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Widely known Gibbs’ relationship predicting a difference of chemical potentials in a small solid
particle and in a surrounding fluid phase at equilibrium is shown to refer to a real or imaginary bulk
phase inside the particle. A similar relationship derived for the real surface monolayer of a
nanoparticle exhibits the equality of chemical potentials at equilibrium, which allows for
experimental measurement of the surface chemical potential of a dissolving solid nanoparticle.
© 2007 American Institute of Physics. �DOI: 10.1063/1.2818049�

Since the time when the concept of chemical potential
was introduced by Gibbs1 to create chemical thermodynam-
ics, the chemical potential has become a powerful tool for
solving various problems of physics and chemistry. This is
due to two universal properties of the chemical potential: �a�
the uniformity of chemical potential in a state of equilibrium
and �b� spontaneous transition of matter from places with a
larger chemical potential to places with a smaller chemical
potential in the absence of equilibrium. On the other hand,
Gibbs came to a contradictive conclusion that the chemical
potentials of the matter of a solid particle inside the particle
and in its surrounding solution cannot be equal even in a true
state of equilibrium. On the face of it, this conclusion looks
shocking and disproving the above universal properties of
chemical potential, and the situation has remained a source
of misunderstandings and misinterpretations for a long time.
The goal of this communication is to address the apparent
contradiction and to reformulate the condition of equilibrium
for a dissolving solid nanoparticle in such a form as to be
compatible with the general properties of chemical potential.
For the sake of simplicity, we confine ourselves with the case
of an isotropic particle, which is of no principal importance.

Considering a solid, we will follow Gibbs’ model of an
ideally elastic solid. The model implies the presence of at
least one immobile component forming a regular �as a result
of crystallization� or irregular �as a result of glass transition�
solid matrix, i.e., a stable distribution of molecules �or ions�
in space. The molecules of an immobile species are inca-
pable of migration �diffusion� and can change their location
in space only as a result of strain �returning to their initial
positions after ceasing strain�. For this reason, the composi-
tion with respect to immobile species �if they are several�
cannot be changed, and any combination of immobile spe-
cies can be formally regarded as a single component. In ad-
dition, a solid can contain mobile components �Gibbs called
them “fluid components”� which can move freely over the
whole interior of the solid matrix. The behavior of mobile
components in no way differs from that of a free fluid, so
that their thermodynamics description is the same as for liq-

uid solutions. The presence of mobile components is unnec-
essary for a solid, but, for the sake of generality, we will take
them into account. In view of the above discussion, we will
consider a solid particle consisting of a single immobile
component and an arbitrary number of mobile components.

Surface tension is known to play a significant role in the
formulation of the equilibrium conditions for small liquid or
solid bodies, but for solids, the situation is complicated by an
ambiguous definition of surface tension. Gibbs1 was first to
distinguish between the mechanical �defined via force� sur-
face tension � and the thermodynamic �defined via energy�
surface tension � as the work of formation of the unit area of
a new surface. �=� for liquids, but � is generally different
from � for solids. Both for liquid drops and isotropic solid
particles, � participates in the mechanical equilibrium condi-
tion that is widely known for a spherical case as

p� − p� =
2�

R
+

d�

dR
, �1�

where p is pressure �superscripts � and � refer to the inner
and outer phases, respectively� and R is the dividing surface
radius. Gibbs1 interpreted the derivative in Eq. �1� as a physi-
cal change and Kondo2 as an imaginary shift of the dividing
surface, both the approaches being adequate. More generally,
Eq. �1� can be written in the form3

p� − p� = 2�c +
d�

dN
, �2�

where c is the mean surface curvature and N is the normal to
the surface.

On the contrary, the thermodynamic surface tension � is
used when formulating the dissolution equilibrium condition
�since the detachment of molecules from a particle means the
creation of a new surface�. Gibbs’ Eq. �661� can be written as

� j
� =

f� + p� + 2c�

cj
� , �3�

where � j
� is the chemical potential of a solid matter in a

dissolved state and f� and cj
� are the free energy and the

matter density in the solid phase, respectively. Gibbs’ Eq. �3�a�Electronic mail: rusanov@ar1047.spb.edu
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implies a solid to be an ideally elastic one-component body
�with no mobile components� surrounded by a liquid. Cahn4

generalized Eq. �3� for arbitrary numbers of immobile �sub-
stitutional� and mobile �interstitial� components. In addition,
Cahn and Larche5 considered the case when a solid particle
is embedded in a solid matrix. As for the main restriction,
accepted by Gibbs, that the properties of a particle are inde-
pendent of the particle size, it has been overcome only re-
cently to give3

� j
� = � j

� +
1

cj
��2c� − �p� − p�� +

d�

dN
� . �4�

It is easy to show that the only difference between Eqs. �3�
and �4� is an additional derivative, d� /dN, whose presence
in Eq. �4� allows extending Gibbs’ formula to nanoparticles.
With the aid of Eq. �2�, Eq. �4� can be written as3

� j
� = � j

� +
1

cj
��2c�� − �� +

d�� − ��
dN

� . �5�

Equation �5� exhibits, indeed, that the equality of chemical
potentials of species j in coexisting phases is possible in two
cases: �a� when � and � are fluids �then �=�� and �b� when
� is a solid, but the interface is plane �then c=0 and
d��−�� /dN=0�. This is exactly what was claimed by Gibbs.

To understand the chemical potential difference in Eq.
�5�, we have to remember that � is an excess surface quantity
�per unit area� with respect to a hybrid thermodynamic
potential6,7

�̃ � F − �
i

�iNi, �6�

where F is free energy and Ni is the number of molecules of
sort i in a system. In Eq. �6�, subscript i refers only to mobile
species so that potential �̃ �that can be termed as the semi-
grand thermodynamic potential� possesses the properties of
grand thermodynamic potential with respect to mobile com-
ponents and of free energy with respect to the immobile
component j. The fundamental equation for the �̃ potential
of an isotropic bulk phase is

d�̃ = − SdT − pdV + � jdNj − �
i

Nid�i, �7�

where S is entropy, T is temperature, and V is volume, a
summation on j being not performed since, as was already
mentioned above, every combination of immobile species
may be treated as a single component. For an equilibrium
phase, the local values of temperature and chemical poten-
tials of mobile species are uniform not only in the bulk but
also in the surface region. However, this is not the case with
the chemical potential of an immobile species forming the
solid lattice. This component is incapable of migration
�which is the main mechanism of leveling chemical poten-
tial� and, as a consequence, there is always a certain gradient
of its chemical potential in the surface layer. Just this gradi-
ent is the cause of a difference between � and �.6,7

Considering Eq. �7� as a local relationship and proceed-
ing to surface excesses, we have no problems with every
term, except � jdNj, since only one of two conjugated prop-

erties varies in the surface layer: S produces excess entropy
S̄, p produces the mechanical surface tension �, and Ni pro-
duces the surface excess of the ith species N̄i=�iA �� is
adsorption and A is surface area�, not mentioning that �̃

produces �̄. However, the product � jdNj contains a compli-
cation that both � j and Nj change in the surface layer. To
avoid this complication, we eliminate the term � jdNj by set-
ting the amount of the immobile component constant and
writing the fundamental equation for the surface potential �̄,
which in this case is written as

d�̄ = − S̄dT + �dA − �
i

N̄id�i �8�

for a flat interface and �with an additional curvature term�

d�̄ = − S̄dT + �dA − �
i

N̄id�i + A
d�

dc
dc �9�

for a curved interface �with neglecting, after Gibbs, the de-
viatoric curvature, i.e., assuming a relatively slight deviation
from the spherical shape�. On the other side, we can use the
definition ���̄ /A to write

d�̄ = �dA + Ad� . �10�

Equations �8� and �10� are well compatible with Shuttle-
worth’s classical relationship8

� = � + d�/d ln A �11�

with the specification of necessary conditions as constancy
of temperature and the chemical potentials of mobile species.

Considering now a solid particle �with bulk phase �� in
contact with bulk phase �, we can derive the material equi-
librium condition from the terms of a minimum of ��+��

+�̄ at constant temperature, the whole system volume, the
total amount of an immobile species, and the chemical po-
tentials of mobile species. Using Eq. �10�, this procedure
leads to the condition �4� where mechanical quantities turn to
be in combination with material ones, and chemical potential
� j

� refers to the bulk phase either inside a particle or pure
imaginary if the particle is entirely nonuniform. Since a solid
dissolves and reacts mainly with its surface and the state of
the solid bulk is of less practical significance, we suggest a
modified approach to the derivation of the material equilib-
rium condition for a dissolving nanoparticle. We now con-
sider � not as the bulk phase inside a solid particle but as the
solid particle as a whole with volume V�. It is worthy to note
that the particle can be nonuniform in all its parts, especially
if it is a nanoparticle. Indeed, bulk phases are uniform and
surface layers are nonuniform, but a nanoparticle containing
no bulk phase looks as if it consists of a surface layer only,
which makes it completely nonuniform. Inferring the subse-
quent application of the equilibrium principle for �̃ in this
case, let us write all expressions at fixed temperature and
chemical potentials of mobile species. Then a change in �̃�

can be written as
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d�̃� = − pN
�dV� + � j

����dNj
�, �12�

where pN
� is the real normal pressure at the boundary surface

of the solid particle and � j
���� is the chemical potential of

molecules in the surface monolayer �superscript �� of the
particle. Although Eq. �12� refers to a solid particle, it im-
plies that the amount of the immobile component can be
varied. However, this variation can be only of two kinds:
increasing the solid matrix by crystallization or decreasing
by dissolution. In the last case, the solid matrix is destructed,
and the immobile component acquires mobility when passing
to the solution.

Considering the boundary surface of the particle as a
dividing surface, we now take excess only on the side of
phase �. Then, again we formally have Eqs. �9� and �10� but
with the interpretation that they refer to the fluid part of the
surface layer on the side of phase �. In such interpretation, �
and � coincide, and we can jointly write Eqs. �9� and �10� at
constant T and �i in the form

d�̄ = �dA + Ad� = �dA + Ad� . �13�

The ordinary fundamental equation for fluid phase � at con-
stant temperature and the chemical potentials of mobile spe-
cies is

d�̃� = − p�dV� + � j
�dNj

�. �14�

The equilibrium principle is formulated as

�d�̃� + d�̃� + d�̄�T,V,Nj,�i
= 0 �15�

with dV�=−dV�=−AdN and dNj
�=−dNj

�. We first consider
the mechanical equilibrium condition by assuming a dis-
placement of a certain part of the boundary surface of area A
and curvature c along the normal N in the absence of mate-
rial exchange between the particle and phase � �dNj

�=0�.
Placing then Eqs. �12� and �14� and Eq. �13� in the first form
in Eq. �15�, we have

pN
� − p� = �

dA

dV� + A
d�

dV� , �16�

or, after applying dA /dV�=2c and dV�=AdN,

pN
� − p� = 2�c +

d�

dN
. �17�

Equation �17� expresses that the mechanical equilibrium con-
dition looks similar with Eq. �2� but differs from it in two
respects: �a� pN

� is a real pressure at the particle boundary
surface and not pressure inside the bulk phase of the particle;
�b� � is not the total surface tension but only its part referring
to the fluid zone of the interface.

Proceeding now to the derivation of the material equilib-
rium condition, we set total Eqs. �12�–�14� in Eq. �15�, Eq.
�13� being taken in the second form, to obtain

pN
� − p� = �� j

���� − � j
��

dNj
�

dV� + �
dA

dV� + A
d�

dV� . �18�

Considering the crystallization process when the mass and

volume of a solid matrix increase simultaneously, we may
interpret the derivative dNj

� /dV� as the local surface concen-
tration of the immobile component. Introducing the notation
cj

�����dNj
� /dV� and using the above expressions for

dA /dV� and dV�, Eq. �18� becomes

pN
� − p� = �� j

���� − � j
��cj

���� + 2�c +
d�

dN
. �19�

Equation �19� expresses the condition of material equilib-
rium and is analogous to Eq. �4� for a dissolving nanopar-
ticle. However, Eq. �19� differs from Eq. �4� in those respects
that pN

� and � j
���� are real quantities for the surface of a

nanoparticle and � refers to the fluid part of the interface.
This property gives � ability to coincide with the mechanical
tension � for the same part of the interface. Then replacing �
by � in Eq. �19� and applying the mechanical equilibrium
condition expressed in Eq. �17� that eliminates all mechani-
cal terms from Eq. �19�, we arrive at the relationship

� j
���� = � j

�. �20�

Equation �20�, the main result of this work, is of funda-
mental importance. First, it shows that, in spite of the differ-
ence of chemical potentials in the bulk phase of a nanopar-
ticle and in the surrounding equilibrium solution according
to Gibbs’ result and Eq. �5�, the equality of chemical poten-
tials does take place if one considers the surface monolayer
of the nanoparticle. This confirms the generality of leveling
chemical potentials at equilibrium even for nanoparticles.
Second, Eq. �20� is of a wide practical significance since it
opens a simple way for the direct experimental determination
of the chemical potential of a solid matter at the particle
surface by measuring the chemical potential of a dissolved
matter. As for theory, the next challenge is the elaboration of
methods for the estimation of � j

���� as the most practically
important characteristics of a solid typically exhibiting its
activity in many respects through its surface. It is worthy to
note that the most known Ostwald-Freundlich equation for
solubility of small solid particles, as an analog of the Gibbs-
Kelvin equation for the vapor pressure of a small drop, was
derived by extending the condition of equality of chemical
potential in bulk phases to the case of a solid particle. Equa-
tion �20� makes the basis for an alternative approach in de-
riving similar relationships.

As another example of application of Eq. �20�, one may
consider the problem of thermodynamic description of a
droplet condensing out the vapor-gas environment around
partially dissolving solid nanoparticle �the so-called “deli-
quescence” problem� recently roused a considerable interest
in view of new experimental technique for studying ultrafine
aerosols.9 The droplet consists of a solid core �the remainder
of the deliquesced particle� and a spherical liquid film of
saturated solution of the core matter in condensate. Accord-
ing to Eq. �20�, the solute chemical potential in the film is
equal to the chemical potential of the core matter at the core
surface. On the other hand, the solute chemical potential in
the film should be equal to the chemical potential of the
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solute in the mother phase of the film. These conditions of
solute chemical equilibrium jointly with the conditions of
solvent chemical equilibrium and conditions of the film me-
chanical equilibrium lead to the generalized Ostwald-
Freundlich and the Gibbs-Kelvin-Kohler equations for liquid
spherical nanodroplets with a soluble solid core. Simulta-
neous solution of the equations at a specified initial
�i.e., without a solution film� size of the core allows one to
find a relation between the droplet and core radii and estab-
lish the limits for these radii at stable and unstable equilib-
rium. In addition, one may derive a link between the pressure
of condensate vapor saturated above the nanodroplet on a
partially dissolved solid core and the droplet radius. Such a

link is observed in direct experiment with soluble solid nano-
particles in the solvent gas environment.9,10 The work on the
problem with detailed calculations is now in progress.
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