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A derivation of chemical equilibrium equations for a spherical thin film of solution around a soluble
solid nanoparticle is presented. The equations obtained generalize the Gibbs–Kelvin–Köhler and
Ostwald–Freundlich equations for a soluble particle immersed in the bulk phase. The generalized
equations describe the dependence of the chemical potentials of a condensate and dissolved
nanoparticle matter in the thin solution film, the condensate saturated pressure, and the solubility of
the nanoparticle matter on the film thickness, and the nanoparticle size with account of the
disjoining pressure of the liquid film. © 2008 American Institute of Physics.
�DOI: 10.1063/1.2996590�

I. INTRODUCTION

Gibbs’ relationship1

�1 = �1,� +
2���v1

�

R
�1�

is basic for the thermodynamics of homogeneous and hetero-
geneous nucleations. Equation �1� determines how the con-
densate chemical potential �1 in a spherical embryo of phase
�, surrounded by metastable phase �, depends on radius R of
the embryo surface at a fixed temperature T. Here �1,� is the
condensate chemical potential at the equilibrium of phases �
and � with a flat interface, v1

� is the volume per condensate
molecule in phase � under the assumption that the phase is
incompressible, and ��� is the surface tension related to the
embryo surface of tension; all the quantities are taken at the
same temperature T. If phase � is an ideal gas and phase � is
a liquid �correspondingly, the embryo is a droplet�, Eq. �1�
can be rewritten in the form of the Gibbs–Kelvin equation,2

kBT ln
p1,R

�

p1,�
� =

2���v1
�

R
�2�

for the equilibrium partial pressure p1,R
� of the condensate

vapor �p1,�
� is a value of p1,R

� for a flat interface between
phases � and � and kB is the Boltzmann constant�. If the
droplet includes, in addition to the condensate �component 1�
playing the role of a solvent, also a solute �component 2�
with a relative bulk concentration x�c2

� /c1
� �ci is the number

of molecules of component i �i=1,2� per unit volume; the
variable x coincides with the molar fraction for dilute solu-
tions�, then the Gibbs–Kelvin equation transforms into the
Gibbs–Kelvin–Köhler equation,3

kBT ln
p1,R

�

p1,�
� =

2���v1
�

R
− kBTx . �3�

A relationship for the solubility xR of a small solid particle
�phase �� of radius R in the ideal bulk solution �phase �� is

analogous to the Gibbs–Kelvin equation and is called the
Ostwald–Freundlich equation,4,5

kBT ln
xR

x�

=
2���v2

�

R
. �4�

Here x� is the relative concentration of solute in phase � at
the equilibrium of phases � and � with a flat interface, v2

� is
the volume per molecule in the solid particle, and ��� is the
surface tension of the solid particle at its boundary with
phase �; all the quantities being taken at the same tempera-
ture T.

The problem of description of chemical equilibrium of a
droplet condensing out the vapor-gas environment around
partially dissolving solid nanoparticle �the so-called deli-
quescence problem� recently roused a considerable interest
in view of new experimental technique for studying ultrafine
aerosols.6,7 Such a droplet consists of a spherical liquid film
of saturated solution of the particle matter and the solid core
�the remainder of the particle�. It was experimentally
proven6,7 that, in the case of high solubility of the solid mat-
ter, the droplet with a soluble solid core can be stable in an
undersaturated vapor. It is theoretically expected8 that, in the
case of low solubility, the droplet can be stable also in
slightly supersaturated vapor. As a rule, the liquid film in a
stable droplet is thin, with thickness much smaller than the
radius of a solid core.

As was first shown theoretically,8 the existence of thin
stable films on partially dissolved cores can be explained
using the concept of the film disjoining pressure. The disjoin-
ing pressure takes into account the difference of the normal
component of the pressure tensor in a thin liquid film from
the pressure in the bulk liquid phase of the same nature and
at same values of temperature and chemical potentials of
components as in the film.9 The disjoining pressure is pro-
duced by overlapping of the surface layers related to the
boundaries with the core and the vapor-gas medium. This
overlapping is a result of long-ranged electrostatic and mo-
lecular forces �the electrostatic and molecular contributionsa�Electronic mail: akshch@list.ru.
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to the disjoining pressure� and near-to-wall ordering �the
structural contribution to the disjoining pressure�.9

Earlier, the applications and extensions of the Gibbs–
Kelvin–Köhler equation for the condensate chemical poten-
tial in the film on soluble solid core and the Ostwald–
Freundlich equation for the solubility of solid matter in the
film with account of disjoining pressure were considered in
Refs. 8, 10, and 11. The relationships found in Ref. 8 re-
ferred to the quasiflat films of a dilute solution around par-
tially soluble macroscopic condensation nuclei, with the sur-
face tensions at the film boundaries taken the same as for a
film of pure condensate. The Ostwald–Freundlich equation
was taken in the form expressed in Eq. �4�, and the differ-
ence between the partial molecular volumes of condensate
and solute was neglected. An account of this difference and
an extension of the Ostwald–Freundlich equation for a film
of ideal solution on a nanoscaled condensation nucleus were
presented in more recent papers.10,11

Expanding recently the definition of the disjoining pres-
sure to the case of thin liquid films on small solid particles,
we showed the condition of mechanical equilibrium in a
spherical film with overlapping surface layers to be written
as �Ref. 12, Eq. �80��

p� − p� =
2���

R
− �pN − p��

Rn
2

R2 , �5�

where p� and p� are the total pressures in the mother bulk
phase of the film and the vapor phase at equilibrium with the
film, R is the outer film radius, pN is the normal component
of the pressure tensor in the film at the boundary with the
particle, and Rn is the particle radius. This refinement is im-
portant in the case of nanoscaled condensation nuclei, but it
was earlier not recognized in the analysis of Gibbs–Kelvin–
Köhler and Ostwald–Freundlich equations for thin films. Be-
sides, when considering the conditions of equilibrium of a
solid particle, one should take into account the difference
between the thermodynamically and mechanically defined
surface tensions of the particle and the fact that the chemical
potential of the particle matter cannot be the same in solid
particle and solution even at true equilibrium.1,13,14 In addi-
tion, the surface tensions at the film boundaries depend, for
thin films, on the film thickness and are related to the dis-
joining pressure.12,15,16 Finally, because a thin film is inho-
mogeneous and the bulk density cannot be achieved any-
where within the film, the question arise what one should
understand as a solute concentration entering Gibbs–Kelvin–
Köhler and Ostwald–Freundlich equations for a thin film.

The problems noted indicate that some corrections to the
derivation of Gibbs–Kelvin–Köhler and Ostwald–Freundlich
equations are required in the case of thin spherical solution
films on soluble solid nanoparticles, and we elaborate such
corrections in this work. Resulting generalized equations will
allow us to find the dependence on the film thickness and the
nanoparticle size for the chemical potentials of all species,
the saturated pressure of condensate vapor, and the solubility
of the nanoparticle.

II. RELATIONSHIPS FOR THE CHEMICAL
POTENTIALS OF CONDENSATE AND DISSOLVED
CORE MATTER IN A CURVED THIN FILM

Let us consider a droplet in the form of a liquid film
around a spherical nonvolatile one-component solid core, the
drop being in equilibrium with a surrounding vapor-gas me-
dium. The solid matter is soluble in the film, so that the
evaporation-condensation process between the drop and its
surroundings can be accompanied by the dissolution-
deposition process between the solid core and the film. We
mark quantities referred to liquid, gas, and solid phases with
superscripts �, �, and �, respectively. It should be noted at
once that the state of a bulk phase can be unattainable inside
the core and the enveloping film in view of their small di-
mensions. It does not matter for the core because only sur-
face monolayer plays the determinative role for solids,17 al-
though we may use also quantities referred to the solid
reference bulk phase. The properties of liquid bulk phase �
can differ from those for the thin film. However, phase � is a
mother phase for the film and, when taken at the same values
of temperature and chemical potentials, is of fundamental
importance for description of the film.

We mark the condensing component by subscript 1 and
the dissolving component by subscript 2. Let the outer radius
of a droplet with a core be R and the core radius Rn. Our first
task will be finding an isothermal dependence of the conden-
sate and solute chemical potentials in the film on radii R and
Rn.

Let us start with the condensate chemical potential �1
� in

the phase � being a uniform solution of the core matter in the
condensate with relative concentration x at pressure p� and
temperature T. As is known, the dissolution of foreign matter
always decreases the chemical potential of a solvent, the ef-
fect being the stronger, the higher the solute concentration.
This effect can be described in terms of the osmotic pressure
��x� under the assumption of incompressibility of phase � as

�1
��p�,x� = �1,0

� �p�� − v1
���x� , �6�

where �1,0
� is the molecular chemical potential in a pure con-

densate at the same pressure and temperature, and v1
� is the

partial molecular volume of the condensate in the solution.
Let �p� p�− p� be the total pressure difference for the

liquid and gas phases. Then Eq. �6� with the same accuracy
can be rewritten in the form

�1
��p� + �p,x� = �1,0

� �p�� + v1
���p − ��x�� . �7�

If the solution film around the core is thin, then overlapping
the surface layers produces the disjoining pressure 	 in the
film. We define 	 as12

	 � pN − p�, �8�

where p� is pressure in the mother phase of the film at the
same temperature and chemical potentials as in the film and
pN is the normal component of the pressure tensor in the film
at its inner boundary with the core. Thus, when phase � is at
equilibrium with the spherical thin film, the chemical poten-
tials of condensate and solvent in the phase � and the film
coincide, but in view of Eqs. �5� and �8� pressure p� in phase
� differs from the external pressure p� by the quantity
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�p � p� − p� =
2���

R
−

Rn
2

R2	 , �9�

where ��� is the surface tension at the boundary between the
film and the gas phase. Disjoining pressure 	 equals zero for
a thick film, and Eq. �9� reduces to the Laplace equation in
this case. In the general case, pressure 	 is evident to depend
on concentration x of the solute in the bulk solution kept in
equilibrium with the film. In its turn, concentration x is de-
termined by the values of chemical potentials in phase �.

Taking into account the condition of equality of the con-
densate chemical potentials in phase � and the film, we find,
using Eqs. �7� and �9�, the following relationship for the
condensate chemical potential �1 in the film:

�1 = �1
��p� + �p,x�

= �1,0
� �p�� +

2���v1
�

R
− v1

��Rn
2

R2	 + ��x�� . �10�

In view of the approximate equality �1,0
� �p����1,� �the dif-

ference p�− p1,�
� is assumed to be much smaller than �p or

��x� for nanosized droplets�, Eq. �10� generalizes the Gibbs
equation �1� to the case of thin spherical solution film on a
solid core.

It is not hard to obtain, in a similar way, an expression
for the solute chemical potential �2. Using the condition of
equality of the solute chemical potentials in phase � and the
film, we find, with the help of Eq. �9�, the following relation-
ship:

�2 = �2
��p� + �p,x� = �2

��p�,x� +
2���v2

�

R
− v2

�Rn
2

R2	 ,

�11�

where �2
� is the solute chemical potential and v2

� is the solute
partial molecular volume in phase �. On the other hand, the
chemical potential �2 should be equal to the chemical poten-
tial of the core matter at the core surface.17 As is
known,1,13,14 the equality of the chemical potentials of the
core matter inside the spherical solid particle and in the so-
lution breaks. Nevertheless, if we know the value of the sol-
ute chemical potential in the solution, we know the value of
the chemical potential of the solid at the core surface. Using
Eq. �21� from Ref. 13 and assuming the core incompressible,
one may write the following expression for the chemical po-
tential �2

��p�� of the core matter at the surface of the core
under external pressure p�:

�2
��p�� = �2,�

� + v2
�
2�Rn

��

Rn
+ v2

�
d�Rn

��

dRn
, �12�

where �2,�
� is the chemical potential of the solid matter at the

flat interface between the solid substrate and the bulk solu-
tion with pressure p� and concentration x� and �Rn

�� is the
thermodynamic surface tension at the core-solution bound-
ary. Note that chemical potential �2,�

� can be represented1,13

as

�2,�
� = v2

��f + pN,�� = �2,�
� , �13�

where f is the free energy density in the solid phase,

pN,� = p� �14�

is the normal component of the pressure tensor in the film at
the boundary with the flat substrate, and

�2,�
� � �2

��p�,x�� . �15�

Changing the normal component of the pressure tensor
at the substrate-solution boundary by quantity �pN� pN

− p�, where pN corresponds, as before, to the value at the
inner boundary of the spherical film around the solid core,
we obtain from Eqs. �12�–�15� the following useful relation-
ship:

�2 = �2
��p� + �pN�

= �2
��p�,x�� + v2

�	�pN +
2���

Rn
+ 
 ����

�Rn



h=R−Rn

� ,

�16�

which is hard to get for free by another approach. In this
procedure surface tension �Rn

�� turns in Eq. �16� into surface
tension ��� at the inner boundary of the film, the derivative
d�Rn

�� /dRn at a fixed state of the bulk solution into derivative
������ /�Rn��h=R−Rn

at a fixed film thickness h=R−RN.
Therewith, the quantity �pN� pN− p� has a sense of the dif-
ference of normal components of the pressure tensor at the
inner and outer film boundaries. Note that the state of a
curved thin film depends not only on the film thickness but
also on the curvatures of each of the film boundaries as well
because the curvatures can be varied independently. The fact
that we fix only the film thickness means that the solid core
is assumed to be large in comparison with the molecular size.
Thus, the condition of a fixed film thickness which is strictly
valid for a flat film serves here as an approximation.

Using the equality

�pN � pN − p� = 	 +
2���

R
−

Rn
2

R2	 , �17�

which follows from Eqs. �8� and �9�, we find from Eq. �16�

�2 = �2
��p�,x�� + v2

�		 +
2���

R
−

Rn
2

R2	

+
2���

Rn
+ 
 ����

�Rn



h=R−Rn

� . �18�

This expression for the solute chemical potential allows us to
derive an equation for the core activity and solubility.

III. THE CORE SOLUBILITY AND THE SATURATED
VAPOR PRESSURE OF THE CONDENSATE AS
FUNCTIONS OF THE FILM AND CORE RADII

The standard expression for the chemical potential
�2

��p� ,x� in phase �, which is the bulk solution of the solid
core matter in the condensate with relative concentration x
and activity a�x� at pressure p� and temperature T, has a
form
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�2
��p�,x� = �2

*�p�� + kBT ln a�x� , �19�

where �
2
* is the standard part of the solute chemical potential

�as x→0�. The analogous expression for �2,�
� can be written

as

�2,�
� = �2

*�p�� + kBT ln a�, �20�

with a��a�x��. Substituting Eq. �19� into Eq. �11� and, cor-
respondingly, Eq. �20� into Eq. �18� and equating the right-
hand sides of Eqs. �11� and �18�, we obtain an equation for
the solute activity as a function of radii RN and R,

kBT ln
a�x�
a�

= v2
�		 +

2���

Rn
+ 
 ����

�Rn



h=R−Rn

�
+ �v2

� − v2
��	2���

R
−

Rn
2

R2	� . �21�

The equilibrium concentration x entering Eq. �21� refers
not to the film itself, but to the film mother phase. It would
coincide with the solubility xRn

of the nanoparticle of radius
Rn if the nanoparticle was immersed in the bulk phase �. The
real solubility xf of the nanoparticle matter in the film is
different from x and xRn

because the distribution of the solute
in the film is inhomogeneous. Evidently, the real distribution
of the solute in the film can be represented as the bulk con-
centration in phase � and adsorptions at the film boundaries.
The adsorbed matter at the core surface is indistinguishable
from the core itself and can easily be taken into account by
the choice of radius Rn. As far as the adsorption at the film
boundary with the gas phase is concerned, this adsorption is
negligible in the typical case of surface inactive matter of the
core �for instance, NaCl� that usually constitutes soluble con-
densation nuclei. Thus, the average solute concentration in
the film and the bulk concentration in phase � can be con-
sidered to be almost equal at the same temperature and
chemical potentials, and we may call the equilibrium concen-
tration x the solubility of the solid core in the film.

Evidently, Eq. �21� represents a more general form of the
Ostwald–Freundlich equation �4� for the problem considered.
Let us introduce some simplifications into the problem. Be-
low we will consider only dilute ideal solutions and neglect
the dependence of surface tensions ��� and ���, partial vol-
umes v1

�, v2
�, and the disjoining pressure 	 on solute concen-

tration. Equations �10� and �21� can therewith be rewritten at
as

�1 − �1,0
� �p�� =

2���v1
�

R
− v1

�Rn
2

R2	 − kBTx , �22�

kBT ln
x

x�

=
2����v2

� − v2
��

R
+ 	2���

Rn
+ 
 ����

�Rn



h=R−Rn

�v2
�

− �v2
� − v2

��
Rn

2

R2	 + v2
�	 . �23�

In the particular case of a flat film, it follows from Eqs. �22�
and �23�, as Rn→� and R→�,

�1 − �1,�
� = − v1

�	�h� − kBTx , �24�

kBT ln
x

x�

= v2
�	�h� , �25�

where h is the flat film thickness.
The surface tensions ��� and ��� at the boundaries of

the film are related to the disjoining pressure 	. This cannot
be neglected for a thin film in the general case. The thermo-
dynamics of flat thin films12,15 gives the following relation:

����� + ����
�h

= − 	�h� . �26�

Recognizing that the disjoining pressure is determined by the
normal component of the pressure tensor at the internal
boundary of the film and assuming the main contribution to
Eq. �26� to be given by the surface tension ��� at the same
boundary, we can approximately replace the surface tension
��� at the external boundary of the film by its macroscopic
value ��

��. It allows us to rewrite Eq. �26� in the form

����

�h
� − 	�h� . �27�

Integrating Eq. �27� over thickness h at a fixed radius Rn, we
find

��� � �Rn

�� + 

R−Rn

�

	�h�dh , �28�

where the surface tension �Rn

�� corresponds, as before, to the
solid core boundary with bulk phase �. Using Eq. �28� and
equality ���=��

�� in Eqs. �22� and �23� gives

�1 − �1,0
� �p�� =

2��
��v1

�

R
− v1

�Rn
2

R2	 − kBTx , �29�

kBT ln
x

x�

=
2�v2

� − v2
����

��

R
+

2v2
��Rn

��

Rn
+ v2

�
d�Rn

��

dRn

− �v2
� − v2

��
Rn

2

R2	 + v2
�	 +

2v2
�

Rn



R−Rn

�

	�h�dh .

�30�

It follows from the condition of equilibrium of the film
with the gas phase that �1=�1

� at p1
�= p1,R

� . We have already
noted that �1,0

� �p����1,� and �1,�=�1
��p1,�

� �, where p1,�
� is

the saturated partial pressure of condensate vapor at a flat
interface between pure liquid condensate and vapor. Thus, in
the approximation of ideality of phase �, the difference �1

−�1,0
� �p�� can be expressed as

�1 − �1,0
� �p�� � kBT ln

p1,R
�

p1,�
� . �31�

Substituting Eq. �31� in the left-hand side of Eq. �29� gives

kBT ln
p1,R

�

p1,�
� =

2���v1
�

R
− v1

�Rn
2

R2	 − kBTx . �32�

Jointly with Eq. �30�, Eq. �32� determines the dependence of
the pressure of the condensate vapor saturated over the
spherical film of solution, on radii Rn and R of internal and
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external boundaries of the film. Thus, Eq. �32� is a generali-
zation of the Gibbs–Kelvin–Köhler equation for the conden-
sate vapor pressure saturated over a droplet with a spherical
solid core partially dissolved in the droplet. With the choice
of radii Rn and R of the internal and external film boundaries
as independent variables of the film state, with specified iso-
therm of the disjoining pressure as a function of the film
thickness and a known dependence of �Rn

�� on Rn, Eq. �30�
first allows one to find the core solubility x, and then, with
the aid of Eqs. �29� and �32�, also to determine the chemical
potential of the condensate in the film and the pressure of the
condensate vapor saturated over the film. Doing in this way
solves the problem posed in Introduction.

Note now that radii Rn and R at the internal and external
film boundaries may be determined as functions of the num-
ber N1

� of condensate molecules and the number N2
� of dis-

solved core molecules in the solution film �one can use the
total number N2 of molecules of the core component instead
of N2

��. As it follows from the conditions of material balance
and incompressibility in the core and the solution film, we
have

4
3�Rn

3 = v2
��N2 − N2

�� , �33�

4
3�R3 = �N2 − N2

��v2
� + N1

�v1
� + N2

�v2
�. �34�

Substituting Eqs. �33� and �34� in Eq. �30� transforms
Eq. �30� �with account of equality x�N2

� /N1
�� into a tran-

scendental equation for N1
� and N2

�. Considering number N2

as a parameter, this equation can be solved at constant sur-
face tensions and the assumption that N1

�=N1, where N1 is
the total number of condensate molecules in the film. The
function N2

��N1� obtained in this way allows one to deter-
mine Rn and R with the use of Eqs. �33� and �34�, i.e., to find
the function Rn�R� at a specified N2. Substituting this func-
tion in Eq. �32� establishes a relation between the pressure of
condensate vapor saturated above the liquid film on a par-
tially dissolved solid core and the external radius of the film
at a specified initial �i.e., before the film formation� size of
the core. Such a relation can be observed in direct experi-
ment with soluble solid nanoparticles in the undersaturated
solvent gas environment.6,7

IV. DISCUSSION

As has been mentioned in Introduction, the extensions of
the Gibbs relation for the condensate chemical potential in
the film on a soluble solid core, the corresponding Gibbs–
Kelvin equation for the saturated vapor pressure of conden-
sate, and the Ostwald–Freundlich equation for solubility of
the core matter were earlier considered with account of the

disjoining pressure in our paper8 and papers by Djikaev
et al.10,11 The equations obtained in Refs. 8, 10, and 11 have,
however, some distinctions from Eqs. �29�, �30�, and �32�
representing the main result of this paper. In particular, the
relations from Ref. 8 referred to films on macroscopic con-
densation nuclei at R−Rn
Rn, where surface tensions ���

and ��� at the film boundaries were assumed to be equal to
their tabular values for a film of pure condensate and the
difference in molecular volumes v2

� and v2
� was neglected. As

a result, Eq. �30� was reduced in Ref. 8 to the form of clas-
sical equation �4�. In its turn, the approach in Refs. 10 and 11
neglected the difference in �pN

� and �p, which leads, as can
be seen from Eq. �30�, to the loss of important term v2

�	 in
the Ostwald–Freundlich equation. Besides, both in Ref. 8
and Refs. 10 and 11, the factor Rn

2 /R2 before the disjoining
pressure in the condition of mechanical equilibrium of a film
�provided by spherical geometry of the film12� was replaced
by unity and the relation between ��� and 	 �which gives
rise to the term �2v2

� /Rn��R−Rn

� 	�h�dh in Eq. �30�� was not
taken into account. Thus, we can say an estimable progress
has been achieved in the present work.

ACKNOWLEDGMENTS

This work was supported by the program “The
Development of Scientific Potential of High School” �Grant
No. RNP.2.1.1.1712� and the program “Leading
Scientific Schools of Russian Federation” �Grant No. NS-
3020.2008.3�.

1 J. W. Gibbs, The Scientific Papers �Longmans, New York, 1928�.
2 W. T. Thomson, Philos. Mag. 42, 448 �1871�.
3 H. Köhler, Trans. Faraday Soc. 32, 1152 �1936�.
4 W. Ostwald, Z. Phys. Chem. 34, 495 �1900�.
5 H. Freundlich, Colloid and Capillary Chemistry �E. P. Dutton and
Company, New York, 1923�.

6 K. Hameri, A. Laaksonen, M. Vakeva, and T. Suni, J. Geophys. Res. 106,
20749 �2001�.

7 G. Biskos, D. Paulsen, L. M. Russell, P. R. Buseck, and S. T. Martin,
Atmos. Chem. Phys. 6, 4633 �2006�.

8 A. K. Shchekin, A. I. Rusanov, and F. M. Kuni, Colloid J. 55, 776
�1993�.

9 B. V. Derjaguin, N. V. Churaev, and V. M. Muller, Surface Forces
�Consultants Bureau, New York, 1987�.

10 Y. S. Djikaev, R. Bowles, H. Reiss, M. Vakeva, and A. Laaksonen, J.
Phys. Chem. B 105, 7708 �2001�.

11 Y. S. Djikaev, R. Bowles, and H. Reiss, Physica A 298, 155 �2001�.
12 A. I. Rusanov and A. K. Shchekin, Mol. Phys. 103, 2911 �2005�.
13 A. I. Rusanov, Nanotechnology 17, 575 �2006�.
14 A. I. Rusanov, Surf. Sci. Rep. 58, 111 �2005�.
15 A. I. Rusanov, Phasengleichgewichte und Grenzflächenerscheinungen

�Akademie-Verlag, Berlin, 1978�, pp. 279–285.
16 V. V. Krotov and A. I. Rusanov, Physicochemical Hydrodynamics of

Capillary Systems �Imperial College Press, London, 1999�, pp. 24–31.
17 A. I. Rusanov and A. K. Shchekin, J. Chem. Phys. 127, 191102 �2007�.

154116-5 Generalization of the Gibbs–Kelvin–Köhler and Ostwald–Freundlich J. Chem. Phys. 129, 154116 �2008�

Author complimentary copy. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp

http://dx.doi.org/10.1039/tf9363201152
http://dx.doi.org/10.1029/2000JD000200
http://dx.doi.org/10.1021/jp010537e
http://dx.doi.org/10.1021/jp010537e
http://dx.doi.org/10.1016/S0378-4371(01)00216-3
http://dx.doi.org/10.1080/00268970500151510
http://dx.doi.org/10.1088/0957-4484/17/2/039
http://dx.doi.org/10.1016/j.surfrep.2005.08.002
http://dx.doi.org/10.1063/1.2818049

