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INTRODUCTION

It is known [1, 2] that, in highly concentrated micel-
lar surfactant solutions, when aggregation numbers
exceed the limit of the spherical packing of monomers,
the formation of globular micelles (which can be con-
sidered as the prototype of bilayers) or small spherocy-
lindrical micelles (the prototype of long cylindrical
micelles) proceeds. It was shown for nonionic surfac-
tants [3] that globular and spherocylindrical micelles
can simultaneously present in a solution; in this case,
the dependence of aggregation work on the number of
monomers in micelles is divided into two single
branches. The division begins at aggregation numbers
above the limit of the spherical packing of monomers.
One of these branches represents globular micelles,
while the other one represents spherocylindrical
micelles. As the overall surfactant concentration
increases, globular and spherocylindrical micelles
compete with one another in the absorption of surfac-
tant monomers in solution.

Usually, the absence of small spherocylindrical
micelles at the overall surfactant concentration between
the first (

 

CMC

 

1

 

) and second (

 

CMC

 

2

 

) critical micelliza-
tion concentrations is explained by the existence of
potential barrier for the formation of cylindrical
micelles from spherical aggregates [4, 5]. It is implied
that this barrier only becomes fairly low above the
CMC

 

2

 

. The presence of two branches of aggregation
work and, correspondingly, two branches of aggregate
distribution over aggregation numbers suggests that
additional factor explaining the absence of small

spherocylindrical micelles below CMC

 

2

 

 is their compe-
tition with globular micelles.

Numerical calculations demonstrate [3] that the sit-
uation is possible when there is no minimum for the
work of spherical aggregate formation, because the
limit of the spherical packing of monomers is achieved
at its descending part. In such a situation, spherical
micelles, which are stable aggregates, are not formed at
all. In this case, minima of aggregation work can exist
at both the globular and spherocylindrical branches of
aggregation work. The branch of aggregation work for
globular micelles is characterized by a deeper mini-
mum compared to the branch for spherocylindrical
micelles; at the same time, the formation of large glob-
ular micelles is energetically less advantageous than the
formation of large cylindrical micelles. Therefore, at
overall concentrations between CMC

 

1

 

 and CMC

 

2

 

,
globular micelles are primarily observed; at higher con-
centrations, the role of spherocylindrical aggregates
becomes noticeable.

This study is devoted to the kinetic description of
the slow establishment of complete equilibrium in solu-
tions where premicellar spherical aggregates and glob-
ular and small spherocylindrical micelles exist simulta-
neously, but spherical micelles are absent. The solu-
tions to the problem of slow relaxation in surfactant
solutions are known only for the cases when there are
only spherical aggregates [6–9] or coexisting spherical
and cylindrical micelles [10–13]. The dynamics of the
transfer of aggregates over activation barriers at one of
the branches of aggregation work has been considered
in these publications. We will take into account the
transitions between aggregates at different branches.
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Such a problem has not been previously considered. We
establish relations between the current values of the
concentrations of monomeric surfactants and total con-
centrations of globular and small spherocylindrical
micelles and determine the characteristic time of slow
relaxation.

1. FORMULATION OF A PROBLEM

Let us denote the aggregation number (the number
of surfactant molecules in molecular aggregate) by 

 

n

 

.
The position of bifurcation point at 

 

n

 

 = 

 

n

 

b

 

 at the curve
of the dependence of the formation work of molecular
aggregate on the aggregation number is determined by
the characteristic sizes of surfactant molecules. At 

 

n

 

 < 

 

n

 

b

 

to the left of the branching point, all molecular aggre-
gates are spherical. To the right of the branching point,
at 

 

n

 

 > 

 

n

 

b

 

, molecular aggregates acquire the shape of

either globules or spherocylinders. The transition of
aggregates from one branch to another can occur only
through the bifurcation point. According to numerical
calculations [3], immediately after the bifurcation point
at 

 

n

 

 > 

 

n

 

b

 

, the curve of aggregation work for globular
micelles lies below the curve for spherocylindrical
micelles.

Two characteristic dependences of aggregation
work on the aggregation numbers are shown in Fig. 1;
Fig. 1a corresponds to the case when the limit of spher-
ical packing lies at the descending part of the formation
work that corresponds to the impossible formation of
stable spherical micelles and Fig. 1b corresponds to the
case when the limit of spherical packing is achieved
beyond the minimum of the aggregation work for
spherical micelles. On these figures, 

 

W

 

n

 

 is the minimal
formation work of molecular aggregate with the aggre-
gation number 

 

n

 

 expressed in thermal units 

 

k

 

B

 

T

 

,

 

 where

 

k

 

B

 

 is Boltzmann’s constant and 

 

T

 

 is the absolute temper-
ature of solution; superscripts (

 

s

 

), (

 

g

 

),

 

 and (

 

c

 

) denote the
values referred to spherical, globular, and spherocylin-
drical aggregates, respectively; subscript 

 

b

 

 indicates the
bifurcation point and subscripts 

 

c

 

 and 

 

s

 

 indicate the
points of maximum and minimum, respectively.

Results of the kinetics of slow relaxation obtained
previously in [6–13] refer precisely to the case shown
in Fig. 1b. In this case, the globular branch of aggrega-
tion work does not have a minimum and, with an
increase in the aggregation number, becomes notice-
ably higher than the spherocylindrical branch so that
the fraction of surfactant in globular micelles is insig-
nificant.

In accordance with the preceding, we consider con-
ditions complying with Fig. 1a. In this case, the fraction
of surfactant molecules forming premicellar spherical
aggregates will be negligible and its main amount is
distributed over monomers, globular and small sphero-
cylindrical micelles.

2. EQUATIONS OF SLOW RELAXATION
FOR GLOBULAR AND SPHEROCYLINDRICAL 
MICELLES AND SURFACTANT MONOMERS

Let us describe the process of the establishment of
total equilibrium in a solution containing surfactant
monomers, premicellar spherical aggregates, and glob-
ular and spherocylindrical micelles. We assume that the
relaxation proceeds rather slowly so that, at current val-
ues of monomer concentrations and total concentra-
tions of globular and spherocylindrical micelles, single
quasi-equilibrium states over aggregation numbers
between systems on both sides of the maximum of
aggregation work would have time to be established
(see Fig. 1a). Let us denote the concentration of aggre-
gates (the number of aggregates in solution unit vol-
ume) with aggregation number 

 

n

 

 by 

 

c

 

n

 

; in this case, 

 

c

 

1

 

represents the concentration of surfactant monomers.
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Fig. 1.

 

 Approximate pattern of the dependence of aggrega-
tion work for molecular aggregate on its size

 

 n 

 

(a) in the
absence and (b) in the presence of stable spherical micelles.
At 

 

n

 

 

 

≤

 

 

 

n

 

b

 

, only spherical molecular aggregates exist (curve

; at 

 

n

 

 > 

 

n

 

b

 

, globular (curve ) and spherocylindri-

cal (curve ) exist simultaneously.
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According to Boltzmann’s principle, quasi-equilib-
rium distributions of monomers and small premicellar
spherical surfactant aggregates over the aggregation
numbers to the left of potential barrier of aggregation
work is given by the expression

 

(2.1)

 

According to the same considerations, with allowance
for the forbidding of direct transitions between globular
and spherocylindrical micelles, the distribution of
molecular aggregates over the aggregation numbers at

 

n

 

 

 

> 

 

n

 

b

 

 on the globular and spherocylindrical branches
can be presented as

 

(2.2)

 

where 

 

W

 

b

 

 and 

 

c

 

b

 

 are the aggregation work and the con-
centration of spherical aggregates in the bifurcation
point 

 

n

 

 = 

 

n

 

b

 

, respectively. Note that identical pre-expo-
nential factors in distributions (2.2) indicate the exist-
ence of quasi-equilibrium between the branches of
globular and spherocylindrical branches. In turn, the
difference between 

 

c

 

1

 

 and 

 

c

 

b

 

 

 

speaks of the absence
of total equilibrium in a solution, i.e., of the absence of
the mutual equilibrium of aggregates with any aggrega-
tion numbers.

In the system under consideration, the equation of
surfactant material balance (for unit volume) with
allowance for the distribution over the branches (Eq.
(2.2)) has the following form (with disregard to the con-
tribution from premicellar spherical aggregates):

 

(2.3)

 

where 

 

c

 

 is the overall surfactant concentration in solu-
tion. For convenience, let us introduce the following
designations:

 

(2.4)

cn c1e
–Wn.=

cn
g( ) cbe

– Wn
g( )

Wb–( )
, cn

c( ) cbe
– Wn

c( )
Wb–( )

,= =

e
Wb
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g( ) n ncn
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∞

∫+d
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∞

∫+ c,=
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g( ) cn

g( ) n, n g( )d
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∞

∫ 1

cM
g( )------- ncn

g( ) n,d

nb

∞
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∆n g( )( )2 1

cM
g( )------- n n g( )–( )2

cn
g( ) n,d
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∞
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cM
c( ) cn

c( ) n, n c( )d

nb

∞
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cM
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nb

∞

∫= =

∆n c( )( )2 1

cM
c( )------- n n c( )–( )2

cn
c( ) n,d

nb

∞

∫=

where  and  are the total concentrations of glob-
ular and spherocylindrical micelles, respectively; n(g),
n(c), and ∆n(g), ∆n(c) are their average aggregation num-
bers and rms deviations of aggregation numbers,
respectively. Using relations (2.4), material balance
equation (2.3) can be rewritten in the following form:

(2.5)

The kinetics of slow relaxation is determined by the
direct and back transitions of aggregates over the poten-
tial barrier of aggregation work in the vicinity of n = nc

that are established after fast relaxation [14]. Changes
in the total number of supercritical aggregates with

time t, which is approximately equal to the sum of 

and  can be described by the scheme used in [4]

(2.6)

where J' and J'' are the direct and back fluxes of aggre-
gates over the potential barrier of aggregation work
(rates of aggregation and disaggregation), respectively.
For quasi-equilibrium distributions (2.1) and (2.2),
these fluxes are quasi-stationary and, by analogy with
relations (5.8) and (5.10) from [14], they can be repre-
sented as

(2.7)

where Wc is the value of aggregation work in point nc,
∆nc is the half-width of aggregation work in the vicinity

of point nc, and  is the amount of monomers absorbed
by the aggregate with aggregation number nc per unit
time. For convenience, the second of relations (2.7) was
made different from formula (5.10) from [14]: the
quasi-equilibrium state of aggregates to the right of n =
nc is established already at n > nc + ∆nc and is valid in
advance at n = nb.

Equations (2.5) and (2.6) at preset overall concen-

tration  and known dependences of nc, ∆nc, Wc, and
Wb parameters on the concentration of surfactant mono-
mers yield, with allowance for relations (2.2), (2.4), and
(2.7), the closed nonlinear system of equations relative
to two unknown concentrations c1 and cb. The value of
nb is defined by the characteristics of surfactant mole-
cules in the thermodynamic model of molecular aggre-
gate and is independent of the concentration of surfac-
tant monomers.
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3. EXACT RELATIONS AT QUASI-EQUILIBRIUM 
STATE OF GLOBULAR 

AND SPHEROCYLINDRICAL MICELLES 
AND THE SYSTEM OF LINEARIZED 
EQUATIONS OF SLOW RELAXATION

At the state of complete equilibrium of micellar
solution, the direct J' and back J'' fluxes of aggregates
should be equal

(3.1)

Hereafter, all values at the state of complete equilib-
rium are denoted by a wavy bar placed above them.
From Eqs. (2.7) and (3.1), we derive the relation
between the equilibrium values of concentrations 

and 

. (3.2)

which can also be derived under the conditions of com-
plete equilibrium from equalities (2.1) and (2.2). Using
balance condition (2.3) as it applies to the final equilib-
rium state and accounting for equalities (2.2) and (3.2),
we arrive at the transcendental equation, which, at

known dependences  and  on n and c1, deter-

mines equilibrium concentration  from the preset
value of overall surfactant concentration c

(3.3)

We consider small deviations of our system from the
equilibrium position. In this case, we can represent
monomer concentration c1, as well as total concentra-

tions of globular micelles  and spherocylindrical

micelles  as

(3.4)

where, hereafter, symbol δ denotes deviations of the
corresponding value from its value at the equilibrium
state. According to the general thermodynamic princi-
ples and ignoring interactions between micelles, we can
arrive at the following equalities [9]:

(3.5)

Deviations δ  and δ  appeared to be intercon-
nected through these equalities and relations (2.2) and

J'˜ J''˜ .=

c̃1
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δc1
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--------, δWn

c( )– n 1–( )
δc1

c1
--------.–= =

cM
g( ) cM

c( )

(2.4). Later, we derive explicit coupling equation of
these values.

Because, at the material isolation of solution, devia-
tion δc of the overall concentration c can be considered
to be equal almost to zero, the first variation of balance
ratio (2.5) at the arbitrary moment leads to the equation

(3.6)

Taking into account definitions (2.4) and equalities
(2.2) and (3.5), it is easy to demonstrate that, at the arbi-

trary pattern of curves  and , we derive the

exact relations

(3.7)

These relations are valid in the presence of quasi-equi-
librium state of globular and spherocylindrical micelles
even far from the state of solution equilibrium. In the

vicinity of equilibrium state at δc1/  �1, relations

(3.7) are transformed into the following equations:

(3.8)

Substituting Eq. (3.8) into (3.6), we obtain

(3.9)

Let us now consider the first variation of Eq. (2.6).
For this purpose, we first rewrite Eq. (2.6) with allow-
ance for expressions (2.7) in the following form, which
is convenient for analysis:

(3.10)

According to distribution (3.2), the right-hand side of
equality (3.10) is nullified; hence, in the vicinity of
equilibrium state, Eq. (3.10) can be linearized as fol-
lows:
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g( ) ñ c( )δcM

c( )+ +

+
δc1

c1
-------- c̃M
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Let us take into account the identities

(3.12)

which stem from definitions (2.4) and relations (2.2)
and are valid at any moment during the slow relaxation.
Let us vary identities (3.12). We take into account that
δnb = 0, as number nb is determined only by the geomet-
ric parameters of surfactant molecules. Using formulas
(3.5) and (2.4), we find the following exact relations:

(3.13)

From Eq. (w3.13), we arrive at the exact equality

(3.14)

This equality defines, in explicit form, the aforemen-

tioned relationship between variations δ  and δ  

As follows from exact relations (3.13), with allow-
ance for the pattern of distribution (3.2), Eq. (3.11) in
the vicinity of equilibrium state can be rewritten as

(3.15)

Additionally, from Eq. (3.14), in the vicinity of equilib-

rium state of solution at δ /  � 1, δ /  � 1

and δc1/  � 1, we find

(3.16)

Equations (3.9), (3.15), and (3.16) form the closed
system of linear differential first-order equation for

unknown deviations δc1, δ , and δ  

4. CHARACTERISTIC TIME OF SLOW 
RELAXATION UPON THE COMPETITION 

BETWEEN GLOBULAR 
AND SPHEREOCYLINDRICAL MICELLES

Let us find the solution to the system of equations
(3.9), (3.15), and (3.16). At the first step, we express

linear variations δ  and δ  via δc1. Solving

Eqs. (3.9) and (3.16) with respect to δ  and δ  we
arrive at

(4.1)

(4.2)

It is evident that Eqs. (4.1) and (4.2) are consistent with
Eq. (3.16).

After the substitution of expressions (4.1) and (4.2)
into Eq. (3.15), we can easily solve this equation rela-
tive to δc1

(4.3)

where δc1(0) is a certain deviation of the concentra-
tion of surfactant monomers at the final stage of slow

relaxation at δ /  � 1, δ /  � 1, and

δc1/  � 1 at the moment taken as zero-valued. The
characteristic time of slow relaxation tr is defined by
the equality

(4.4)

cbe
Wb

cbe
– Wn

g( )
Wb–( )

nd

nb

∞

∫

e
–Wn

g( )

nd

nb

∞

∫
---------------------------------------

cM
g( )

e
–Wn

g( )

nd

nb

∞

∫
----------------------,= =

cbe
Wb

cbe
– Wn

c( )
Wb–( )

nd

nb

∞

∫

e
–Wn

c( )

nd

nb

∞

∫
---------------------------------------

cM
c( )

e
–Wn

c( )

nd

nb

∞

∫
----------------------,= =

δ cbe
Wb( )ln δ cM

g( ) n g( ) 1–( )δ c1,ln–ln=

δ cbe
Wb( )ln δ cM

c( ) n c( ) 1–( )δ c1.ln–ln=

δ cM
g( ) n g( )δ c1ln–ln δ cM

c( ) n c( )δ c1.ln–ln=

cM
g( ) cM

c( ).

d
dt
----- δcM

g( ) δcM
c( )+( )

j̃c
+
c̃1e

–Wc

π∆ñc
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In view of positive definiteness of all values in the right-
hand side of Eq. (4.4), it is evident that tr > 0.

Solution (4.3) is one of three solutions (3.9), (3.15),
and (3.16) of a system. Two remaining solutions for

δ  and δ  can be readily found after the substitu-
tion of solution (4.3) into equalities (4.1) and (4.2).
Then, we have

(4.5)

(4.6)

Pre-exponential factors in Eqs. (4.5) and (4.6) deter-
mine deviations of the total concentrations of globular
and spherocylindrical micelles at the final stage of slow
relaxation at the moment taken as zero-valued.

Let us study the mutual effect of coexisting globular
and spherocylindrical micelles. This effect is exhibited
via time tr and pre-exponential factors in Eqs. (4.5) and
(4.6). It is seen that the values referred to globular and
spherocylindrical micelles enter into Eqs. (4.4)–(4.6) in
a symmetric manner. The mutual effect of coexisting
globular and spherocylindrical micelles is determined
not only by the relation between the total concentration
of micelles at the equilibrium state, but also relations
between their average aggregation numbers and rms
deviations in this state.

Equalities (2.2), (2.4), and (3.2) suggest that total

equilibrium concentration  and  are functionals

of  and  branches of aggregation work. Let us
consider further the case when, in the vicinity of min-

ima n =  and n =  of  and  branches of
aggregation work (see Fig. 1a), the quadratic approxi-
mations

(4.7)

(4.8)

can be used, where  and  are the minima of
corresponding branches (the depths of potential wells

for globular and spherocylindrical micelles; ∆  and

∆   are the half-widths of aggregation work in the

vicinity of points n =  and n =  (half-widths of

potential wells), respectively. Equalities (2.2), (2.4),
(3.2), (4.7), and (4.8) yield relations

(4.9)

Alongside formulas (4.4)–(4.6), these relations make it
possible, using experimental data on slow relaxation, to

estimate the  and  values. As follows from Eq.
(4.9), for the prevalence of globular micelles at overall
concentrations between CMC1 and CMC2, the strong
inequality

(4.10)

should be fulfilled. Because inequality  � 
is usually true (this is qualitatively reflected in Fig. 1a),

the  –  difference should be sufficiently large
such that to ensure strong inequality (4.10).

If we assume, in formulas (4.1)–(4.6), that  = 0,
these formulas are transformed into relations for the
case when the aggregation work has only one spherocy-
lindrical branch. Corresponding formulas for the case
of solutions with merely spherical micelles (at overall
surfactant concentration above CMC1) are shown, for
example, in [9] and, with allowance for Eq. (4.9), virtu-
ally coincide with those that follow from equalities
(4.1)–(4.6).
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ñs
g( ) ñs
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