Relations for Extrema of the Work of Aggregation in Micellar Solutions

F. M. Kuni, A. K. Shchekin, A. I. Rusanov, and A. P. Grinin ${ }^{\dagger}$
Fock Research Institute of Physics, St. Petersburg State University, ul. Ul'yanovskaya 1, Petrodvorets, St. Petersburg, 198504 Russia

Received June 28, 2006

Abstract

Exact relations for the dependence of the positions of extrema of the aggregation work on the aggregation number axis on the surfactant monomer concentration are found for a dilute micellar solution. Relations for the half-widths of the vicinities of the extrema of the aggregation work are determined also. These halfwidths are determined by the condition that, within the boundaries of their values, the aggregation work deviates from its extreme values by a thermal unit. The relations derived are illustrated by calculations based on the droplet and quasi-droplet models of spherical aggregates of nonionic surfactant. Some important applications of the obtained results to the theory of relaxation in micellar solutions are considered.

DOI: 10.1134/S1061933X07030088

INTRODUCTION

Characteristics of the extrema of the work of aggregation in surfactant micellar solutions may be experimentally determined from the data on the times of "fast" and "slow" relaxation in solutions [1-5]. These characteristics include positions of extrema on the aggregation number axis and the half-widths of the vicinities of extrema, with these half-widths being determined by the condition that, within the ranges of these parameters, the work of aggregation deviates from its extreme magnitudes by a thermal unit. The determination of relations for these characteristics allows us to experimentally verify the kinetics and thermodynamics of micellization and also to obtain additional information from experimental data on such parameters as the rate of surfactant monomer addition to micelles and the height of a maximum and the depth of a minimum of the aggregation work.

In this paper, we confine ourselves to the consideration of an ideal associated system (the interactions between particles of all sizes are ignored). For such a system, exact relations will be obtained for derivatives of the positions of the maximum and minimum of the work of aggregation and half-widths of their vicinities with respect to monomer concentrations in micellar solutions. These relations are not associated with the material isolation of a solution and the fact whether the solution is in the equilibrium state or not. These relations have identical forms for nonionic and ionic surfactant aggregates not only above the first $\left(\mathbf{C M C}_{\mathbf{1}}\right)$ but also above the second $\left(\mathbf{C M C}_{2}\right)$ critical micellization concentration, when, in addition to spherical micelles, cylindrical and other micelles are present in a solution

[^0](provided that the interaction between them is still negligible). In this paper, the relations obtained will be illustrated by calculations performed on the basis of droplet $[5,6]$ and quasi-droplet $[5,7]$ models of spherical nonionic surfactant aggregates, as applied to the work of aggregation. In the final part of the paper, we consider some applications of the derived relations to the theory of relaxation in micellar solutions.

1. DERIVATIVES OF THE POSITIONS OF EXTREMA OF THE WORK OF AGGREGATION AND HALF-WIDTHS OF THEIR VICINITIES WITH RESPECT TO MONOMER CONCENTRATION

The aggregation number of a molecular aggregate in a micellar solution is denoted by n. The minimal work of the formation of a surfactant molecular aggregate (hereafter for brevity, the work of aggregation) is expressed in thermal units of energy $k T$ (k is Boltzmann's constant and T is the solution temperature) and denoted by W_{n}. At $n=1$, the aggregates represent surfactant monomers. Their concentration (the number of monomers in the unit volume of the solution) is denoted by c_{1}. Work W_{n} depends not only on aggregation number n but also on monomer concentration c_{1}. The positions of the maximum and minimum of work W_{n} on the axis of variable n are denoted by n_{c} and n_{s}, respectively. The height of the potential barrier and the depth of the potential well are denoted by $\left.W_{c} \equiv W_{n}\right|_{n=n_{c}}$ and $W_{s} \equiv$

[^1]of the potential barrier and well of work W_{n} on the axis of variable n determined by the equalities
\[

$$
\begin{align*}
\Delta n_{c} & =\left[-2 /\left(\partial^{2} W_{n} / \partial n^{2}\right)_{n=n_{c}}\right]^{1 / 2} \tag{1.1}\\
\Delta n_{s} & =\left[2 /\left(\partial^{2} W_{n} / \partial n^{2}\right)_{n=n_{s}}\right]^{1 / 2}
\end{align*}
$$
\]

Signs minus and plus under radicals suggest that W_{n} has a maximum at $n=n_{c}$ and a minimum at $n=n_{s}$. Values $n_{c}, n_{s}, W_{c}, W_{s}, \Delta n_{c}$, and Δn_{s} are functions of surfactant monomer concentration c_{1}.

With allowance for definitions (1.1), quadratic approximations for work W_{n} in the vicinity of its maximum and minimum can be written as

$$
\begin{gather*}
W_{n}-W_{c}=-\left(\frac{n-n_{c}}{\Delta n_{c}}\right)^{2} \tag{1.2}\\
\left(n_{c}-\Delta n_{c} \leq n \leq n_{c}+\Delta n_{c}\right)
\end{gather*}
$$

and

$$
\begin{gather*}
W_{n}-W_{s}=\left(\frac{n-n_{s}}{\Delta n_{s}}\right)^{2} \tag{1.3}\\
\left(n_{s}-\Delta n_{s} \leq n \leq n_{s}+\Delta n_{s}\right)
\end{gather*}
$$

whose accuracy is the higher, the smaller the selected deviations $\left|n-n_{c}\right|$ and $\left|n-n_{s}\right|$ compared to Δn_{c} and Δn_{s}, respectively. According to (1.2), work W_{n} decreases by a thermal unit, when variable n deviates from n_{c} by Δn_{c}. According to (1.3), work W_{n} increases by a thermal unit, when variable n deviates from n_{s} by Δn_{s}. These facts disclose the physical meaning of introduced halfwidths Δn_{c} and Δn_{s}. We take into account that, in the absence of interaction between molecular aggregates, the dependence of the work of aggregation, W_{n}, on surfactant monomer concentration c_{1} has a universal (independent of a model selected for molecular aggregates) form and is determined by term $-(n-1) \ln c_{1}[4,5]$. Therefore, the following relations:

$$
\begin{gather*}
\partial W_{n} / \partial c_{1}=-(n-1) / c_{1}, \quad \partial W_{c} / \partial c_{1}=-\left(n_{c}-1\right) / c_{1} \\
\partial W_{s} / \partial c_{1}=-\left(n_{s}-1\right) / c_{1} \tag{1.4}
\end{gather*}
$$

are valid.
Let us differentiate $W_{n}-W_{c}$ and $W_{n}-W_{s}$ with respect to c_{1} using relations (1.2), (1.3), and (1.4). Equating the results, we obtain

$$
\begin{aligned}
-\frac{\left(n-n_{c}\right)}{c_{1}}= & 2 \frac{n-n_{c}}{\Delta n_{c}^{2}} \frac{\partial n_{c}}{\partial c_{1}}+2 \frac{\left(n-n_{c}\right)^{2}}{\Delta n_{c}^{3}} \frac{\partial \Delta n_{c}}{\partial c_{1}} \\
& \left(\left|n-n_{c}\right|<\Delta n_{c}\right)
\end{aligned}
$$

and

$$
\begin{align*}
-\frac{\left(n-n_{s}\right)}{c_{1}}= & -2 \frac{n-n_{s}}{\Delta n_{s}^{2}} \frac{\partial n_{s}}{\partial c_{1}}-2 \frac{\left(n-n_{s}\right)^{2}}{\Delta n_{s}^{3}} \frac{\partial \Delta n_{s}}{\partial c_{1}} \tag{1.6}\\
& \left(\left|n-n_{s}\right|<\Delta n_{s}\right)
\end{align*}
$$

In the limiting case, at $n \longrightarrow n_{c}$ and $n \longrightarrow n_{s}$, from Eqs. (1.5) and (1.6), we arrive exactly at

$$
\begin{equation*}
\frac{\partial \ln n_{c}}{\partial \ln c_{1}}=-\frac{\Delta n_{c}^{2}}{2 n_{c}} \tag{1.7}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{\partial \ln n_{s}}{\partial \ln c_{1}}=\frac{\Delta n_{s}^{2}}{2 n_{s}} \tag{1.8}
\end{equation*}
$$

where the result is expressed via logarithmic derivatives.

Note that the problem of determining the positions of extrema of an equilibrium distribution over the aggregation number of molecular aggregates as functions of c_{1} (in a general case, of the chemical potential of surfactant monomers) was solved for the first time in [8] (see also [9]). At low concentrations of monomers and molecular aggregates (when their activities may be replaced by concentrations), the result obtained previously ([9], formula (50.7)) is equivalent to Eqs. (1.7) and (1.8), as applied to the equilibrium distribution. Relation (1.8) was also derived from the definition of the average aggregation number of micelles assuming the Gaussian quasi-equilibrium distribution of aggregates in the micellar region $n_{s}-\Delta n_{s} \leq n \leq n_{s}+\Delta n_{s}$ [1]. As follows from Eqs. (1.7) and (1.8), $\partial n_{c} / \partial c_{1}<0$ and $\partial n_{s} / \partial c_{1}>0$; hence, n_{c} decreases and n_{s} increases with an increase in c_{1}. This regularity, which had been for the first time formulated in [8, 9], was verified employing the droplet and quasi-droplet models of spherical aggregates of a nonionic surfactant $[6,7,10]$.

Now, let us find derivative $\partial \Delta n_{c} \partial c_{1}$. We differentiate the first of definitions (1.1) with respect to c_{1}. Then, using this definition once more, we obtain

$$
\begin{equation*}
\frac{\partial \Delta n_{c}}{\partial c_{1}}=\frac{\Delta n_{c}^{3}}{4} \frac{\partial}{\partial c_{1}}\left(\frac{\partial^{2} W_{n}}{\partial n^{2}}\right)_{n=n_{c}} \tag{1.9}
\end{equation*}
$$

Further, we twice differentiate the first of relations (1.4) with respect to n. In the resultant equality, let us change the order of the differentiation with respect to independent variables c_{1} and n. We conclude that second derivative $\partial^{2} W_{n} / \partial n^{2}$ is independent of c_{1}. In this case, the dependence of $\left(\partial^{2} W_{n} / \partial n^{2}\right)_{n=n_{c}}$ on c_{1} is
entirely determined by the dependence of n_{c} on c_{1}, and we have

$$
\begin{equation*}
\frac{\partial}{\partial c_{1}}\left(\frac{\partial^{2} W_{n}}{\partial n^{2}}\right)_{n=n_{c}}=\left(\frac{\partial^{3} W_{n}}{\partial n^{3}}\right)_{n=n_{c}} \frac{\partial n_{c}}{\partial c_{1}} . \tag{1.10}
\end{equation*}
$$

Substituting Eq. (1.10) into (1.9), we obtain

$$
\begin{equation*}
\frac{\partial \Delta n_{c}}{\partial c_{1}}=\frac{\Delta n_{c}^{3}}{4} \frac{\partial n_{c}}{\partial c_{1}}\left(\frac{\partial^{3} W_{n}}{\partial n^{3}}\right)_{n=n_{c}} . \tag{1.11}
\end{equation*}
$$

Substituting equality (1.7) into (1.11), we derive exactly

$$
\begin{equation*}
\frac{\partial \ln \Delta n_{c}}{\partial \ln c_{1}}=-\frac{\Delta n_{c}^{4}}{8}\left(\frac{\partial^{3} W_{n}}{\partial n^{3}}\right)_{n=n_{c}} \tag{1.12}
\end{equation*}
$$

where the result is expressed via the logarithmic derivative.

Analogously, repeating the above speculations as applied to half-width Δn_{s} and employing the second of definitions (1.1), we arrive at

$$
\begin{equation*}
\frac{\partial \Delta n_{s}}{\partial c_{1}}=-\frac{\Delta n_{s}^{3}}{4} \frac{\partial n_{s}}{\partial c_{1}}\left(\frac{\partial^{3} W_{n}}{\partial n^{3}}\right)_{n=n_{s}} \tag{1.13}
\end{equation*}
$$

Substituting equality (1.8) into (1.13), we obtain exactly

$$
\begin{equation*}
\frac{\partial \ln \Delta n_{s}}{\partial \ln c_{1}}=-\frac{\Delta n_{s}^{4}}{8}\left(\frac{\partial^{3} W_{n}}{\partial n^{3}}\right)_{n=n_{s}} \tag{1.14}
\end{equation*}
$$

Relations (1.12) and (1.14) were previously unknown.
It is obvious that equalities (1.7), (1.8), (1.12), and (1.14) are not related with the material isolation of a solution and the fact whether the solution is in the equilibrium state or not. These equalities are valid for aggregates of both nonionic and ionic surfactants. They are true even above the CMC_{2}, when, in addition to spherical micelles, cylindrical and micelles of other shapes are present in the solution (provided that their interaction can be ignored).

The following formula is derived from Eqs. (1.7) and (1.12):

$$
\begin{equation*}
\frac{\partial \ln \left(\Delta n_{c} / n_{c}\right)}{\partial \ln c_{1}}=\frac{\Delta n_{c}^{2}}{2 n_{c}}-\frac{\Delta n_{c}^{4}}{8}\left(\frac{\partial^{3} W_{n}}{\partial n^{3}}\right)_{n=n_{c}} . \tag{1.15}
\end{equation*}
$$

Analogously, from Eqs. (1.8) and (1.14), we obtain

$$
\begin{equation*}
\frac{\partial \ln \left(\Delta n_{s} / n_{s}\right)}{\partial \ln c_{1}}=-\frac{\Delta n_{s}^{2}}{2 n_{s}}-\frac{\Delta n_{s}^{4}}{8}\left(\frac{\partial^{3} W_{n}}{\partial n^{3}}\right)_{n=n_{s}} \tag{1.16}
\end{equation*}
$$

In the next paragraph, using equations (1.15) and (1.16), we shall clarify the behavior of relative half-

Fig. 1. Logarithmic derivatives (1, $\left.1^{\prime}\right) \partial \ln n_{c} / \partial \ln c_{1}$ and (2, 2') $\partial \ln n_{s} / \partial \ln c_{1}$ as functions of surfactant monomer concentration c_{1} expressed in c_{10} units for $(1,2)$ droplet and $\left(l^{\prime}, 2^{\prime}\right)$ quasi-droplet models of spherical surfactant aggregates.
widths, $\Delta n_{c} / n_{c}$ and $\Delta n_{s} / n_{s}$, of the vicinities of the maximum and minimum of aggregation work upon an increase in surfactant monomer concentration.

2. CALCULATIONS ON THE BASIS OF DROPLET AND QUASI-DROPLET MODELS OF SURFACTANT AGGREGATES

According to the droplet model of spherical molecular aggregates of a nonionic surfactant, in the range $n \gg 1$, albeit to the left of the region of existence of cylindrical micelles, the dependence of the aggregation work on aggregation number n has the form [5, 6]:

$$
\begin{gather*}
W_{n}^{(\mathrm{d})}=b_{1} n^{4 / 3} \\
-\left[\ln \left(c_{1} / c_{10}^{(\mathrm{d})}\right)+\frac{4}{3}\left(2 b_{1} b_{3}\right)^{1 / 2}\right] n+b_{3} n^{2 / 3} \tag{2.1}
\end{gather*}
$$

Similarly, in the quasi-droplet model of spherical molecular aggregates of a nonionic surfactant, in the range $n \gg 1$, albeit to the left of the region of existence of cylindrical micelles, we have [5, 7]

$$
\begin{equation*}
W_{n}^{(\mathrm{q})}=a_{1} n^{2}-a_{3} n^{3 / 2}-\left[\ln \left(\left(c_{1} / c_{10}^{(\mathrm{q})}\right)-\frac{9 a_{3}^{2}}{32 a_{1}}\right)\right] n \tag{2.2}
\end{equation*}
$$

Hereafter, superscripts (d) and (q) refer to the droplet and quasi-droplet models, respectively. Parameters $b_{1}, b_{3}, c_{10}^{(\mathrm{d})}, a_{1}, a_{3}$, and $c_{10}^{(\mathrm{q})}$ of the models are positive and independent of n and c_{1}. The physical meaning of these parameters revealed in [5-7] allows us to find their values, only quite approximately, from the quanti-

Fig. 2. Logarithmic derivatives $\left(1, l^{\prime}\right) \partial \ln \Delta n_{c} / \partial \ln c_{1}$ and (2, $\left.2^{\prime}\right) \partial \ln n_{s} / \partial \ln c_{1}$ as functions of surfactant monomer concentration c_{1} expressed in c_{10} units for $(1,2)$ droplet and $\left(l^{\prime}, 2^{\prime}\right)$ quasi-droplet models of spherical surfactant aggregates.
tative published data available on the micellization. Note that, in both models, parameter c_{10} represents monomer concentrations corresponding to the appearance of the height and well of work W_{n}. The magnitudes of b_{1}, b_{3}, a_{1}, and a_{3} selected below for numerical calculations fit the ranges, which, according to [5-7], are possible for these parameters.

Using model equations (2.1) and (2.2), values of n_{c} and n_{s} are calculated as the roots of equations $\left(\partial W_{n} / \partial n\right)_{n=n_{c}}=0$ and $\left(\partial W_{n} / \partial n\right)_{n=n_{s}}=0$. Then, from definitions (1.1), Δn_{c} and Δn_{s}, as well as $\left(\partial^{3} W_{n} / \partial n^{3}\right)_{n=n_{c}}$ and $\left(\partial^{3} W_{n} / \partial n^{3}\right)_{n=n_{s}}$ are calculated. Figures 1 and 2 show the corresponding dependences of logarithmic derivatives $\partial \ln n_{c} \partial \ln c_{1}, \partial \ln n_{s} / \partial \ln c_{1}$, $\partial \ln \Delta n_{c} / \partial \ln c_{1}$, and $\partial \ln \Delta n_{s} \partial \ln c_{1}$ on surfactant monomer concentration c_{1} expressed in c_{10} units. The points in the plots refer to the values calculated through exact equations (1.7) and (1.8), as well as (1.12) and (1.14). The following values were taken for the model parameters: $b_{1}=1.625, b_{3}=29.25, a_{1}=0.0457$, and $a_{3}=0.797$. At these parameter values and the surfactant monomer concentration corresponding to CMC_{1}, we have the following characteristics of the extrema:

$$
\begin{align*}
\text { (d) } & n_{c} \simeq 10.4, \quad \Delta n_{c} \simeq 3.9, \quad W_{c} \simeq 34.2, \\
& n_{s} \simeq 70, \quad \Delta n_{s} \simeq 10, \quad W_{s} \simeq 9.3, \tag{2.3}
\end{align*}
$$

and

$$
\begin{gather*}
\text { (q) } \quad n_{c} \simeq 22.1, \quad \Delta n_{c} \simeq 7.5, \quad W_{c} \simeq 19.1, \\
n_{s} \simeq 70, \quad \Delta n_{s} \simeq 10, \quad W_{s} \simeq 9.3, \tag{2.4}
\end{gather*}
$$

where (d) and (q) indicate that the characteristics refer to the droplet and quasi-droplet models, respectively. Values of surfactant monomer concentration were taken in the interval extending from the value, at which difference $n_{s}-n_{c}$ is equal to the sum $\Delta n_{c}+\Delta n_{s}$ of halfwidths, to the value, at which minimum aggregation work W_{s} decreases to 3. Although, at $n_{s}-n_{c}=\Delta n_{s}+\Delta n_{c}$, monomer concentration c_{1} is below CMC_{1} (when, at the equilibrium state of the solution, the relative fraction of the substance in micelles is 0.1 , and the minimum of the work of aggregation is equal to approximately 10), this magnitude determines the lower boundary of c_{1} values, at which the maximum and minimum of aggregation work are already sufficiently separated on the aggregation number axis, and the half-widths of their vicinities are not overlapped. At monomer concentrations higher than the concentration at $W_{s}=3$, a passage to micelles of other shapes is usually observed in an equilibrium solution. Note that, for the applicability to the droplet and quasi-droplet models to spherical aggregates, quantity $n_{s}+\Delta n_{s}$ as a function of c_{1} must satisfy conditions of the spherical packing throughout the monomer concentration range [5-7]. At taken values of parameters, this is really the case.

As a result, for the droplet and quasi-droplet models, concentration ranges of surfactant monomers turn out to be fairly wide: $c_{1} / c_{10}^{(\mathrm{d})}=1.104-2.114$ and $c_{1} / c_{10}^{(\mathrm{q})}=$ 1.084-1.483, respectively. The plots in Figs. 1 and 2 relate precisely to these intervals. Note also that, at the solution equilibrium, corresponding ranges of overall concentration c are rather wide: $c / c_{10}^{(\mathrm{d})}=1.104-140.7$ and $c / c_{10}^{(\mathrm{q})}=1.084-93.95$.

It is seen that the plots in Figs. 1 and 2 are identical to the results obtained through exact equations (1.7) and (1.8) as well as (1.12) and (1.14). This circumstance testifies that model equations (2.1) and (2.2) are consistent.

In order to estimate the right-hand sides of Eqs. (1.12) and (1.14), we need to know the third derivatives $\left(\partial^{3} W_{n} / \partial n^{3}\right)_{n=n_{c}}$ and $\left(\partial^{3} W_{n} / \partial n^{3}\right)_{n=n_{s}}$ in these expressions. From the general rules for the differentiation of a power function of n (according to Eqs. (2.1) and (2.2), $\partial^{2} W_{n} / \partial n^{2}$ is such a function) with respect to n, we have

$$
\begin{equation*}
\left|\partial^{3} W_{n} / \partial n^{3}\right|_{n=n_{c}} \sim \frac{1}{n_{c}}\left|\partial^{2} W_{n} / \partial n^{2}\right|_{n=n_{c}} \tag{2.5}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|\partial^{3} W_{n} / \partial n^{3}\right|_{n=n_{s}} \sim \frac{1}{n_{s}}\left(\partial^{2} W_{n} / \partial n^{2}\right)_{n=n_{s}} . \tag{2.6}
\end{equation*}
$$

Calculations performed through model equation (2.2) reveal that, in all cases, $\partial^{3} W_{n}^{(q)} / \partial n^{3}>0$. At the same time, calculations, performed through model equation (2.1) at the aforementioned values of parameters $b_{1}=1.625$ and $b_{3}=29.25$, disclose that $\partial^{3} W_{n}^{(\mathrm{d})} \partial n^{3}>0$ at $n<75$ and $W_{n}^{(\mathrm{d})} \partial n^{3}<0$ at $n>75$. Number n_{s} approaches the value $n_{s}=75$ only when surfactant monomer concentration reaches the right-hand boundary of the interval $c_{1} / c_{10}^{(\mathrm{d})}=1.104-2.114$. With allowance for estimate (2.5), the first of definitions (1.1), and the plots in Figs. 1 and 2, instead of exact relation (1.12), in both models we may use the estimate

$$
\begin{equation*}
\frac{\partial \ln \Delta n_{c}}{\partial \ln c_{1}} \sim-\frac{\Delta n_{c}^{2}}{n_{c}} . \tag{2.7}
\end{equation*}
$$

At the same time, with allowance for estimate (2.6), the first of definitions (1.1), relation (1.8), and the plots in Figs. 1 and 2, instead of exact relation (1.14), we may use the estimates

$$
\begin{equation*}
\frac{\partial \ln \Delta n_{s}}{\partial \ln c_{1}} \sim-\frac{\Delta n_{s}^{2}}{n_{s}} \quad(\mathrm{q}) \tag{2.8}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{\partial \ln \Delta n_{s}}{\partial \ln c_{1}} \sim-\frac{\Delta n_{s}^{2}}{2 n_{s}} \quad \text { (d) } \tag{2.9}
\end{equation*}
$$

in the quasi-droplet and the droplet models, respectively.

Taking into account relations (2.7)-(2.9), the following estimates are obtained from exact equations (1.15) and (1.16):

$$
\begin{equation*}
\frac{\partial \ln \left(\Delta n_{c} / n_{c}\right)}{\partial \ln c_{1}} \sim-\frac{\Delta n_{c}^{2}}{2 n_{c}}, \tag{2.10}
\end{equation*}
$$

for both models

$$
\begin{equation*}
\frac{\partial \ln \left(\Delta n_{s} / n_{s}\right)}{\partial \ln c_{1}} \sim-\frac{3 \Delta n_{s}^{2}}{2 n_{s}} \quad \text { (q) } \tag{2.11}
\end{equation*}
$$

for the quasi-droplet model, and

$$
\begin{equation*}
\frac{\partial \ln \left(\Delta n_{s} / n_{s}\right)}{\partial \ln c_{1}} \sim-\frac{\Delta n_{s}^{2}}{n_{s}} \quad(\mathrm{~d}) \tag{2.12}
\end{equation*}
$$

for the droplet model.
Equations (2.10)-(2.12) with allowance for Eqs. (2.3) and (2.4), show that, in both models, $\Delta n_{c} / n_{c}$ decreases with an increase in surfactant monomer concentration slower than $\Delta n_{s} / n_{s}$; hence, the relative half-
width of the vicinity of the minimum of the work of aggregation narrows faster than that of its vicinity of maximum.

Let us combine these conclusions with the conclusion made in [10] that, at CMC_{1}, in both the droplet and quasi-droplet models, the inequality $\Delta n_{c} / n_{c}>\Delta n_{s} / n_{s}$ is valid, in spite of the fact that, in this inequality, $\Delta n_{c}<$ Δn_{s}. Then, we can see that, beginning with the CMC_{1}, the $\Delta n_{c} / n_{c}>\Delta n_{s} / n_{s}$ inequality is valid for both the droplet and quasi-droplet models and becomes stronger with an increase in the surfactant concentration in a solution.

3. APPLICATIONS TO THE RELAXATION THEORY OF SURFACTANT SOLUTIONS

Let us mark the quantities relevant to the final equilibrium state of a solution with a wavy bar above. Symbol δ at the values refers to their deviations from the values corresponding to the final equilibrium state of a solution (the deviations may have any sign).

At overall surfactant concentrations c above the CMC_{1} and throughout the concentration interval at which only spherical micelles are present in the solution, the material balance equation for surfactant has the form,

$$
\begin{equation*}
c_{1}+n_{s} c_{M}=c \tag{3.1}
\end{equation*}
$$

where c_{M} is the concentration of micelles (the total number of micelles in solution unit volume). In a materially isolated solution, overall concentration c remains virtually unchanged. Let us find the conditions for the linearization of material balance equation (3.1) in the vicinity of the final equilibrium state of a materially isolated solution. For product $n_{s} c_{M}$ as a function of independent variables c_{1} and c_{M}, with an accuracy to the terms on the order of $\left(\delta c_{1}\right)^{2}$ and $\delta c_{1} \delta c_{M}$ inclusive, we have

$$
\begin{gather*}
\delta\left(n_{s} c_{M}\right)=\left(\frac{\partial n_{s}}{\partial c_{1}}\right)_{c_{1}=\tilde{c}_{1}} \tilde{c}_{M} \delta c_{1}+\tilde{n}_{s} \delta c_{M} \\
+\frac{1}{2}\left(\frac{\partial^{2} n_{s}}{\partial c_{1}^{2}}\right)_{c_{1}=\tilde{c}_{1}} \tilde{c}_{M}\left(\delta c_{1}\right)^{2}+\left(\frac{\partial n_{s}}{\partial c_{1}}\right)_{c_{1}=\tilde{c}_{1}} \delta c_{1} \delta c_{M}, \tag{3.2}
\end{gather*}
$$

where the material isolation of the solution is not required. For the linearization of Eq. (3.2), it is sufficient that the absolute values of the third and fourth terms of the right-hand sides will be much smaller than the first and second terms, respectively. The conditions for this situation are:

$$
\begin{equation*}
\left|\frac{1}{2}\left(\frac{\partial^{2} n_{s}}{\partial c_{1}^{2}}\right)_{c_{1}=\tilde{c}_{1}} \delta c_{1}\right| \ll\left|\frac{\partial n_{s}}{\partial c_{1}}\right|_{c_{1}=\tilde{c}_{1}} \tag{3.3}
\end{equation*}
$$

Fig. 3. Parameter $\tilde{\lambda}$ as a function of surfactant monomer concentration \tilde{c}_{1} expressed in c_{10} units for (1) droplet and (2) quasi-droplet models of spherical surfactant aggregates.
and

$$
\begin{equation*}
\left|\left(\frac{\partial n_{s}}{\partial c_{1}}\right)_{c_{1}=\tilde{c}_{1}} \delta c_{1}\right| \ll \tilde{n}_{s} . \tag{3.4}
\end{equation*}
$$

With allowance for relations (1.8), (2.8), and (2.9), conditions (3.3) and (3.4) may be rewritten as

$$
\begin{equation*}
\frac{\left|\delta c_{1}\right|}{\tilde{c}_{1}} \ll \frac{2}{2 \Delta \tilde{n}_{s}^{2} / \tilde{n}_{s}+1} \tag{3.5}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{\left|\delta c_{1}\right|}{\tilde{c}_{1}} \ll \frac{2 \tilde{n}_{s}}{\Delta \tilde{n}_{s}^{2}} \tag{3.6}
\end{equation*}
$$

Using characteristics (2.3) and (2.4), we obtain that the right-hand sides of inequalities (3.5) and (3.6) are equal to 0.5 and 1.4 , respectively. It is seen that both conditions (3.5) and (3.6) are quite weak, and Eq. (3.1) can be linearized with respect to the final equilibrium state of the solution almost throughout the admissible intervals $c_{1} / c_{10}^{(\mathrm{d})}=1.104-2.114$ and $c_{1} / c_{10}^{(\mathrm{q})}=1.084-$ 1.483 .

After the linearization of Eq. (3.1) for materially isolated solution with account of Eq. (3.2), we obtain [3]:

$$
\begin{equation*}
\delta c_{M}=-\frac{1+\tilde{\lambda}}{\tilde{n}_{s}} \delta c_{1} \tag{3.7}
\end{equation*}
$$

where parameter $\tilde{\lambda}$ is defined as

$$
\begin{equation*}
\tilde{\lambda} \equiv \tilde{c}_{M}\left(\partial n_{s} / \partial c_{1}\right)_{c_{1}=\tilde{c}_{1}} \tag{3.8}
\end{equation*}
$$

In the final equilibrium state, micelle concentration \tilde{c}_{M} of a materially isolated micellar solution satisfies the relation [3-5]

$$
\begin{equation*}
\tilde{c}_{M}=\pi^{1 / 2} \tilde{c}_{1} \Delta \tilde{n}_{s} \exp \left(-\tilde{W}_{s}\right) \tag{3.9}
\end{equation*}
$$

The following equality determining parameter $\tilde{\lambda}$ results from Eqs. (3.8), (3.9), and (1.8):

$$
\begin{equation*}
\tilde{\lambda}=\frac{\pi^{1 / 2} \Delta \tilde{n}_{s}^{3} \exp \left(-\tilde{W}_{s}\right)}{2} \tag{3.10}
\end{equation*}
$$

The third of relations (1.4) and estimates (2.8) and (2.9) indicate that, as the surfactant monomer concentration increases, $\tilde{\lambda}$ grows (because of the effect of $\exp \left(-\tilde{W}_{s}\right)$ term in Eq. (3.10)), and, at $\Delta n_{s}>10$ and $W_{s}<10$, it may be that $\tilde{\lambda}>1$. Figure 3 illustrates the dependences of $\tilde{\lambda}$ on the surfactant monomer concentration for the droplet and quasi-droplet models at the same magnitudes of parameters as in Figs. 1 and 2. It is seen that $\tilde{\lambda}$ may achieve very high values with an increase in monomer concentration within admissible ranges $c_{1} / c_{10}^{(\mathrm{d})}=1.104-2.114$ and $c_{1} / c_{10}^{(\mathrm{q})}=1.084-$ 1.483. The points on the \tilde{c}_{1} / c_{10} axis, where $\tilde{\lambda}$ begins to increase rapidly, lie slightly above the surfactant monomer concentration at the CMC_{1} for a corresponding model.

Let us formulate the conditions for the linearization of W_{s} and W_{c} magnitudes with respect to δc_{1}. With allowance for Eqs. (1.4), (1.7), and (1.8), with an accuracy to the terms on the order of $\left(\delta c_{1}\right)^{2}$ inclusive, we have

$$
\begin{equation*}
\delta W_{s}=-\frac{\tilde{n}_{s}-1}{\tilde{c}_{1}} \delta c_{1}+\frac{1}{2 \tilde{c}_{1}^{2}}\left(\tilde{n}_{s}-1-\frac{\Delta \tilde{n}_{s}^{2}}{2}\right)\left(\delta c_{1}\right)^{2} \tag{3.11}
\end{equation*}
$$

and

$$
\begin{equation*}
\delta W_{c}=-\frac{\tilde{n}_{c}-1}{\tilde{c}_{1}} \delta c_{1}+\frac{1}{2 \tilde{c}_{1}^{2}}\left(\tilde{n}_{c}-1+\frac{\Delta \tilde{n}_{c}^{2}}{2}\right)\left(\delta c_{1}\right)^{2} . \tag{3.12}
\end{equation*}
$$

According to Eqs. (3.11) and (3.12), the conditions for the linearization of δW_{s} and δW_{c} have the forms

$$
\begin{equation*}
\frac{\left|\delta c_{1}\right|}{\tilde{c}_{1}} \ll \frac{2}{\left|1-\frac{\Delta \tilde{n}_{s}^{2}}{2 \tilde{n}_{s}}\right|} \tag{3.13}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{\left|\delta c_{1}\right|}{\tilde{c}_{1}} \ll \frac{2}{1+\frac{\Delta \tilde{n}_{c}^{2}}{2 \tilde{n}_{c}}} \tag{3.14}
\end{equation*}
$$

respectively.
Using Eqs. (2.3) and (2.4), we find that the righthand sides of inequalities (3.13) and (3.14) are equal to 6.7 and 0.9 , respectively. It is seen that condition (3.13) is much weaker than inequalities (3.5) and (3.6), but condition (3.14) is slightly weaker than (3.5). Hence, W_{s} and W_{c} can be linearized with respect to δc_{1} even in wider parts of admissible intervals $c_{1} / c_{10}^{(\mathrm{d})}=1.104-$ 2.114 and $c_{1} / c_{10}^{(\mathrm{q})}=1.084-1.483$ than for material balance equation (3.1). Linearizing Eqs. (3.11) and (3.12) with respect to δc_{1} and accounting for the meaning of symbol δ, we arrive at

$$
\begin{equation*}
W_{s}-\tilde{W}_{s}=-\left(\tilde{n}_{s}-1\right) \delta c_{1} / \tilde{c}_{1} \tag{3.15}
\end{equation*}
$$

and

$$
\begin{equation*}
W_{c}-\tilde{W}_{c}=-\left(\tilde{n}_{c}-1\right) \delta c_{1} / \tilde{c}_{1} \tag{3.16}
\end{equation*}
$$

As was shown in [3], for the applicability of the notions of forward and reverse fluxes of molecular aggregates over the potential barrier of work W_{n}, it is necessary to fulfill inequalities $\exp \left(W_{c}-W_{s}\right) \gg 1$ and $\exp \left(\tilde{W}_{c}-\tilde{W}_{s}\right) \geqslant 1$. Let us clarify the constraint on δc_{1}, at which the fulfillment of inequality $\exp \left(\tilde{W}_{c}-\tilde{W}_{s}\right) \gtrdot 1$ ensures the fulfillment of inequality $\exp \left(W_{c}-W_{s}\right) \gg 1$. Because these inequalities are highly sensitive to concentration c_{1}, let us replace them by inequalities $\tilde{W}_{c}-$ $\tilde{W}_{s}>2$ and $W_{c}-W_{s}>2$, which, according to Eqs. (1.2) and (1.3), correspond to the fact that the half-widths of the vicinities of the maximum and minimum of the work of aggregation are already far apart from each other. From Eqs. (3.15) and (3.16), we obtain

$$
\begin{equation*}
W_{c}-W_{s}=\tilde{W}_{c}-\tilde{W}_{s}+\left(\tilde{n}_{s}-\tilde{n}_{c}\right) \delta c_{1} / \tilde{c}_{1} \tag{3.17}
\end{equation*}
$$

According to Eq. (3.17), to satisfy inequality $W_{c}-$ $W_{s}>2$, it is necessary to have

$$
\begin{equation*}
\delta c_{1} / \tilde{c}_{1}>\left(2-\tilde{W}_{c}+\tilde{W}_{s}\right) /\left(\tilde{n}_{s}-\tilde{n}_{c}\right) \tag{3.18}
\end{equation*}
$$

that, upon the fulfillment of inequality $\tilde{W}_{c}-\tilde{W}_{s}>2$, yields precisely the desired constraint on $\delta c_{1} / \tilde{c}_{1}$. Applying relations (2.3) and (2.4) to the final equilibrium state of a solution, we have: (i) in the droplet model, $\tilde{W}_{c}-\tilde{W}_{s} \simeq 24.9$ and $\tilde{n}_{s}-\tilde{n}_{c} \approx 59.6$; (ii) in the quasi-droplet model, $\tilde{W}_{c}-\tilde{W}_{s} \simeq 9.8$ and $\tilde{n}_{s}-\tilde{n}_{c} \approx$ 47.9. Thus, inequality $\tilde{W}_{c}-\tilde{W}_{s}>2$ is satisfied with a fairly large excess, especially, in the case of the droplet
model. With account of the aforementioned data, constraint (3.18) is presented as

$$
\begin{equation*}
\delta c_{1} / \tilde{c}_{1}>-0.16 \tag{3.19}
\end{equation*}
$$

In inequality (3.19), we took into account the case of the quasi-droplet model, in which constraint (3.18) is somewhat stronger than in the case of the droplet model. This may be explained as follows. The weaker the fulfillment of inequality $\tilde{W}_{c}-\tilde{W}_{s}>2$, the stronger the constraint (3.18). Constraint (3.19) is satisfied in advance at $\delta c_{1}>0$. When $\delta c_{1}<0, \delta c_{1}=-\left|\delta c_{1}\right|$, and constraint (3.19) may be written as $\left|\delta c_{1}\right| / \tilde{c}_{1}<0.16$. This is approximately equivalent to the constraint imposed by condition (3.14) on the applicability of linearized relation (3.16), and markedly stronger than the constraint imposed by condition (3.13) on the applicability of linearized expression (3.15). Thus, the obtained constraint $\left|\delta c_{1}\right| / \tilde{c}_{1}<0.16$ fits the validity range of relations (3.16) and (3.15).

In the theory of exponential relaxation of micellar solutions (even containing not only spherical micelles), an important role is played by the linearization of quantity $\exp \left(W_{s}\right)$ (that is rather sensitive to concentration c_{1}) with respect to δc_{1} in the vicinity of the final equilibrium state of a solution. Let us consider this linearization and also clarify and discuss the conditions of its applicability.

Using the third of relations (1.4) and taking into account that $n_{s} \gtrdot 1$, with a high accuracy, we obtain

$$
\begin{equation*}
\frac{\partial}{\partial c_{1}} e^{W_{s}}=-e^{W_{s} n_{s}} c_{1} \tag{3.20}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{\partial^{2}}{\partial c_{1}^{2}} e^{W_{s}}=e^{W_{s}}\left[\left(\frac{n_{s}}{c_{1}}\right)^{2}-\frac{1}{c_{1}} \frac{\partial n_{s}}{\partial c_{1}}\right] \tag{3.21}
\end{equation*}
$$

moreover, the material isolation of the solution is not required. Expansion in a Taylor series employing Eqs. (3.20) and (3.21) yields

$$
\begin{align*}
\delta e^{W_{s}} & =-e^{\tilde{W}_{s}}\left[\frac{\tilde{n}_{s}}{\tilde{c}_{1}} \delta c_{1}-\frac{1}{2}\left(\frac{\tilde{n}_{s}}{\tilde{c}_{1}}\right)^{2}\left(\delta c_{1}\right)^{2}\right. \tag{3.22}\\
& \left.+\frac{1}{2 \tilde{c}_{1}}\left(\frac{\partial n_{s}}{\partial c_{1}}\right)_{c_{1}=\tilde{c}_{1}}\left(\delta c_{1}\right)^{2}\right],
\end{align*}
$$

where we excluded the terms of the third and higher orders with respect to δc_{1}.

The linearization of Eq. (3.22) with respect to δc_{1} is applicable, provided that the absolute values of the second and third bracketed terms of Eq. (3.22) are much smaller than the first bracketed term. The conditions for this situation are

$$
\begin{equation*}
\left|\delta c_{1}\right| / \tilde{c}_{1} \ll 2 / \tilde{n}_{s} \tag{3.23}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{1}{\tilde{n}_{s}}\left|\left(\frac{\partial n_{s}}{\partial c_{1}}\right)_{c_{1}=\tilde{c}_{1}} \delta c_{1}\right| \ll 2 \tag{3.24}
\end{equation*}
$$

Because $\tilde{n}_{s} \gg 1$, condition (3.23) formulated earlier in [11] imposes quite a strong constraint on $\left|\delta c_{1}\right| / \tilde{c}_{1}$. Let us show that, when condition (3.23) is met, condition (3.24) will already be satisfied. Using equality (1.8) and condition (3.23), we obtain the inequality

$$
\begin{equation*}
\frac{1}{\tilde{n}_{s}}\left|\left(\frac{\partial n_{s}}{\partial c_{1}}\right)_{c_{1}=\tilde{c}_{1}} \delta c_{1}\right| \ll \frac{\Delta \tilde{n}_{s}^{2}}{\tilde{n}_{s}^{2}} \tag{3.25}
\end{equation*}
$$

which, in combination with the obvious inequality $\Delta \tilde{n}_{s}^{2} / \tilde{n}_{s}^{2} \ll 1$, indicates that condition (3.24) is really met and even with a large excess, given that condition (3.23) is satisfied. Taking into account the meaning of symbol δ, inequality (3.25) may be rewritten as the inequality

$$
\begin{equation*}
\left|\delta n_{s}\right| / \tilde{n}_{s} \ll \Delta \tilde{n}_{s}^{2} / \tilde{n}_{s}^{2} \tag{3.26}
\end{equation*}
$$

that imposes the constraint on $\left|\delta n_{s}\right| / \tilde{n}_{s}$ admitted by condition (3.23). The fact that, at $\tilde{n}_{s} \gg 1$, condition (3.23) is rather strong, allows us to ignore the dependence of n_{s} on c_{1} when linearizing δc_{1} value with respect to $\exp \left(W_{s}\right)$, was mentioned in [11]. However, this could be exactly substantiated only when using relation (1.8).

In the theory of exponential relaxation in micellar solutions (even containing not only spherical micelles), when linearizing (with respect to δc_{1}) the sum of fluxes of molecular aggregates over the potential barrier of the work of aggregation, W_{n}, it is assumed that, in addition to conditions (3.23) and (3.24), there is yet one more condition [11]:

$$
\begin{equation*}
\left|\delta\left(\Delta n_{s}\right)\right| / \Delta \tilde{n}_{s} \ll 1 \tag{3.27}
\end{equation*}
$$

Let us demonstrate that this condition is satisfied when condition (3.23) is met. We use estimate (2.8) and condition (3.23). Taking into account that estimate (2.8) may be even overestimated, we have

$$
\begin{equation*}
\frac{\left|\delta\left(\Delta n_{s}\right)\right|}{\Delta \tilde{n}_{s}}=\left|\left(\frac{\partial \ln \Delta n_{s}}{\partial c_{1}}\right)_{c_{1}=\tilde{c}_{1}} \delta c_{1}\right|<2 \frac{\Delta \tilde{n}_{s}^{2}}{\tilde{n}_{s}^{2}} \tag{3.28}
\end{equation*}
$$

This inequality, in combination with the obvious inequality $\Delta \tilde{n}_{s}^{2} / \tilde{n}_{s}^{2} \ll 1$, testifies that, when condition (3.23) is met, condition (3.27) is really satisfied, even with a rather large excess. Inequality (3.28) imposes the constraint on $\left|\delta\left(\Delta n_{s}\right)\right| / \Delta \tilde{n}_{s}$ admitted by condition (3.23). The fact that condition (3.23), which is rather strong at $\tilde{n}_{s} \gg 1$, enables us to ignore the dependence of $\Delta \tilde{n}_{s}$ on c_{1} upon the linearization of the sum of fluxes of molecular aggregates with respect to δc_{1}, was noted in [11].

However, this could be exactly substantiated only using estimate (2.8).

As was already mentioned, all what have been said above about conditions (3.23), (3.24), and (3.27) is valid not only for solutions containing spherical micelles. However, only in the case of solutions containing spherical micelles, relation (3.23) becomes the main condition determining the degree of the closeness of the state of a solution to the equilibrium that is theoretically admitted for the stage of exponential relaxation. When the solution simultaneously contains both spherical and cylindrical micelles, in addition to condition (3.23), there is a still stronger condition [11] concerning the smallness of relative deviation δc_{1}.

Finally, according to the theory of the exponential relaxation in micellar solutions (even containing not only spherical micelles), when linearizing the sum of fluxes of molecular aggregates over the potential barrier of work W_{n} with respect to δc_{1}, the following inequality is assumed [3]:

$$
\begin{equation*}
\frac{1}{\tilde{n}_{s}}\left|\frac{\partial \ln \Delta n_{s}}{\partial \ln c_{1}}\right|_{c_{1}=\tilde{c}_{1}} \ll 1 \tag{3.29}
\end{equation*}
$$

In designations of [3], this relation is equivalent to inequality $|\eta| / \tilde{n}_{s} \ll 1$, which makes it possible in general to ignore parameter η in the theory of exponential relaxation [3]. Using estimate (2.8), and taking into account that it can be even overestimated, we arrive at the inequality

$$
\begin{equation*}
\frac{1}{\tilde{n}_{s}}\left|\frac{\partial \ln \Delta n_{s}}{\partial \ln c_{1}}\right|_{c_{1}=\tilde{c}_{1}} \lesssim \frac{\Delta \tilde{n}_{s}^{2}}{\tilde{n}_{s}^{2}} \tag{3.30}
\end{equation*}
$$

which, in combination with obvious inequality $\Delta \tilde{n}_{s}^{2} / \tilde{n}_{s}^{2} \ll 1$, ensures the fulfillment of inequality (3.29) with a large excess. In [3], this fulfillment was motivated qualitatively. Note that condition (3.23) was not used in inequalities (3.29) and (3.30).

Let us emphasized that the material isolation of a solution was required only for relation (3.7). The remaining content of this section is not directly associated with the material isolation of the solution. The presence of only spherical micelles in the solution was significant only for relation (3.7) (and Eq. (3.1)).

The domain of the applicability of relations (1.7), (1.8), (1.12), and (1.14) and estimates (2.7) and (2.8) to the relaxation theory of micellar solutions is, in fact, much wider than that used above. For example, when considering the stage of power relaxation preceding the final stage of exponential relaxation [3-5], together with the dependence of the position and half-width of the vicinity of the minimum of the work of aggregation, an analogous dependence for the position and halfwidth of the vicinity of work maximum is also significant. The regularities of the stage of power relaxation and the applicability of exact relations obtained in this
work to this stage will be considered in the next communication.

ACKNOWLEDGMENTS

This work was supported by the Russian Foundation for Basic Research, project no. 04-03-32134.

REFERENCES

1. Aniansson, E.A.G. and Wall, S.N., J. Phys. Chem., 1974, vol. 78, no. 10, p. 1024.
2. Wall, S.N. and Aniansson, E.A.G., J. Phys. Chem., 1980, vol. 84, no. 7, p. 727.
3. Kuni, F.M., Grinin, A.P., Shchekin, A.K., and Rusanov, A.I., Kolloidn. Zh., 2001, vol. 63, no. 2, p. 220.
4. Kuni, F.M., Rusanov, A.I., Shchekin, A.K., and Grinin, A.P., Zh. Fiz. Khim., 2005, vol. 79, no. 6, p. 967.
5. Shchekin, A.K., Kuni, F.M., Grinin, A.P., and Rusanov, A.I., in Nucleation Theory and Applications, Schmelzer, J.W.P., Ed., Berlin-Weinheim: Wiley-VCH, 2005, p. 397.
6. Rusanov, A.I., Kuni, F.M., Grinin, A.P., and Shchekin, A.K., Kolloidn. Zh., 2002, vol. 64, no. 5, p. 670.
7. Grinin, A.P., Rusanov, A.I., Kuni, F.M., and Shchekin, A.K., Kolloidn. Zh., 2003, vol. 65, no. 2, p. 168.
8. Rusanov, A.I., Kolloidn. Zh., 1987, vol. 49, no. 5, p. 932.
9. Rusanov, A.I., Mitselloobrazovanie v rastvorakh pov-erkhnostno-aktivnykh veshchestv (Micellization in Surfactant Solutions), St. Petersburg: Khimiya, 1992.
10. Kuni, F.M., Shchekin, A.K., Grinin, A.P., and Rusanov, A.I., Kolloidn. Zh., 2003, vol. 65, no. 4, p. 500.
11. Kuni, F.M., Shchekin, A.K., Rusanov, A.I., and Grinin, A.P., Kolloidn. Zh., 2005, vol. 67, no. 1, p. 38.

[^0]: ${ }^{\dagger}$ Deceased.

[^1]: $\left.W_{n}\right|_{n=n_{s}}$, respectively. Let us introduce the half-widths

