �17� in the first of Eqs. �20�. As was
already mentioned in the preceding section, we assume par-
tial volumes v� and vn

�, surface tensions 	�� and 	��, and the
disjoining pressure 
 to be independent of the solution rela-
tive concentration x. We also neglect the dependence of 	��

on the nucleus residue radius and the dependence of 	�� on
the droplet radius. By differentiating work W with respect to
� and taking account of Eqs. �6� and �8�–�10�, we obtain
from Eq. �20�

�� = �� − kBTx +
2	����

R
−

Rn�
2

R2 
��. �21�

As it should be expected, the right-hand side of Eq. �21�
coincides with the expression for the solvent chemical poten-
tial in the droplet �Eq. �22� in Ref. 17�. One can also derive
Eq. �21� from Eq. �11� by neglecting the relatively small
term v��P�− P�� and accounting for the condition of me-
chanical equilibrium for a spherical film with the inner radius
Rn� and the outer radius R as20

p� = p� +
2	��

R
−

Rn�
2

R2 
 . �22�

Similarly, using Eq. �17� in the second of Eqs. �20�, dif-
ferentiating work W with respect to �n�, and taking account of
Eqs. �6� and �8�–�10�, we have

�n� − �n
� =

2	���n

Rn�
+

2	����n − �n
��

R
− kBT ln

x

x�

+
2�n

Rn�
�

R−Rn�

�


dh + 

�n −
Rn�

2

R2 ��n − �n
��� .

�23�

If a diffusion equilibrium is attained for a solute within
the liquid film and at the solid surface of a nucleus residue
and for a solvent in the droplet and in the vapor, one has
�n�=�n

� and ��=��. In accordance with Eq. �20�, the ex-
treme work conditions

�W

��
= 0,

�W

��n�
= 0 �24�

are the diffusion equilibrium conditions in terms of the vari-
ables � and �n�. In view of Eq. �24�, following from Eqs. �21�
and �23� equations

− �� + �� − kBTx +
2	����

R
−

Rn�
2

R2 
�� = 0, �25�

2�n

Rn�
�	�� + �

R−Rn�

�


dh� −
2	����n

� − �n�
R

− kBT ln
x

x�

+ 

�n −
Rn�

2

R2 ��n − �n
��� = 0 �26�

determine, with the help of Eqs. �6� and �8�–�10�, couples of
values of � and �n� corresponding to minima and the saddle
point for the work W of the droplet formation at a given
value �� of the solvent vapor chemical potential and a given
initial amount �n of the nucleus matter �at a given initial
radius Rn of the nucleus�. The analysis of numerical solutions
of these equations will be given in Sec. V.

With the equality,

�� − �� = kBT ln
P�

P�

, �27�

Eq. �25� can be transformed into the generalized Gibbs–
Kelvin–Köhler equation of the theory of nucleation on
soluble particles �Eq. �32� in Ref. 17�. Equation �26� is a
generalization of the Ostwald–Freundlich equation of the
theory of solutions �Eq. �30� in Ref. 17� and yields the de-
pendence of the solubility of the nucleus residue on its size
and the droplet size. With account of Eq. �6� for concentra-
tion x as a function of � and �n�, Eq. �26� establishes a rela-
tion between � and �n� �or between R and Rn�� at the diffusion
equilibrium between the nucleus matter in the droplet and the
nucleus residue surface. The fact that Eqs. �24� yield correct
equations of diffusion equilibrium with respect both to a sol-
ute and a solvent gives a confirmation of results obtained in
Ref. 17 and exhibits the thermodynamic consistency of Eq.
�17� for the work of formation of a droplet on a soluble
nucleus.

IV. DROPLET FORMATION WORK AT EXPONENTIAL
APPROXIMATION OF DISJOINING PRESSURE

As an analytical representation of the disjoining pressure

 as a function of the film thickness h�R−Rn�, we will use
an exponential approximation19,22–24 for the structural com-
ponent of the disjoining pressure,


 = K exp�−
R − Rn�

l
� . �28�

Here l is a parameter called the correlation length in the
solution film around the nucleus residue. The pre-exponential
multiplier K is related to the surface tensions 	��, 	��, and
	�� and to the correlation length l as24

K =
	�� − 	�� − 	��

l
. �29�

Since, as was mentioned above, we consider the case when
dependence of the disjoining pressure on the solution con-
centration is negligible, we assume parameters l and K to be
independent of the solution concentration.

Using Eq. �28�, we rewrite the droplet formation work
�Eq. �17�� as
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W = − ���� − ��� + kBT��n − �n���ln
x

x�

− 1�
+ 4�Rn�

2	�� + 4�R2	�� − 4�Rn
2	��

+ 4�Rn�
2lK exp�−

R − Rn�

l
� . �30�

Herein after, it is convenient to deal with the dimensionless
droplet formation work,

F � W/kBT , �31�

the dimensionless vapor chemical potential,

b � ��� − ���/k�T , �32�

and the dimensionless condensate chemical potential,

b� � ��� − ���/kBT . �33�

To perform calculations, we determine the numerical
values of the parameters in Eq. �30� as

Rn = 15 nm, �n = 0.02 nm3, �� = 0.03 nm3,

�n
� = 0.022 nm3, T = 298 K,

�34�
	�� = 200 mJ m−2, 	�� = 72 mJ m−2, x� = 0.2,

l = 2 nm, K = 3  108 Pa.

These values are taken for a realistic solid condensation
nucleus and water as a condensate.

The surface of the work F constructed, according to Eqs.
�30�, �31�, and �8�–�10� and the data from Eq. �34�, in vari-
ables � and �n� is presented in Figs. 1 and 2 at �n=7.068
105 for two values of the vapor chemical potential:
b=−0.2 and b=−0.25. The relief depicted in Figs. 1 and 2
shows a trajectory of transition of a growing droplet from the
state of equilibrium between the liquid film, the vapor, and
the surface of a partly dissolved nucleus to the state of equi-
librium of the droplet with its vapor at complete dissolution
of the nucleus. Two points of minima and the saddle point of
the droplet formation work are visible in Figs. 1 and 2. The
point of the first minimum of the work F at a small � corre-
sponds to a droplet with a partly dissolved nucleus being in a
stable equilibrium with respect to a solute in the solution

film. Along with that, the droplet is in a stable equilibrium
with respect to a solvent with the surrounding vapor. The
first minimum of the work F is provided by the overlap of
the surface layers within a thin liquid film. If we ignore the
disjoining pressure of the film, the first minimum does not
exist. The point of the second minimum at �n�=0 corresponds
to a droplet with a completely dissolved nucleus at a stable
equilibrium with the vapor with respect to a solvent. The
second minimum of the work F exists due to the effect of
decreasing the solvent chemical potential by the presence of
a solute. The saddle point of the work F in Fig. 1 corre-
sponds to a critical droplet with a partly dissolved nucleus in
the state of unstable equilibrium with a solvent vapor and
stable equilibrium with respect to a solute within the droplet.
The saddle point of the work F in Fig. 2 corresponds to a
critical droplet with a partly dissolved nucleus in the state of
unstable equilibrium with respect to a solute within the drop-
let and stable equilibrium with a solvent vapor. Both the
figures display the existence of activation barriers for the
direct and reverse transitions between the droplet states with
a partly and completely dissolved nucleus at the above val-
ues of the vapor chemical potential b and the initial nucleus
size �n. Figure 1 illustrates the situation when the direct tran-
sition �the deliquescence transition� occurs with a higher
probability and the droplet state with a completely dissolved
nucleus is more stable than the state with a partly dissolved
nucleus. The opposite situation is shown in Fig. 2 when the
reverse transition �the efflorescence transition� is of a higher
probability since the state of a droplet with a partly dissolved
nucleus is more stable.

V. BARRIER AND BARRIERLESS FORMATION OF A
DROPLET

Let us investigate the behavior of thermodynamic char-
acteristics of stable and unstable equilibrium droplets satis-
fying the conditions expressed in Eqs. �24�, as depending on
the solvent vapor chemical potential. Taking into account
Eqs. �6� and �28�, it is convenient to rewrite the generalized
Ostwald-Freundlich equation �Eq. �26�� as

2

4

6

0
2 6 10 14 18 22 26 30 34 38

-378

-383

-388

-393

-398

-403

5
10

�
�� �
n

5
10

�
� �

3
10

�
�F

FIG. 1. The two-dimensional work F of the droplet formation on a soluble
nucleus in an undersaturated vapor at the vapor chemical potential b=−0.2.

FIG. 2. The two-dimensional work F of the droplet formation on a soluble
nucleus in an undersaturated vapor at the vapor chemical potential
b=−0.25.
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kBT ln��n − �n�

�x�

� =
2�n

Rn�

	�� + lK exp�−

R − Rn�

l
��

−
2	����n

� − �n�
R

+ K exp�−
R − Rn�

l
�


�n −
Rn�

2

R2 ��n − �n
��� . �35�

Note that a parametric dependence on �n is also present in
Eq. �35�. A numerical solution of Eq. �35� with the help of
Eqs. �8�–�10� and data from Eq. �34� permits the determina-
tion of �n���� as a function of � at an equilibrium in a droplet
between the nucleus residue and the solution film with re-
spect to a solute. The resulting function at �n=7.068105 is
depicted in Fig. 3. It is two-valued and has a reverse point
�=�i ��i=2.414106 and �n���i�=62 289 in Fig. 3�, whereas
the inverse function ���n�� is single-valued and ranged within
0����n����i at any value of the variable �n� from 0 to �n.
The value �i grows with increasing �n. The existence of the
reverse point and the two-valuedness of the function �n����
mean that, at a fixed �n, the solution film cannot be in stable
or unstable equilibrium with the nucleus residue in the drop-
let at ���i.

If a value of � is not arbitrary but corresponds to a root
of Eq. �25� at a given value of the solvent vapor chemical
potential �value of b in view of Eq. �32��, then different
values of b correspond to different pairs �n� and � in the curve
depicted in Fig. 3. The dependencies of equilibrium values of
�n� and � on b are shown in Figs. 4 and 5 as obtained from the
joint solution of Eqs. �25� and �35� with account of Eqs. �6�,
�8�–�10�, �28�, and �34�. Note that the dependence ��b� is
plotted in Fig. 5 in the region of both partial and complete
dissolution of a nucleus in a droplet. Although the curves
��b� in the regions of partial and complete dissolution of a
nucleus in a droplet come very close to each other and seem
to merge in Fig. 5 at smaller values of the vapor chemical
potential b, they do not intersect in fact.

Another reverse point b=bm is seen in Figs. 4 and 5
�bm=−0.19275, �n��bm�=3.969105, ��bm�=1.318106�, so
that there are no stable equilibrium values of �n� and � at b
�bm in the region of the partial dissolution of a nucleus, but

there are stable values of � in the region of the complete
dissolution of a nucleus. The quantity bm has the meaning of
a threshold value5,7,18 of the chemical potential of an under-
saturated vapor for the transition from droplets with a par-
tially dissolved nucleus to droplets with a completely dis-
solved nucleus, so that the transition is realized barrierlessly
at b�bm. Note that the maximum point in the curve ��b� in
the region of a partial dissolution of a nucleus corresponds to
the values b=bi �bi=−0.228 92, ��bi�=2.414106, and
�n��bi�=62 289� indicated in Figs. 4 and 5, whereas the values
��bi� and �n��bi� themselves coincide with the coordinates �i

and �n���i� of the reverse point in Fig. 3.
The dependence ��b� shown in Fig. 5 may be easily

transformed with the help of Eqs. �27� and �8�–�10� into the
dependence of the droplet radius on the solvent vapor pres-
sure saturated over the droplet with a given initial radius of
the condensation nucleus. Such dependence can be plotted
directly from experimental data.1–4 Figure 6 demonstrate the
dependence of the so-called growth factor R /Rn on the rela-
tive humidity �RH�� p� / p�

� of the solvent vapor obtained by
the mentioned transformation of Fig. 5. As in Fig. 5, the
curves R /Rn in the regions of partial and complete dissolu-
tions of a nucleus in a droplet come very close to each other
and seem to merge in Fig. 6 at smaller values of the RH, but
they do not intersect.

FIG. 3. The equilibrium value of �n� as a function of �.

FIG. 4. The dependence of the equilibrium value of �n� on the dimensionless
vapor chemical potential b.

FIG. 5. The dependence of the equilibrium value of � on the dimensionless
vapor chemical potential b.
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Let us now comment how the behavior of growth factor
versus relative humidity shown in Fig. 6 corresponds to the
hysteresis effect found in experiment.1–4 The hysteresis ef-
fect manifests itself in the difference between the humidities
at which deliquescence and efflorescence set in. As shown in
Fig. 6, the deliquescence relative humidity �DRH� corre-
sponds to the threshold value bm. The efflorescence relative
humidity �ERH� cannot be obtained from the pure thermo-
dynamic approach presented here. It requires a kinetic con-
sideration of spontaneous crystallization in a droplet which is
out of the scope of this paper. As a result of kinetic mecha-
nism, the ERH point lies in Fig. 6 considerably below the
value of RH at bi �we can set it approximately at RH=0.3�.
Evidently, only the parts of the plot in Fig. 6, which corre-
spond to a stable equilibrium of the droplet with vapor, can
be observed in experiment. The branch of the curve R /Rn vs
RH in the region of incomplete nucleus dissolution, which
lies below the DRH point, and the branch in the region of
complete dissolution, which lies above the ERH point, are
such parts.

The values bm and bi for the vapor chemical potential are
important for the description of the barrierless and barrier

transitions of droplets between the states with a partially and
completely dissolved nucleus. Let us consider the one-

dimensional work of formation of a droplet F̃�F�� ,�n�
=�n����� with molecular number �n� in the nucleus residue
determined as a function of � in accordance with Eq. �35�
�i.e., in accordance with the curve �n���� plotted in Fig. 3�. At

�n��0 F̃ corresponds to the projection of the “weir line” on

the plane �F ,�� in Figs. 1 and 2. The F̃ vs � plots are de-
picted in Figs. 7–9 for three values of the vapor chemical
potential: bmb�bi �b=−0.2�, b�bi �b=−0.25�, and b�bm

�b=−0.18�. In all the cases, the dependence of F̃ on � con-
sists of two branches corresponding to the regions with par-
tially and completely dissolved condensation nuclei.

At bm�b�bi, the branch corresponding to a partially
dissolved nucleus in Fig. 7 has the minimum and maximum
points located before the reverse point �=�i ��i=2.414
106, as also in Fig. 3�. As follows from the comparison of
Figs. 1 and 7, the part of this branch corresponding to �n�
��n���i� and ���i has no physical meaning within the
frames of the one-dimensional approach. The apparent inter-
section of the branches for the partial and complete dissolu-
tions of a nucleus in a droplet has also no physical sense. The

points of a minimum of the function F̃=F�� ,�n�=�n����� are
obvious to correspond to minima of the full two-dimensional

function F, and the points of a maximum of F̃=F�� ,�n�

FIG. 7. The plot of the one-dimensional work of droplet formation F̃ vs � at
the vapor chemical potential b=−0.2.

FIG. 8. The plot of the one-dimensional work of droplet formation F̃ vs � at
the vapor chemical potential b=−0.25.ERH DRH
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FIG. 6. The growth factor R /Rn as a function of the relative humidity RH
� P� / P�

�.

FIG. 9. The plot of the one-dimensional work of droplet formation F̃ vs � at
the vapor chemical potential b=−0.18.
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=�n�����, if any, correspond to saddle points �see Fig. 1�. The
activation barrier for the transition of a droplet from the state
with a partially dissolved nucleus to the state with a com-
pletely dissolved nucleus is determined by the difference of
values of work F in its saddle point and the point of the first
minimum and can be estimated as the difference between a
maximum and a minimum of the quasi-one-dimensional

function F̃ in the case under consideration. This means that
the one-dimensional theory can be used for the kinetic analy-
sis of transition of a droplet from the state with a partially
dissolved nucleus to the state with a completely dissolved
nucleus in the situation at bm�b�bi shown in Fig. 7.

At b�bi in Fig. 8, the branch corresponding to a par-
tially dissolved condensation nucleus has a minimum but no
maximum at ���i. This does not mean the absence of a
saddle point for the total work F and, correspondingly, the
absence of an activation barrier for the transition of a droplet
from the state with a partially dissolved nucleus to the state
with a completely dissolved nucleus. However, this means
that one cannot calculate the activation barrier within the
one-dimensional theory at b�bi.

A particular case is presented in Fig. 9. Extremes of the
droplet formation work are absent at all in the region of a
partially dissolved nucleus at b�bm, and the work curve
itself monotonically falls with the growth of �. Thus, the
transition of a droplet from the state with a partially dis-
solved nucleus to the state with a completely dissolved
nucleus becomes barrierless in this case.

VI. DISCUSSION

Let us now summarize the important facts that have been
revealed by the analysis presented of the numerical solution
of the generalized Gibbs–Kelvin–Köhler and Ostwald–
Freundlich equations and by the issuing computation of ther-
modynamic characteristics of a droplet nucleating on a
soluble condensation nuclei in the atmosphere of an under-
saturated solvent vapor. In agreement with the previous
results5,7–9,23 �but with more details presented here�, it has
been shown that the existence of stable droplets with a
slightly dissolved nucleus and a thin solution film can be
explained by overlapping surface layers within the film. The
effect is described by the terms with the disjoining pressure
in Eqs. �25� and �26� and provides a minimum for the work
of droplet formation with a partial dissolution of a conden-
sation nucleus, given by Eqs. �17� and �30�.

A new behavior of the thermodynamic parameters of
critical droplets with small nucleus residues and thick solu-
tion films has been established by investigating the link be-
tween the equilibrium sizes of the droplet and the soluble
nucleus residue at various values of the chemical potential of
a solvent vapor saturated over the droplet. The appearance of
limiting values �i and bi demonstrates a gradual exchange of
the roles of variables � and �n� in description of a critical

droplet with decreasing the solvent vapor chemical potential
below the threshold value for the deliquescence transition.
While the critical droplet is stable with respect to the solute
equilibrium with the nucleus residue �stable with respect to
�n�� and unstable with respect to the solvent equilibrium with
the vapor �unstable with respect to �� at the values of the
vapor chemical potential slightly below the deliquescence
threshold �bm�b�bi�, the situation becomes opposite with
considerably decreasing the vapor chemical potential �bi

�b� to the efflorescence threshold. As was shown in Sec. V,
this fact imposes a limitation on using the one-dimensional
approach in the theory of deliquescence transition.
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