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INTRODUCTION

Separate quasi-equilibria of surfactant monomers
and micelles are established at the stage of the fast
relaxation of micellar solutions. The transition from
separate quasi-equilibria to a single eventual aggrega-
tion equilibrium of a micellar solution occurs at the
later stage of slow relaxation. The characteristic times
of fast relaxation at surfactant concentrations above the
first critical micelle concentration (CMC

 

1

 

) but below
the second critical micelle concentration (CMC

 

2

 

),
when the major fraction of the surfactant occurs in
spherical micelles, were theoretically described in [1–
3]. These times can also be measured experimentally by
recording the ultrasound absorption spectra of micellar
solutions [4, 5]. At surfactant concentrations above
CMC

 

2

 

, surfactants are largely accumulated in spherical
and cylindrical micelles, and the fraction of surfactants
in cylindrical micelles rapidly increases as the overall
concentration grows. Accordingly, we must take into
account the mutual influence of aggregates of various
sizes and shapes on relaxation in a materially isolated
solution at concentrations above CMC

 

2

 

. The kinetics of
the slow establishment of the eventual equilibrium par-
ticle-size distribution of coexisting spherical and cylin-
drical micelles was studied in [6–9].

The purpose of this work was to obtain a theoretical
description of the fast relaxation of coexisting spherical
and cylindrical micelles. The complete spectrum of the
characteristic times of the comparatively fast establish-
ment of separate quasi-equilibria of surfactant mono-
mers and spherical and cylindrical micelles at surfac-
tant concentrations higher than the CMC

 

2

 

 can be found
by solving the linearized kinetic aggregation equation
augmented by the material balance equation. The
results obtained can be compared with those reported in
[1–3] and the data on the kinetics of fast relaxation in

surfactant solutions in the absence of spherical micelles
[10].

THE KINETIC EQUATIONS 
OF FAST RELAXATION AT SURFACTANT 

CONCENTRATIONS HIGHER
THAN THE CMC

 

2

 

Our consideration will be based on the approach
developed in [2] for spherical micelles and in [10] for
cylindrical micelles. Let a nonionic surfactant be dis-
solved in a polar solvent, and let the solution contain
monomers and surfactant molecular aggregates with
different aggregation numbers, including spherical and
cylindrical micelles. The aggregation number will be
denoted by 

 

n

 

, and the concentration of molecular aggre-
gates with the aggregation number 

 

n

 

, by 

 

c

 

n

 

. Accord-
ingly, 

 

c

 

1

 

 is the concentration of monomers. The overall
concentration of the surfactant will be denoted by 

 

c

 

, and
the total concentrations of spherical and cylindrical
micelles, by 

 

c

 

M

 

 and 

 

g

 

. We assume that 

 

c

 

 is at least two
but less than hundred times higher than the CMC

 

2

 

. The
minimum work of the formation of a molecular aggre-
gate with the aggregation number 

 

n

 

 (for short, work of
aggregation) in 

 

kT

 

 thermal units (

 

k

 

 is the Boltzmann
constant and 

 

T

 

 is the absolute temperature) will be

denoted by 

 

W

 

n

 

. Let us introduce the values 

 

 

 

≡

 

,  

 

≡

 

 ,  

 

≡

 

 

 

, and

 

W

 

0

 

 

 

≡

 

 

 

.

The 

 

 

 

value of the work of aggregation at the

point 

 

n

 

 =  

 

of its first maximum along the axis of
aggregation numbers gives the height of the activation

Wc
1( )

Wn n nc
1( )=

Ws
1( ) Wn n ns

1( )=
Wc

2( ) Wn n nc
2( )=

Wn n n0=

Wc
1( )

nc
1( )
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barrier to the formation of spherical micelles. The 

work of aggregation at the point 

 

n

 

 =  

 

of its first min-
imum characterizes the depth of the potential well in
which spherical micelles are accumulated. According
to [2, 3], this accumulation actually occurs inside the

interval 

 

 – 

 

∆

 

 

 

�

 

 

 

n

 

 

 

�

 

  + 

 

∆

 

 on the axis of

aggregation numbers; here,  is the half-width of the
first potential well of the work of aggregation along the

 

n

 

 axis. Provided the strong inequality 

 

∆

 

/  

 

�

 

 

 

1

 

 is
satisfied, the work of aggregation within this interval
can be approximated quadratically as

 

(1)

 

The 

 

 – 

 

 difference between the work of aggre-

gation 

 

 

 

at the point 

 

n

 

 =  

 

of its second maximum

and the 

 

 

 

value determines the height of the activa-
tion barrier for the formation of cylindrical micelles.
The 

 

W

 

0

 

 value of the work of aggregation is taken at the
left boundary of the 

 

n

 

 

 

≥

 

 

 

n

 

0

 

 region of aggregation num-
bers where the core of a micelle is a prolate cylindrical
body with identical ends in the form of hemispheres or
almost hemispheres. These hemispherical ends corre-
spond to the limiting packing of hydrophobic surfactant
monomer moieties in a spherical molecular aggregate,
and the addition of monomers to such a micelle does
not cause rearrangement of its ends but only elongates
its cylindrical part. As a consequence, the surface area,
volume, and work of aggregation of a cylindrical
micelle are linearly related to the aggregation number 

 

n

 

at 

 

n

 

 

 

≥

 

 

 

n

 

0

 

. We can therefore write

 

(2)

 

where 

 

n

 

∗

 

 

 

is the mean aggregation number of cylindrical

micelles [11]. Clearly, 

 

 < 

 

 and 

 

 <  < 

 

n

 

0

 

 <

 

 n

 

∗

 

.

Let us assume that 

 

 ~ 10

 

2

 

, 

 

n

 

0

 

 ~ 3 

 

×

 

 10

 

2

 

, and 

 

∆

 

 ~
10 

 

[11]. If the overall surfactant concentration is at least
two but less than hundred times higher than the CMC

 

2

 

,
we have 

 

n

 

∗

 

 ~ 10

 

3

 

–10

 

4

 

 [11], and 

 

n

 

∗

 

 

 

�

 

 

 

n

 

0

 

.

At quasi-equilibrium of spherical micelles at aggre-

gation numbers 

 

 – 

 

∆

 

 

 

�

 

 

 

n

 

 

 

�

 

  +

 

 

 

∆

 

 and at
quasi-equilibrium of cylindrical micelles at aggregation
numbers 

 

n > n0, the concentrations of spherical and

cylindrical micelles are cn = exp[–(Wn – )] and
cn = c0exp[–(Wn – W0)], according to the Boltzmann

principle. Here,  ≡  and c0 ≡ .

Ws
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According to (1) and (2), these quasi-equilibrium distri-
butions can be represented as

(3)

Clearly, the n∗ – n0 value determines the distribution
width of cn according to aggregation numbers at n > n0.
At n∗ � n0, this width virtually coincides with the mean
aggregation number of cylindrical micelles n∗ .

Changes in the concentrations of coexisting spheri-
cal and cylindrical micelles at times of the establish-
ment of quasi-equilibrium distributions (3) are
described by the general kinetic equation of aggrega-
tion [2, 10],

(4)

The values with ∩ above symbols correspond to quasi-
equilibrium states. It is shown below that these states

are established in the regions  – ∆  � n �  +

∆  and n > n0 after the fast relaxation of coexisting

spherical and cylindrical micelles. The  coefficient is
the number of surfactant monomers absorbed from
solution in unit time by an aggregate of n molecules.
The value in square brackets in (4) is the flux of molec-
ular aggregates in the space of aggregation numbers.
Equation (4) shows that the distribution  reduces this
flux to zero and is therefore a time-independent solu-
tion to (4), which satisfies the detailed balance equa-

tions for aggregate transitions in the regions  –

∆  � n �  + ∆  and n > n0. The  value is
proportional to the concentration of surfactant mono-

mers c1 and the surface area of a micelle. At  –

∆  � n �  + ∆  and at ∆ /  � 1 , the

dependence of  on n can be ignored for spherical

micelles; we then have  = , where  ≡ ,

with a high degree of accuracy. At n > n0, the surface
area of a cylindrical micelle is proportional to the
aggregation number n (see above). We eventually have

(5)

cn
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1( ) n ns
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Let us introduce the notation

(6)

for the relative deviation of the current concentration cn

from the quasi-equilibrium concentration . We assume
that the fast relaxation under consideration occurs as the
ejection and absorption of monomers largely by spheri-

cal micelles in the region  – ∆  � n �  +

∆  and cylindrical micelles at n > n0. Equation (6)
will therefore be applied to only these micelles and
monomers at n = 1. Along with the aggregation number

n, spherical micelles in their region  – ∆  � n �

 + ∆  will be described by the variable

(7)

and cylindrical micelles in their region n > n0, by the
variable

(8)

The variable r changes over the interval –1 � r � 1, and

s, over the interval 0 < s < ∞. Labeling the cn, , ,

∆ , c0, and n∗ values in quasi-equilibrium distribu-
tions (3) by the ∩ symbol and taking into account (7),

(8), and the inequality ∆ /  � 1, we obtain the

total quasi-equilibrium concentrations  and  of
spherical and cylindrical micelles

(9)

with a high degree of accuracy by integration in r and
s. Quasi-equilibrium distributions (3) can then be
written as

(10)

Using (6), let us represent the current concentrations
c1 and cn as

(11)

We have |ξ1| � 1 and |ξn| � 1 as the system approaches
quasi-equilibrium, which is established after the fast
relaxation of micelles. Just in the region of small devi-
ations |ξ1| � 1 and |ξn| � 1, relaxation becomes slowest,
and the characteristic times of exponential damping vir-
tually coincide with the total times of fast relaxation.
We can therefore ignore the ξ1ξn product compared
with ξ1 and ξn. Because of (11) and (5), kinetic equation

ξn cn cn–( )/cn=

( (

cn

(
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(4) can then be reduced at the fast relaxation stage to
linear kinetic equations for ξn(t),

(12)

To determine the current concentration of mono-
mers, we must use the balance equation for the sur-
factant

in unit solution volume. Substituting (11) into this
equation and taking into account that the overall con-
centration c in a materially isolated solution remains
virtually unchanged during fast relaxation, we obtain

(n ≥ n0), (13)

where the second equation from (11) is extended to
all n ≥ 2.

THE SOLUTION OF KINETIC EQUATIONS
FOR FAST RELAXATION

At |r| > 1, the exponential function  becomes
very small. We can therefore formally extend the domain
of the variable r in (10) to the interval –∞ < r < ∞. This
allows us to seek a solution to (12) in the form of the
expansions

(14)

in the complete system of Hermitean Hi(r) and
Laguerre Li(s) polynomials, where mi(t) and qi(t) are
expansion modes independent of r and s, that is, the
sought functions of time t. Modes mi(t) relate to spher-
ical, and qi(t), to cylindrical micelles. The Hermitean
and Laguerre polynomials satisfy the equations

cn
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(15)

(16)

The integrals in r and s in (15) and (16) are the scalar
products of Hermitean and Laguerre polynomials,
respectively, and the values of the integrals themselves
are the well-known orthogonality for these polynomials.

We suppose that m0 = 0 and q0 = 0 in (14); this
assumption will be explained physically in the next sec-
tion. Let us substitute (14) with m0 = 0 and q0 = 0 into
(13). We suggest that the major contribution to the sum
on the right-hand side of (13) is made by spherical

micelles at  – ∆  � n �  + ∆  and cylin-
drical micelles at n > n0. Let us pass in (13) from the
summation over n to integration in r and s taking into
account (7) and (8) and the comments made in the
beginning of this section. In view of (10) and the sec-
ond, third, and fourth equations in (15) and (16), we
obtain

(17)

Next, let us substitute (10), (14), and (17) into
kinetic equations (12) taking into account (7), (8), and
the equalities m0 = 0 and q0 = 0. This yields two equa-
tions,
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Taking into account the comments made in the begin-
ning of this section, let us form the scalar products of
both sides of (18) by Hi (i = 1, 2, …) and both sides of
(19) by Li (i = 1, 2, …). Using (15) and (16), we obtain

(20)

(21)

(22)

(23)

To uncouple Eqs. (22) and (23) for qi with different i
indices, we, as is seen from (19), ignored the contribu-
tions of the relative order n0/  to the scalar products.
This corresponds to surfactant solutions with concen-
trations at which n0/  � 1. Accordingly, the  – n0

multiplier in the last term on the right-hand side of (20)
is replaced by .

The integration of (21) and (23) yields

(24)

where mi(0) and qi(0) are the modes mi(t) and qi(t) (i = 2,
3, …) at the initial fast relaxation time t = 0. The char-
acteristic times τsi and τi are given by the equalities
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(25)

(26)

Let us turn to Eqs. (20) and (22), which form a
closed system. The general solution to this system has
the form

(27)

Here, A1 and A2 are the constants of integration deter-
mined by the initial deviations m1(0) and q1(0). The B1
and B2 constants are related to A1 and A2 as

(28)

and the τs1 and τ1 values are given by the equalities

(29)

where β11, β12 and β21, β22 are the coefficients of m1(t)
and q1(t) on the right-hand sides of (20) and (22),
respectively taken with the sign minus. Expanding
these coefficients with the use of (20) and (22) and tak-
ing into account (25) and (26) at i = 2, we obtain

(30)

for times τs2 and τ2.
According to (30), the product β12β21 is positive

(although β12 < 0 and β21 < 0). We therefore see from
(29) that τs1 and τ1 have real values and τs1 > 0. Let us
show that τ1 is positive also. It follows from (29) that
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According to (32), τs1τ1 > 0. It was shown above that
τs1 > 0. It follows that τ1 > 0 also. The inequalities τs1 > 0
and τ1 > 0 allow these values in (27) to be treated as
relaxation times.

As a result, Eqs. (24) and (27) determine all modes
mi(t) and qi(t) (i = 1, 2, …) in expansions (14) at m0 = 0
and q0 = 0, and Eqs. (25), (26) and (29), and (30) give
the complete spectrum of relaxation times of various
modes in the distributions of coexisting spherical and
cylindrical micelles during the establishment of quasi-
equilibria. According to (11), (17), and (27), the τs1 and
τ1 times also determine the relaxation of the concentra-
tion of surfactant monomers to its quasi-equilibrium
value.

THE HIERARCHY
OF FAST RELAXATION TIMES

Let us compare the relaxation times of various
modes of the distributions of spherical and cylindrical
micelles during the establishment of separate quasi-
equilibrium states obtained in the preceding section for

the  – ∆  � n �  + ∆  and n > n0 regions.
Clearly, the longest times characterize the duration of
the attainment of the corresponding quasi-equilibria. It
follows from (25) and (26) that

(33)

The ratio between the τs2 and τ2 times is given by

(34)

Let L be the length of a cylindrical micelle and vC
and lC be the volume of the hydrocarbon chain of the
surfactant molecule and its length in the uncoiled state.
The surface area of a spherical micelle will be denoted
by A(s), and that of a cylindrical micelle, by A(c). We

have A(s) � 4π . At  < n0 � , we also have A(c) �

2πlCL. Taking into account what was said about the 

and  values in the first section, the /  ratio can
be set equal to A(c)/A(s). This yields

(35)

Next,

(36)

where the values on the right-hand side approximate the

volume of a spherical micelle and (at < n0 � ) the
volume of a cylindrical micelle. It follows from (35)
and (36) that

(37)
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Substituting (37) into (34) and taking into account the

approximate equality (∆ )2 � , which is charac-
teristic of spherical micelles, we obtain

(38)

Let us consider the first equation in (29). At surfactant
concentrations at least two but less than 100 times higher
than the CMC2, the following estimates hold [11]:

(39)

Using (39), we obtain

(40)

These estimates allow us to replace the multipliers in
square brackets and parentheses in (30) by one. Using
the resulting equations and taking (38) into account, we
can write

(41)

It follows from (39) that

(42)

This estimate can be used to approximately reduce
(41) to

(43)

Using (30) and (38) once more, let us write

(44)

(this does not require estimates (40)). According to (43)
and (44), we have

(45)

Substituting estimate (42) into (45) yields the approxi-
mation

(46)

Using (43) and (46) in the first equation from (29), we
obtain

(47)
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The second value of those estimated in (40) is neg-
ligibly small compared with the first one and can there-
fore be ignored in (32). Equation (32) then yields

(48)

With (47) in (48), we obtain

(49)

As distinct from the first equation in (29), the main
contributions are cancelled in the second one because
of the minus sign of the second term. This cancellation
requires the explicit inclusion of increasingly complex
corrections for determining the 1/τ1 value directly by
the second equation from (29). This emphasizes the effec-
tiveness of the approach applied above, when Eq. (32)
was used instead of the second equation from (29).

Let us now consider the hierarchy of time scales
augmenting inequalities (33). According to Eqs. (38)
and (47), τs2/τs1 � /6 . It follows from the first
and second estimates in (39) that

(50)

This allows us to write the strong inequality

(51)

Next, (38) and (49) give τ2/τ1 = 3 /2, which, because
of the first estimate in (39), gives the strong inequality

(52)

Lastly, it directly follows from (49) that

(53)

Inequalities (51)–(53) give the chain of inequalities

(54)

which, together with (33), describe the hierarchy of
time scales in relaxation to separate quasi-equilibrium
distributions of coexisting spherical and cylindrical
micelles. Recall that the mi(t) and qi(t) modes (i = 1, 2, …)
correspond to spherical and cylindrical micelles,
respectively. It then follows from (24), (27), (33), and
(54) that the longest relaxation times for the distribu-
tions of spherical and cylindrical micelles are τ1 and τ2,
respectively.

Bearing in mind (25), (26), and (49), let us rewrite
the times τ1 and τ2 as

(55)

It follows from (11), (14), (24), and (27) and inequali-
ties (33) and (54) that, at m0 = 0 and q0 = 0,
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It follows that the quasi-equilibrium distribution of
spherical micelles independent of time t does indeed
become established in time τ1, and the establishment of
the quasi-equilibrium distribution of cylindrical
micelles also independent of time takes much longer
time τ2. Therefore, the times τ1 and τ2 are the character-
istic times of the fast relaxation of coexisting spherical
and cylindrical micelles to their aggregation quasi-
equilibria. In addition, because of (11), (17), (27), and
(54), we have

(57)

that is, the concentration c1 of surfactant monomers
approaches the quasi-equilibrium value  in time τ1.

The total concentrations cM and g of spherical and
cylindrical micelles in the corresponding ranges of
aggregation numbers are

.

Taking this into account and using (11), (7)–(10), (14)
and Eqs. (15) and (16) for Hermitean and Laguerre
polynomials, we obtain cM(t) = (1 + m0) and g(t) =

(1 + g0). It then follows from the equalities m0 = 0 and
q0 = 0 that cM(t) =  and g(t) = . The assumptions
m0 = 0 and q0 = 0 introduced in the preceding section
therefore ensure not only the fulfillment of equalities (56)
and (57) but also constant values of the total concentra-
tions of spherical and cylindrical micelles during the
establishment of their quasi-equilibria. The equalities
m0 = 0 and q0 = 0, which play the role of boundary con-
ditions in solving fast relaxation kinetic equations, can
then be physically explained as follows. During fast
relaxation, forward and reverse fluxes of molecular
aggregates over the potential humps of the work of
aggregation do not have time to appear. Only these
fluxes are capable of changing the total concentrations
of spherical and cylindrical micelles; they appear in
longer times of the slow relaxation of micellar solutions
and cause the gradual establishment of a unique even-
tual aggregation equilibrium [8].

The total concentrations of spherical and cylindrical
micelles given at the initial time t = 0 and, if the solution
is materially isolated, the overall surfactant concentra-
tion remain constant up to the attainment of quasi-equi-
libria of spherical and cylindrical micelles, which

allows us to unambiguously determine , , ∆ ,

, , and  from these values and also quasi-equi-
librium distributions (3) or (10) themselves.

System of equations (20)–(23) for fast relaxation
modes and its solutions (24)–(30) can be applied also in
the absence of spherical or cylindrical micelles. In par-
ticular, with  = 0 in (20), Eqs. (20) and (21) become
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equations for the fast relaxation modes of solutions
with spherical micelles [1–3] (Eqs. (22) and (23)
then become physically meaningless). Conversely, with

 = 0 in (22), Eqs. (22) and (23) become equations for
the fast relaxation modes of solutions with cylindrical
micelles [10] (Eqs. (20) and (21) then become physi-
cally meaningless). This is an important argument in
favor of the suggested kinetic theory.

A comparison of (55)–(57) with the results obtained
in [1–3] and [10] leads us to the following conclusions.
In the absence of cylindrical micelles (however, if the
estimate /  ~ 10 in (39) remains valid), fast relax-
ation time for spherical micelles remains virtually
unchanged, whereas the relaxation time of surfactant
monomers becomes shorter approximately by a factor

of (∆ )2/2  ~ 10. In the absence of spherical
micelles, fast relaxation time for cylindrical micelles
remains virtually unchanged, whereas the relaxation
time of surfactant monomers becomes shorter approxi-
mately by a factor of /3  ~ 102–103.
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