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INTRODUCTION

The concept of “slow” relaxation processes in
micellar solutions as processes relevant to the establish-
ment of complete equilibrium by the formation and dis-
integration of micelles, which are accompanied by the
forward and back fluxes of molecular aggregates
through a potential barriers of micellization, was for-
mulated for the first time in Aniansson’s and Wall’s
works [1, 2] and is generally accepted today. Usually,
when speaking of a slow relaxation time, they mean the
characteristic time of the exponential decay of a distur-
bance in monomer concentration or total micelle con-
centration [3]. However, the exponential decay regime
is only developed at the final stage of the relaxation pro-
cess, when the deviations from the equilibrium concen-
trations of surfactant monomers and micelles become
very small [4–6]. The final stage of the slow relaxation
occurring via the exponential decay of concentration
disturbances with time is hereafter referred to as “expo-
nent-law relaxation” for short. In the total relaxation
process, a marked role is also played by the stage of
power-law variations in the concentrations with time.
This stage precedes the exponent-law relaxation.
Accordingly, this initial stage of slow relaxation is
hereafter referred to as a “power-law relaxation stage.”
It is during the power-law stage that relaxing parame-
ters of a solution undergo main nonlinear variations. An
important peculiarity of the power-law stage is, in con-

trast to the exponent-law stage, the dependence of the
characteristic times and the duration of the power-law
stage itself on whether the relaxing parameters of a
micellar solution approach their equilibrium values
from above or below. The relations between the relax-
ation times of the exponent- and power-law relaxation
processes were, in general, estimated in [4–6] for the
situation in which, after an initial disturbance, the con-
centrations of surfactant monomers and micelles
decrease and increase, respectively. An opposite situa-
tion when the surfactant monomer and micelle concen-
trations rise and diminish, respectively, is also of exper-
imental and theoretical interest. This situation will be
considered in this paper.

In this paper, analytical relations will be derived for
the time dependences of surfactant monomer concen-
tration at the power-law stage of slow relaxation in
solutions at arbitrary initial conditions. The aforemen-
tioned relations will be obtained on the basis of exact
formulas describing the dependences of the positions
and half-widths of the vicinities of extreme work values
on surfactant monomer concentrations in dilute micel-
lar solutions [7]. It will be shown that the derived rela-
tions have a general form independent of the model,
which is selected for surfactant molecular aggregates,
and are applicable throughout the range of micellar
solution concentrations from the first to the second crit-
ical micellization concentration (
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—General (independent of models selected for surfactant molecular aggregates) analytical relations
are derived to describe the initial stage of slow relaxation in micellar solutions with spherical micelles. This
stage precedes the final stage of the relaxation occurring via an exponential decay of disturbances with time.
The relations obtained are applicable throughout the interval of micellar solution concentrations from the first
to the second critical micellization concentration. It is shown that the initial stage is characterized by power laws
of variations in the concentrations of monomers and micelles with time, these laws being different for the relax-
ation processes proceeding from above and below toward equilibrium values of micellar solution parameters.
Relations are derived for the duration of this stage, and the effect of initial conditions is studied. Characteristic
times of the power-law stage are determined and compared with the characteristic time of the final exponent-
law relaxation stage. The behavior of these times is investigated at surfactant solution concentrations in the
vicinity of, and noticeably above, the first critical micellization concentration. On the basis of the droplet and
quasi-droplet thermodynamic models of surfactant molecular aggregates, numerical solutions are found for
nonlinearized equations of slow relaxation for the time dependence of surfactant monomer concentrations at all
stages of the slow relaxation. Numerical results obtained from the models are compared with the results of a
general analytical study.
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respectively). The influence of initial conditions will be
investigated. The characteristic times of the power-law
stage will be found and compared with the characteris-
tic time of the final exponent-law stage of relaxation.
The behavior of these times will be analyzed at surfac-
tant concentrations close to and well above CMC

 

1

 

. The
derived general relations will be verified using the
droplet [8, 6] and quasi-droplet [9, 6] thermodynamic
models of surfactant molecular aggregates. In terms of
these models, numerical solutions will be formulated
for nonlinearized equations of the slow relaxation for
the time dependences of surfactant monomer and
micelle concentrations at all stages of slow relaxation.
Characteristic times and their dependences on the over-
all solution concentration will be calculated.

1. GENERAL CONCEPTS OF SLOW 
RELAXATION KINETICS IN NONIONIC 

SURFACTANT SOLUTIONS 
WITH SPHERICAL MICELLES

Let us introduce the denotations and formulate the
general concepts of slow relaxation in nonionic surfac-
tant solutions with spherical micelles that are necessary
for further consideration. The aggregation number of a
molecular aggregate in a micellar solution is denoted as

 

n

 

. The minimum work of surfactant molecular aggre-
gate formation (hereafter it is referred to as the aggre-
gation work for short) is expressed in thermal units of
energy 

 

kT

 

 

 

(

 

k

 

 is the Boltzmann constant and 

 

T

 

 is solution
temperature) and denoted as 

 

W

 

n

 

. At 

 

n

 

 = 1, aggregates
represent surfactant monomers. Their concentration in
a solution is denoted as 

 

c

 

1

 

. The positions of the maxi-
mum and minimum of work 

 

W

 

n

 

 in the axis of variable

 

n

 

 are denoted as 

 

n

 

c

 

 and 

 

n

 

s

 

, respectively. The maximum
and minimum of 

 

W

 

n

 

 themselves, that is, the height of
the potential barrier and the depth of the potential well
of the aggregation work, are denoted as 

 

W

 

c

 

 

 

;

 

 

 

and 

 

W

 

s

 

 

 

;

 

 , respectively. The half-widths of the

potential barrier and the potential well of work 

 

W

 

n

 

along the axis of variable 

 

n 

 

are determined as follows:

 

(1.1)

 

Let us introduce the quasi-steady-state forward and
back fluxes (

 

J

 

'

 

 and 

 

J

 

''

 

, respectively) of molecular aggre-
gates through the potential barrier of the aggregation
work per unit time and unit volume as follows [4–6]:

 

(1.2)

(1.3)

 

where  is the number of surfactant monomers
absorbed by a molecular aggregate per unit time at 

 

n

 

 =

Wn n nc=

Wn n ns=

∆nc 2/ ∂2Wn/∂n2
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n

 

c

 

 and 

 

c

 

M

 

 is the total micelle concentration (the total
number of aggregates with aggregation numbers 

 

n

 

 >

 

n

 

c

 

 + 

 

∆

 

n

 

c

 

 in unit volume of a solution).

At the slow relaxation stage, the balance of the for-
ward and back transitions of molecular aggregates
[4

 

−

 

6] is expressed as

 

(1.4)

 

At overall surfactant concentrations 

 

c

 

 ranging from
CMC

 

1

 

 to CMC

 

2

 

 (that is, when only monomers and
spherical micelles are present in a solution), in addition
to Eq. (1.4), we have an equation describing surfactant
material balance in unit volume:

 

(1.5)

 

For a materially isolated solution (when the overall
surfactant concentration is virtually constant), using
Eq. (1.5) and explicit expressions (1.2) and (1.3) for
fluxes 

 

J

 

'

 

 and 

 

J

 

''

 

, formula (1.4) is reduced to a relation
for surfactant monomer concentration 

 

c

 

1

 

(

 

t

 

)

 

 that
depends on time. This relation is a nonlinear differen-
tial equation of the first order with respect to time. For
any time moment during the slow relaxation stage, the
integration of this relation yields

 

(1.6)

 

where 

 

c

 

1

 

(0)

 

 is an initial surfactant monomer concentra-
tion at the onset of the slow relaxation (time moment

 

t

 

 = 0). When 

 

W

 

c

 

, 
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s

 

, 

 

n

 

c

 

, 

 

n

 

s

 

, 

 

∆

 

n

 

c

 

, ∆ns, and  are speci-
fied as functions of c1, Eqs. (1.5) and (1.6) determine
the behavior of monomer concentration and the total
concentration of micelles with time during the slow
relaxation.

Let us denote the values relevant to the final equilib-
rium state of the micellar solution by a wavy bar above.
At the final equilibrium, and taking into account rela-
tions (1.2), (1.3), and (1.5), the equality of the right-
hand side of Eq. (1.4) to zero leads to the following
relations [3–5]:

(1.7)

(1.8)

At specified overall concentration c and known depen-
dences of ns, ∆ns and Ws on concentration c1, Eqs. (1.7)
and (1.8) enable us to find the equilibrium values of 

and 

Let us denote deviations of the parameters from
their values at the final equilibrium state by symbol δ
before these parameters. As was shown earlier [4–6],
for times at which concentrations c1 and cM are already

∂cM/∂t J ' J".+=

c1 nscM+ c.=

t

=  – c1d
π1/2∆nc cM∂ns/∂c1 1+( ) Wc( )exp

jc
+nsc1 1 cM/c1( ) Ws( )exp /π1/2∆ns–[ ]

-----------------------------------------------------------------------------------------,

c1 0( )

c1 t( )

∫

jc
+

c̃M π1/2c̃1= ∆ñs –W̃s( )exp ,

c̃1 π1/2c̃1ñs∆ñs –W̃s( )exp+ c.=

c̃M

c̃1.
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close to the  and  values at the final equilibrium
state of the solution, the following relations are valid:

(1.9)

Here, δc1(t0) and δcM(t0) are the deviations of the con-
centrations of surfactant monomers and micelles at the
onset of the final exponent-law stage of the slow relax-
ation (t = t0). The characteristic time of the exponent-
law relaxation tr is found as follows [4–6]:

(1.10)

where dimensionless parameters  , and  are
equal to

(1.11)

and dimensionless value α is introduced as

(1.12)

(at CMC1, the  value is close to degree  of
micellization and is usually assumed to be equal to 0.1).
With allowance for exact relations (1.4), (1.14), and
(3.10) presented in [7] and (1.7) and (1.12), the formu-

las for   , and  are transformed into the fol-
lowing relations:

(1.13)

(1.14)

(1.15)

(1.16)

Taking into account Eqs. (1.13) and (1.15), formula
(1.10) for time tr may be rewritten as

(1.17)

Note that time tr is sometimes unreasonably considered
to be the characteristic time of the whole slow relax-
ation process in a solution with spherical micelles.
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2. INTERVALS OF VARIATIONS 
IN SURFACTANT MONOMER AND MICELLE 

CONCENTRATIONS DURING SLOW 
RELAXATION IN A SOLUTION

Let us consider a micellar solution disturbed by an
external action (the nature of the action is here
ignored). After the disturbance, the solution is assumed
to be materially isolated and to have an overall surfac-
tant concentration c lying between CMC1 and CMC2
and constant temperature and pressure. As micelle con-
centration remains virtually unchanged at the fast relax-
ation stage, total micelle concentration cM(0) at the
onset of the slow relaxation coincides with that at the
onset of the fast relaxation immediately after the solu-
tion is disturbed. Further, this parameter is assumed to
be known. Accordingly, taking into account Eqs. (1.8)
and (1.7), deviation δcM(0) is also considered to be
known (at specified c and cM(0) parameters).

When the fast relaxation is completed, the state of
the solution is determined only by concentrations cM(t)
and c1(t), with one of them decreasing with time and the
other increasing to final equilibrium values. As was
shown in [7], for monomer concentration c1, lying in
the range from its value at which c is even slightly
lower than CMC1 and the difference ns – nc is equal to
the sum of half-widths ∆nc + ∆ns to its value at which
the minimum of aggregation work Ws diminishes to 3
(or CMC2 is reached), material balance equation (1.5)
may be linearized in the form

(2.1)

In order to make Eq. (2.1) valid within the aforemen-
tioned interval, it is sufficient to fulfill the strong ine-
quality |δc1|/  � 1 [7].

Although the strong inequality |δcM|/  � 1 is not
necessary for relation (2.1), it will be necessary to limit
the |δcM|/  value from above. Preliminarily, the fol-
lowing circumstances should be noted. As the final con-
centration of spherical micelles  rapidly rises with
the overall micellar solution concentration, the strong
inequality |δcM|/  � 1 and, as a consequence, the ine-

quality (1 + )|δc1|/  � 1, (in view of relations (2.1)

and (1.12)), may be unsatisfied (despite |δc1|/  � 1)

only at sufficiently small  values in the vicinity of
CMC1. To avoid a situation in which current micelle
concentration cM may be reduced to zero, let us impose

the additional condition (1 + )δc1/  < 1 when δc1 >
0. At δc1 < 0, this situation is impossible.

As, in general, the time dependences of monomer
concentrations increasing and decreasing in the course
of relaxation are different, let us distinguish between
them employing superscripts (u) and (b). The initial

δcM –
1 λ̃+

ñs

------------δc1= .

c̃1

c̃M

c̃M

c̃M

c̃M

λ̃ α̃c̃1

c̃1

c̃M

λ̃ α̃c̃1
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values of  and  of deviation 

and  in surfactant monomer concentration are
expressed as

(2.2)

where βu and βb are some positive numerical parame-
ters. Then, according to relations (2.1) and (2.2), initial

 and  values of deviations 

and  in micelle concentration are equal to

(2.3)

As follows from relations (2.3) and (2.2), by specifying

initial deviation  and , we determine
positive magnitudes βu and βb, as well as initial devia-

tions  and  Vice versa, by specifying
numbers βu and βb, we perform the parameterization of
the initial disturbances of a micellar solution. The
larger βu and βb the stronger the initial disturbance of a
solution.

In view of (2.2), the range of variations in surfactant
monomer concentration must obey the following ine-
quality when this concentration diminishes in a micel-
lar solution:

(2.4)

When the concentration increases, the interval must
obey the inequality

(2.5)

As was shown in [7], in order to make relations
(1.9), which describe the exponent-law stage of relax-
ation, to be applicable, the following strong inequality
must be fulfilled:

(2.6)

As the exponent-law relaxation is reached asymptoti-
cally, the onset of the exponent-law stage is determined,

to some extent, arbitrarily. Let us specify moments 

and  of the onset of the exponent-law relaxation
stage upon a reduction and an increase in the monomer
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ñs
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b( ) 0( ).

0 δc1
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–
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b( ) t( ) 0.≤ ≤

δc1 t0( )
c̃1

-------------------- � 
2
ñs

----.

t0
u( )

t0
b( )

concentration, respectively, by the following conditions
corresponding to relation (2.6):

(2.7)

Then, within the time intervals 0 ≤ t ≤  and 0 ≤ t ≤

 which precede the onset of the exponent-law stage
of relaxation, with allowance for relations (2.2) and
(2.4)–(2.7), deviations in the surfactant monomer con-
centration vary over the ranges

(2.8)

(2.9)

Accordingly, deviations  and  in
micelle concentrations upon a decrease and a rise in
monomer concentration will, with allowance for rela-
tions (2.1) and (2.3), vary within ranges

(2.10)

(2.11)

3. ANALYTICAL SOLUTION OF THE PROBLEM 
OF THE INITIAL STAGE OF THE SLOW 

RELAXATION

Let us consider the integral in the right-hand part of
relation (1.6) within the time interval preceding the
exponent-law relaxation stage. The main contribution
to the dependence of the intergrand in relation (1.6) on
the concentration of surfactant monomers c1 is made by
exponents exp(Wc) and exp(Ws). As was shown in [7]
by means of inequalities (3.13) and (3.14), Wc and Ws

values may be linearized relative to δc1 provided that
the inequality |δc1|/  � 1 is satisfied. Relation (2.1)
may be linearized under the same condition. Hereafter,
we assume that this inequality is fulfilled within ranges
(2.8) and (2.9). Later on, we clarify the conditions
imposed on values βu and βb in this case. Using formu-
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2ñs

-------- c̃1 δc1
u( ) t( )

βu

ñs
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2ñs
2

------------ c̃1 δcM
b( ) t( )<=

≤
βb 1 λ̃+( )

ñs
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las (3.15) and (3.16) presented in [7], we write the fol-
lowing equations:

(3.1)

Assuming that the inequalities

(3.1a)

are satisfied, it is easy to understand that the following
approximate inequalities take place:

(3.2)

(3.3)

(3.4)

where relations (2.1) and (1.12) are taken into account,
parameter  ≡ (∂ln∆nc/∂c1  is introduced

analogously to the second one of relations (1.11), and

the equalities  = –  and  =  (equal-

ities (1.7) and (1.8) in [7]) are taken into account.
With allowance for relations (3.1)–(3.3) and (1.7)

and employing geometric progression formula, the fol-
lowing expansions are derived within intervals (2.8)
and (2.9) for the factor [1 – (cM/c1)exp(Ws)/π1/2∆ns]–1 in
the integrand of relation (1.6):

(3.5)
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1 λ̃+

α̃
------------ η̃s+ +⎝ ⎠

⎛ ⎞ δc1

c̃1
--------exp

m 0=

∞

∑
1

2ñs
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(3.6)

The series in relations (3.5) and (3.6) are rapidly con-
vergent because |δc1|/  ≥1/ . In this situation, it is
sufficient to take into account only two initial terms.

Analogously, with allowance for (3.1)–(3.4), (1.2),
and (1.11), we have the following equality for the sec-
ond factor in the integrand of relation (1.6):

(3.7)

Equation (3.7) is valid in both ranges (2.8) and (2.9).

Relation (3.7) takes into account that the  value is
proportional to surfactant monomer concentration c1

and micelle surface area ∝ 

It was found that  ~ 1,  ~ 1,  and

 are negative values  ≈ 0.1–1 and  ≈ 1–2 [7].
The aforementioned estimations suggest that the latter
four inequalities in (3.1a) are well fulfilled at

 � 1. In view of relation (1.15),  increases

with monomer concentration from  ~ 0.1 at CMC1 (at

 = 0.1) to large values  � 1 (at  � 1) so that the

ratio (1 + )/  appears to be on the order of ten at over-
all concentrations close to CMC1 and on the order of

 ~ 1 at concentrations noticeably higher than

CMC1. As the inequality  � 1 is always satisfied with

a large excess for micelles, the contribution of term 
to the power indices of the exponents in the right-hand
parts of relations (3.5) and (3.6) is small as compared to

. Further, we shall ignore this term to compare with

 in the power indices of the exponents in relations

(3.5) and (3.6). Term (1 + )/  in these indices should
be retained at overall concentrations close to CMC1.

Taking into account the aforementioned behavior of 

and (1 + )/  values, factor 1 + 

1
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exp  in Eq. (3.7) may be

replaced by 1 +  Indeed, the absolute value of the
power index of the exponent in this factor may be
noticeable as compared with unity in the vicinity of
CMC1 despite the fact that  � 1; however, fac-

tor  at the exponent will, in this case, be much smaller
than unity. Upon a rise in the overall concentration

above CMC1, when  begins to rapidly grow, the abso-
lute value of the power index of the exponent becomes
small as compared to unity at  � 1 and the

exponent itself approaches unity. Thus, the aforemen-
tioned replacement is valid at concentrations both close
to and above CMC1. At  � 1 (even slightly larger

than unity), the role of the difference  –

 in the power index of the exponent, which is

the second term of relation (3.7), may be ignored as
compared to . However, as  may be on the order of

ten, the role of term  + 1 in relation (3.7) may be

noticeable. Therefore, further, we will retain  + 1 as

an addend to the main terms on the order of 

With allowance for all the mentioned above, substi-
tuting (3.5)–(3.7) into the integrand in relation (1.6) and
retaining only first two members of the rapidly con-
verging series in relations (3.5) and (3.6), after integra-
tion, we obtain

(3.8)
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(3.9)

Here, we have ignored 1 +  as compared to  It is
the constraint from above on variations in time t pre-
sented in relations (3.8) and (3.9) that is the reason for
the rapid convergence of the series in relations (3.5) and
(3.6).

As is seen from formula (3.8), the effect of the initial

 value on the relaxation at  > 0 will be
slight when the following condition is fulfilled:

(3.10)

At t ≈ , condition (3.10) is, with allowance for rela-
tion (2.8), reduced with a large excess to the inequality

 � 1, which is satisfied at

(3.11)

Similarly, as is seen from formula (3.9), the influence of

the initial  value on the relaxation at  < 0
will be slight when the following condition is fulfilled:

(3.12)

At t ≈ , condition (3.12) is, with allowance for (2.9),
reduced to inequality
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exp  � 1, which is satis-

fied at

(3.13)

At t <  and t < , inequalities (3.11) and (3.13)
would naturally be even stronger.

At a reasonable estimate /  ≈ 3, inequality
(3.11) is already fulfilled at βu � 6.5, while inequality
(3.13), at overall concentrations noticeably higher than
and close to CMC1, is already satisfied at βb � 3.5 and
2.5, respectively. As follows from relations (2.8), (2.9),
and  � 102, at these βu and βb values, inequality

 � 1, which was required to analytically calcu-
late the integral in relation (1.6), will be fulfilled with
an excess throughout the interval of integration. Since,
according to relations (2.10), (2.11), and (1.12), ine-

qualities  < βu(1 + )/  and  <

βb(1 + )/  are valid and, as inequality (1 + )/  <
10 is satisfied, even in the vicinity of CMC1, at the
aforementioned estimates (βu � 6.5, βb � 2.5, and  ≈

102) inequality  < 1/2 in relation (3.1a) will
also be fulfilled (at βu � 6.5 it is barely satisfied).
Finally, all of the inequalities (3.1a) will be fulfilled.

The role of the third contributions in the brackets in
relations (3.8) and (3.9), which are due to the second

expansion terms in (3.5) and (3.6), is greatest at t ≈ 

and t ≈ , as is evident from relations (2.8) and (2.9).
However, even in this case, with allowance for relations
(2.7), at /  ≈ 3, we obtain that the correction result-
ant from the third contributions in relation (3.8), as
compared to the main contribution, is rather adequately
estimated as

(3.14)

In relation (3.9), it is assessed as

(3.15)

Thus, the role of these contributions is slight. At t < 

and t < , their role becomes still slighter.
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ñs ñc

ñc
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4. CHARACTERISTIC TIMES 
OF SLOW RELAXATION

Solving relations (3.8) and (3.9) relative to 

and  at 0 ≤ t <  and 0 ≤ t <  when the third
contributions in the brackets in relations (3.8) and (3.9)
may be ignored, taking into account the first of equali-
ties (3.2), we, with sufficient accuracy, find the follow-
ing power relations for monomer concentrations as the
basic approximations:

(4.1)

(4.2)

where  and  are defined as

(4.3)

(4.4)

Having, unlike relations (1.9), the power (rather
than exponential) form of the time dependence, formu-
las (4.1) and (4.2) justify the name of the study to which
they are applicable, i.e., the power-law stage of the slow

relaxation. Moreover, the  and  values have the
meaning of the characteristic times of the power-law
relaxation stage. Note that it is this stage in which the
amount of a surfactant markedly varies in micelles due
to, first of all, variations in concentration cM (at the final
exponent-law stage of micellization, this variation is
already negligible).

Let us compare the characteristic times  and 
of the power-law relaxation with the characteristic time
tr of the exponent-law relaxation. Taking into account
relation (1.17) at  � |ηs| and relation (1.15), from
equalities (4.3) and (4.4), we arrive at

(4.5)
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ñc 1 η̃c+ +
[ ]

–
1
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ñs ñc– 1 λ̃+
α̃

------------+

1
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ñc

-----------------+⎝ ⎠
⎛ ⎞

--------------------------------------------tr,=



COLLOID JOURNAL      Vol. 70     No. 2      2008

POWER-LAW STAGE OF SLOW RELAXATION IN SOLUTIONS 251

(4.6)

Formulas (4.5) and (4.6) testify that the characteristic
times of the power-law stage are always longer than the
characteristic time of the exponent-law stage. This is

especially pronounced for time  Experimental

determination of times tr, , and  allows us to

independently find aggregation numbers  and 

and the extrema  and  of the aggregation work.

Let us investigate the characteristic times of slow

relaxation tr, , and  as functions of the final con-

centration  of surfactant monomers in a solution.
Note that, according to the facts mentioned in the
beginning of Section 2, relations (1.17), (4.3), and (4.4)

for times tr, , and  are valid, not only above, but
also slightly below CMC1 provided that the potential
well and barrier are distanced from each other over the
aggregation number axis and the concepts of the for-
ward and back fluxes of molecular aggregates are valid.

Usually, inequalities /  � 1, /  � 1, and

(1 + )/  � 1 are valid throughout the range of
solution overall concentrations from concentrations
slightly lower than CMC1 to CMC2. Then, for concen-
trations from slightly below CMC1 to CMC2, from rela-
tions (1.17), (4.5), and (4.6), we obtain the following
simplified expressions:
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According to relations (1.16) and (1.2), the depen-
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through exponents exp  and exp , respec-

tively. Having obtained from (3.1) formulas  =

tr
b( )
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W̃c W̃s.

tr
u( ) tr

b( )

c̃1

tr
u( ) tr

b( ),

η̃s ñs ∆ñs
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relations (1.16) and (1.2), arrive at

(4.10)

Finding the logarithms of relations (4.7)–(4.9) and dif-
ferentiating with respect to  taking into account

the dependence on  of only most sensitive to  

and  values and using relations (4.10), we obtain

(4.11)

(4.12)

(4.13)

Formulas (4.11)–(4.13) are valid for concentrations
both slightly below and above CMC1, however, only up
to CMC2. At overall concentrations well above CMC1,

when  � 1 and, consequently,  � 1, in the
right-hand parts of relations (4.11)–(4.13), the sum of
the first and second terms tends to the  difference  –

 while the latter terms may be ignored. Thus, mark-
edly above CMC1, the same simple power law follows
from relations (4.11)–(4.13) for the dependences of

times tr, , and  on the final equilibrium concen-

tration  of surfactant monomers:

(4.14)

This law is valid up to CMC2.
Since always  >  (the minimum of the aggrega-

tion work is attained at larger aggregation numbers than
the maximum), it follows from formula (4.14) that, as
the final concentration of surfactant monomers dimin-
ishes in the region of overall concentrations well above

CMC1, times tr, , and  monotonically decrease.
As is seen from relations (4.11)–(4.13), this decrease
may be upset in the vicinity of and below CMC1.

Equating the right-hand parts of relations (4.11)–
(4.13) to zero, we derive equations for extrema in the

dependences of times tr, , and  on surfactant
overall concentration. Taking into account strong ine-

qualities  �  and  �  (the latter
inequality is valid, may be barely, at the lower boundary
of surfactant overall concentrations accessible for the
theory), we have
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(4.16)

(4.17)

where symbols αr, αru and αrb have been introduced to

denote  values at which extrema tr, , and ,
respectively, are attained. At surfactant overall concen-
trations in a narrow vicinity of CMC1, the final concen-
tration  of surfactant monomers in a solution may be
with a sufficient accuracy believed to coincide with its

value c1m at CMC1. Then, the  , and  values in
relations (4.15)–(4.17) may be considered as equal to
their values nsm, ncm, and ∆nsm at CMC1. This makes it
possible to easily solve these relations with respect to
αr, αru, and αrb. As follows from relations (4.15)–
(4.17), in the vicinity of CMC1, each of equations

(4.15) and (4.17) can have two real roots  ,

and   while equation (4.16) has one root

 (superscripts denote the types of the extrema of
corresponding characteristic times, which are attained
at aforementioned  values). As is seen from relations

(4.15) and (4.17), real roots  and  exist pro-

vided that the condition  ≥ 

is satisfied, while roots  and  take place, when

stronger condition  ≥  is ful-
filled. As follows from relation (4.16), the minimum of

time  at

(4.18)

occurs in the vicinity of CMC1 without any conditions.
When the strong inequality

(4.19)

is satisfied, we, from relations (4.15) and (4.17), obtain
the following approximate and simple expressions for

 ,  and  :
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From relations (4.18), (4.20) and (4.21), it is seen that

the minima of characteristic times tr, , and 
almost coincide with each other provided that inequal-
ity (4.19) is fulfilled. At reasonable estimates nsm = 102,
nsm/ncm = 3, and ∆nsm/∆nsm = 0.1 [10], strong inequality
(4.19) is satisfied and, from relations (4.18), (4.20), and

(4.21), we obtain  = 0.02,  = 0.03, and  �

 �  = 1. As the  =0.1 value corresponds to

CMC1, the obtained values   = 0.02 and  =
0.03 are slightly below CMC1, that is, in the region
where the above-considered analytical theory may be,
although possibly barely, still applicable.

Note that the existence of a maximum and minimum
in the dependence of time tr on surfactant overall con-
centration in a solution in the vicinity of CMC1 was
predicted quite long ago in [3] on the basis of somewhat
different ideas (as the reciprocal time of exponent-law
relaxation was considered in [3], the minimum and

maximum of  were discussed there). However, nei-
ther relations for the positions of the maxima and min-
ima of the characteristic times of slow relaxation nor
expressions for the maximum and minimum values of
these times were previously considered.

Simple relations (4.18), (4.20), and (4.21) enable us
to reliably determine important parameters of the the-
ory, such as ncm , nsm, and ∆nsm, from experimental data
on the characteristic times of slow relaxation. In com-
bination with relation (4.14), they also make it possible
to verify the self-consistency of experimental data and
thermodynamic models of micelles.

5. NUMERICAL SOLUTION OF EQUATIONS 
FOR SLOW RELAXATION IN TERMS 

OF DROPLET AND QUASI-DROPLET MODELS

Let us illustrate the general formulas derived in the
above sections irrespective of a thermodynamic model
of a micelle by the direct numerical calculation of slow
relaxation via Eqs. (1.5) and (1.6) at Wc, Ws, nc, ns, ∆nc,

∆ns, and  values specified as functions of c1 in terms
of the droplet [6, 8] and quasi-droplet [6, 9] models of
the work of surfactant spherical aggregate formation. In
the droplet model of surfactant molecular aggregates,
the dependence of the aggregation work on the aggre-
gation number n at n � 1 has the following form [6, 8]:

(5.1)
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Similarly, in the quasi-droplet model of surfactant
molecular aggregates, at n � 1 [6, 9], we have

(5.2)

Hereafter, superscripts (d) and (q) denote the droplet
and quasi-droplet models, respectively. Parameters b1,

b3,  a1, a3, and  in the models are positive and
independent of n and c1. The physical meaning of these
parameters reported in [6, 8, 9], which enables us to
determine them, though rather approximately, from
rough quantitative data on micellization published in
the literature by now, will be of no importance below.
Note that parameter c10 in both models represents
monomer concentrations corresponding to the potential
barrier and well of work Wn.

As was shown in [10], parameters b1, b3,  a1, a3,

and  may be expressed via the position and half-
width of the potential well of aggregation work and the
minimum of the latter as determined at CMC1. The fol-
lowing values of these parameters were accepted for
both models as accessible for experimental determina-
tion:

(5.3)

(as was mentioned above, additional subscript m
denotes that the values were determined at CMC1). At

these      and , values,
parameters of the models themselves turn out to be as
follows:

b1 = 1.6255, b3 = 29.256,  = 4.2483 × 1014 cm–3, (5.4)

a1 = 0.0457, a3 = 0.79656,  = 3.7956 × 1021 cm–3,(5.5)

while maxima of aggregation work  and  at a
surfactant monomer concentration corresponding to

CMC1 are  = 34.2 (  = 10.4) and  = 19.1

(  = 22.1). The dependence of aggregation work Wn

on aggregation number n for the droplet and quasi-
droplet models at the aforementioned values (5.4) and
(5.5) of the parameters and at c1/c10 = c1m/c10 is pre-
sented in Fig. 1.

It is known [8] that the absorption intensity  of
a critical molecular aggregate in the droplet model lin-
early depends on monomer concentration c1 and aggre-

gate surface area at n = nc as  =  In the

quasi-droplet model,  is independent of aggregate
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surface area [9];  =  When performing cal-

culations through formula (1.6) in terms of the droplet
and quasi-droplet models, it is reasonable to express

time t in 1/  and 1/  units, respectively. The

 and  values per se are difficult to theoretically
calculate; however, as follows from relations (1.10) and

(1.2), reciprocal values 1/  and 1/  are intro-
duced into the expression for characteristic time tr as
coefficients. Therefore, it is convenient to further
express different time moments in the course of relax-
ation in tr units.

Figures 2 and 3 illustrate the time dependences of
surfactant monomer concentration in a micellar solu-
tion for the droplet and quasi-droplet models at model
parameters (5.4) and (5.5), initial conditions βu = 17.9

(  = 0.25) and βb = 7.16 (  =
0.1), and an overall concentration c = 2CMC1. These
initial conditions were selected in order to diminish
their influence in accordance with relations (3.11) and
(3.13). The effect of the initial conditions will be con-
sidered in more detail when discussing Fig. 7.

Heavy solid lines 1 and 1' in Figs. 2 and 3 refer to

dependences  and  calculated
by relations (1.5), (1.6), (1.10) and (1.2). Thin solid
lines 2 and 2' show exponential approximations (1.9) of

monomer concentration at  > 0 and  < 0,
respectively, in which pre-exponential factors and the
characteristic time tr of exponential decay were deter-
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Fig. 1. Aggregation workWn as a function of aggregation
number n for the (1) droplet and (2) quasi-droplet models at
CMC1.
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mined from the final parts of curves 1 and 1' at

  1 and   1. Dashed
lines 3 and 3' demonstrate the basic power-law approx-
imations of monomer concentration as calculated
through relations (4.1) and (4.2). Dotted lines 4 and 4'
illustrate curves plotted employing more correct rela-
tions (3.8) and (3.9). The horizontal thin solid line
denotes the final monomer concentration. Two thin dot-

and-dash lines denote the  and 

c1
u( ) t/tr( )/c̃1 c1

b( ) t/tr( )/c̃1

c1
u( ) t0

u( )( )/c̃1 c1
b( ) t0

b( )( )/c̃1,

values that are attained according to conditions (2.7) by
the onset of the exponent-law relaxation stage.

As is seen from Figs. 2 and 3, even basic approxima-
tion relations (4.1) and (4.2) adequately approximate
calculated curves 1 and 1' for the droplet and quasi-
droplet models. The comparison of curves 4 and 4' with

curves 1 and 1' indicates that times  and  deter-
mined from these curves are slightly shifted, with the

shift being larger for  This is explained by the fact
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Fig. 2. Dependences of monomer concentration c1/  on

time t/tr for the droplet model. See text for explanations.
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time t/tr for the quasi-droplet model. See text for explana-
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that, when deriving formulas (3.8) and (3.9), we used

accurate initial values of  and  How-

ever, it is the values δc1 =  and δc1 = 
at which the errors in relations (3.5)–(3.7) are largest.
Note that, upon the relaxation from above, in the drop-
let model, each subsequent approximation describes
the curvature of curve 1 more adequately; however, the
deviation from this curve also increases. This is associ-
ated with the fact that, in the droplet model, the first of
formulas (3.1) and, accordingly, relations (3.7) and
(3.8) exhibit insufficiently adequate approximation
because  is equal to ten at the eccepted parameter
values.

Now, let us consider the dependences of character-

istic times tr, , and  on the relative overall con-
centration (c – CMC1)/CMC1 of a solution in terms of
the droplet and quasi-droplet model. These depen-
dences plotted using formulas (1.17), (4.3), and (4.4)
with allowance for relations (1.2) and (1.14)–(1.16)
may be experimentally determined from different parts
of relaxation curves measured for a micellar solution in
the course of a gradual variation in its concentration.

Thus, important parameters  , and 
employed in the theory can be determined with a high
accuracy as functions of solution overall concentration.
Curves in Figs. 4 and 5 comprise both maxima and min-
ima (they are more pronounced in Fig. 5), which were
predicted by the general analysis of expressions for

times tr, , and  at the end of Section 4. In view of
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+
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approximate equality  ≈ (c – CMC1)/CMC1, the posi-
tions of the maxima and minima in the relative overall
concentration axis may be directly superposed with

   , and  using relations
(4.18), (4.20), and (4.21). There is an agreement for the
droplet and quasi-droplet models of micelles with

respect to  and this might be expected, because
formula (4.18) did not required additional constraints
with respect to model parameters. The absence and the
presence of maxima and minima in the curves for tr and

 plotted in terms of the droplet and quasi-droplet
models, respectively, reflect the fact that, in the quasi-
droplet model, the ncm value appears to be approxi-
mately twofold larger than that in the droplet model.
Therefore, in the case of the droplet model, the condi-

tions for the reality of  ,  and 
values are not fulfilled at the selected parameters, and
we see inflection points rather than extrema in the

curves for tr and . In the case of the quasi-droplet
model, inequality (4.19) is satisfied; therefore, the max-
ima and minima are pronounced in the curves for tr and

. The behavior of times tr, , and  (Figs. 4, 5)
almost agrees with the experimental data on the slow
relaxation time reported in [3], with the quasi-droplet
model demonstrating better agreement.

In Fig. 6, heavy solid lines show the dependences of

/tr (curves 1 and 2 refer to the droplet and quasi-
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droplet models, respectively) and /tr (curves 1' and
2' refer to the droplet and quasi-droplet models, respec-
tively) on the solution relative overall concentration
(c – CMC1)/CMC1, which were calculated by relations
(1.5), (1.6), (1.8), (1.10), and (1.2); conditions (2.7);
and models (5.1) and (5.2) with parameters (5.4) and
(5.5). Dashed lines in Fig. 6 illustrate the dependences

of /tr plotted using relations (3.8) (curve 3 and 4
refer to the droplet and quasi-droplet models, respec-
tively) and (3.9) (curves 3' and 4' refer to the droplet and

quasi-droplet models, respectively) at t =  and t =

 Initial conditions were specified in the form

 = 0.25 and  = 0.2 in order to
maximally weaken their influence. As is seen from
Fig. 6, for both micelle models, relation (3.8) ade-

quately predicts the behavior of /tr. Formula (3.9) is
somewhat less adequate, seemingly because the power-

law relaxation at  < 0 proceeds noticeably

faster than at  > 0. The fact that /tr initially
rises at overall concentrations close to CMC1 (in con-

trast to /tr value, which decreases at these concentra-
tions) is explained by a marked reduction in micelle

concentration at  < 0 in the vicinity of CMC1.

Let as return to the quantitative description of the
effect of an initial disturbance. In Fig. 7, solid heavy

lines demonstrate the dependences of /tr (curves 1
and 2 refer to the droplet and quasi-droplet models,

respectively) and /tr (curves 1' and 2' refer to the
droplet and quasi-droplet models, respectively) on ini-
tial condition  which were calculated
employing relations (1.5), (1.6), (1.10), and (1.2); con-
ditions (2.7), and models (5.1) and (5.2) with parame-
ters (5.4) and (5.5) at c = 2CMC1. Dashed lines in Fig. 7

illustrate dependences of /tr on the initial conditions
plotted using relations (3.8) (curves 3 and 4 refer to the

droplet and quasi-droplet models, respectively) and
(3.9) (curves 3' and 4' refer to the droplet and quasi-

droplet models, respectively) at t =  and t = .
Similar to Fig. 6, it is seen that relation (3.8) is some-
what more adequate for predicting the behavior of

/tr than relation (3.9). At the same time, Fig. 7 sug-

gests that, at  < 0, we may ignore the initial con-
dition in relation (3.9) already beginning with small

deviations at  At  > 0, we cannot do
this in formula (3.8) until the almost maximum possible

deviation of  is reached.
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