
 

ISSN 1061-933X, Colloid Journal, 2007, Vol. 69, No. 3, pp. 319–327. © Pleiades Publishing, Ltd., 2007.
Original Russian Text © F.M. Kuni, A.K. Shchekin, A.I. Rusanov, A.P. Grinin, 2007, published in Kolloidnyi Zhurnal, 2007, Vol. 69, No. 3, pp. 349–356.

 

319

 

INTRODUCTION

Characteristics of the extrema of the work of aggre-
gation in surfactant micellar solutions may be experi-
mentally determined from the data on the times of
“fast” and “slow” relaxation in solutions [1–5]. These
characteristics include positions of extrema on the
aggregation number axis and the half-widths of the
vicinities of extrema, with these half-widths being
determined by the condition that, within the ranges of
these parameters, the work of aggregation deviates
from its extreme magnitudes by a thermal unit. The
determination of relations for these characteristics
allows us to experimentally verify the kinetics and ther-
modynamics of micellization and also to obtain addi-
tional information from experimental data on such
parameters as the rate of surfactant monomer addition
to micelles and the height of a maximum and the depth
of a minimum of the aggregation work.

In this paper, we confine ourselves to the consider-
ation of an ideal associated system (the interactions
between particles of all sizes are ignored). For such a
system, exact relations will be obtained for derivatives
of the positions of the maximum and minimum of the
work of aggregation and half-widths of their vicinities
with respect to monomer concentrations in micellar
solutions. These relations are not associated with the
material isolation of a solution and the fact whether the
solution is in the equilibrium state or not. These rela-
tions have identical forms for nonionic and ionic sur-
factant aggregates not only above the first (

 

CMC

 

1

 

) but
also above the second (

 

CMC

 

2

 

) critical micellization
concentration, when, in addition to spherical micelles,
cylindrical and other micelles are present in a solution

(provided that the interaction between them is still neg-
ligible). In this paper, the relations obtained will be
illustrated by calculations performed on the basis of
droplet [5, 6] and quasi-droplet [5, 7] models of spher-
ical nonionic surfactant aggregates, as applied to the
work of aggregation. In the final part of the paper, we
consider some applications of the derived relations to
the theory of relaxation in micellar solutions.

1. DERIVATIVES OF THE POSITIONS
OF EXTREMA OF THE WORK

OF AGGREGATION AND HALF-WIDTHS
OF THEIR VICINITIES WITH RESPECT

TO MONOMER CONCENTRATION

The aggregation number of a molecular aggregate in
a micellar solution is denoted by 

 

n

 

. The minimal work
of the formation of a surfactant molecular aggregate
(hereafter for brevity, the work of aggregation) is
expressed in thermal units of energy 

 

kT

 

 (

 

k

 

 is Boltz-
mann’s constant and 

 

T

 

 is the solution temperature) and
denoted by 

 

W

 

n

 

. At 

 

n

 

 = 1, the aggregates represent sur-
factant monomers. Their concentration (the number of
monomers in the unit volume of the solution) is denoted
by 

 

c

 

1

 

. Work 

 

W

 

n

 

 depends not only on aggregation num-
ber 

 

n

 

 but also on monomer concentration 

 

c

 

1

 

. The posi-
tions of the maximum and minimum of work 

 

W

 

n

 

 on the
axis of variable 

 

n

 

 are denoted by 

 

n

 

c

 

 and 

 

n

 

s

 

, respectively.
The height of the potential barrier and the depth of the
potential well are denoted by 

 

W

 

c

 

 

 

≡

 

 

 

 and 

 

W

 

s

 

 

 

≡

 

, respectively. Let us introduce the half-widths

Wn n nc=

Wn n ns=
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of the potential barrier and well of work 

 

W

 

n

 

 on the axis
of variable 

 

n

 

 determined by the equalities

 

(1.1)

 

Signs minus and plus under radicals suggest that 

 

W

 

n

 

has a maximum at 

 

n

 

 = 

 

n

 

c

 

 and a minimum at 

 

n

 

 = 

 

n

 

s

 

. Val-
ues 

 

n

 

c

 

, 

 

n

 

s

 

, 

 

W

 

c

 

, 

 

W

 

s

 

, 

 

∆

 

n

 

c

 

, and 

 

∆

 

n

 

s

 

 are functions of surfac-
tant monomer concentration 

 

c

 

1

 

.

With allowance for definitions (1.1), quadratic
approximations for work 

 

W

 

n

 

 in the vicinity of its maxi-
mum and minimum can be written as

 

(1.2)

 

and

 

(1.3)

 

whose accuracy is the higher, the smaller the selected
deviations 

 

|

 

n

 

 – 

 

n

 

c

 

|

 

 and 

 

|

 

n

 

 – 

 

n

 

s

 

|

 

 compared to 

 

∆

 

n

 

c

 

 and 

 

∆

 

n

 

s

 

,
respectively. According to (1.2), work 

 

W

 

n

 

 decreases by
a thermal unit, when variable 

 

n

 

 deviates from 

 

n

 

c

 

 by 

 

∆

 

n

 

c

 

.
According to (1.3), work 

 

W

 

n

 

 increases by a thermal
unit, when variable 

 

n

 

 deviates from 

 

n

 

s

 

 by 

 

∆

 

n

 

s

 

. These
facts disclose the physical meaning of introduced half-
widths 

 

∆

 

n

 

c

 

 and 

 

∆

 

n

 

s

 

. We take into account that, in the
absence of interaction between molecular aggregates,
the dependence of the work of aggregation, 

 

W

 

n

 

, on sur-
factant monomer concentration 

 

c

 

1

 

 has a universal (inde-
pendent of a model selected for molecular aggregates)
form and is determined by term 

 

–(

 

n

 

 – 1)

 

ln

 

c

 

1

 

 [4, 5].
Therefore, the following relations:

 

(1.4)

 

are valid.

Let us differentiate 

 

W

 

n

 

 – 

 

W

 

c

 

 and 

 

W

 

n

 

 – 

 

W

 

s

 

 with
respect to 

 

c

 

1

 

 using relations (1.2), (1.3), and (1.4).
Equating the results, we obtain

 

(1.5)

∆nc 2/ ∂2Wn/ n2∂( )n nc=–[ ]1/2
,=

∆ns 2/ ∂2Wn/ n2∂( )n ns=[ ]1/2
.=

Wn Wc–
n nc–
∆nc

-------------⎝ ⎠
⎛ ⎞

2

–=

nc ∆nc n nc ∆nc+≤ ≤–( ),

Wn Ws–
n ns–
∆ns

-------------⎝ ⎠
⎛ ⎞

2

=

ns ∆ns n ns ∆ns+≤ ≤–( ),

Wn/ c1∂∂ n 1–( )/c1, Wc/ c1∂∂ nc 1–( )/c1,–=–=

Ws/ c1∂∂ ns 1–( )/c1,–=

n nc–( )
c1

------------------– 2
n nc–

∆nc
2

-------------
nc∂
c1∂

------- 2
n nc–( )2

∆nc
3

--------------------
∆nc∂
c1∂

-----------+=

n nc– ∆nc<( ),

and

(1.6)

In the limiting case, at n  nc and n  ns, from
Eqs. (1.5) and (1.6), we arrive exactly at

(1.7)

and

(1.8)

where the result is expressed via logarithmic deriva-
tives.

Note that the problem of determining the positions
of extrema of an equilibrium distribution over the
aggregation number of molecular aggregates as func-
tions of c1 (in a general case, of the chemical potential
of surfactant monomers) was solved for the first time in
[8] (see also [9]). At low concentrations of monomers
and molecular aggregates (when their activities may be
replaced by concentrations), the result obtained previ-
ously ([9], formula (50.7)) is equivalent to Eqs. (1.7)
and (1.8), as applied to the equilibrium distribution.
Relation (1.8) was also derived from the definition of
the average aggregation number of micelles assuming
the Gaussian quasi-equilibrium distribution of aggre-
gates in the micellar region ns – ∆ns ≤ n ≤ ns + ∆ns [1]. As
follows from Eqs. (1.7) and (1.8), ∂nc/∂c1 < 0 and
∂ns/∂c1 > 0; hence, nc decreases and ns increases with an
increase in c1. This regularity, which had been for the
first time formulated in [8, 9], was verified employing
the droplet and quasi-droplet models of spherical
aggregates of a nonionic surfactant [6, 7, 10].

Now, let us find derivative ∂∆nc/∂c1. We differentiate
the first of definitions (1.1) with respect to c1. Then,
using this definition once more, we obtain

(1.9)

Further, we twice differentiate the first of relations
(1.4) with respect to n. In the resultant equality, let us
change the order of the differentiation with respect to
independent variables c1 and n. We conclude that sec-
ond derivative ∂2Wn/∂n2 is independent of c1. In this

case, the dependence of (∂2Wn/  on c1 is

n ns–( )
c1

------------------– 2–
n ns–

∆ns
2

-------------
ns∂
c1∂

------- 2–
n ns–( )2

∆ns
3

--------------------
∆ns∂
c1∂

-----------=

n ns– ∆ns<( ).

ncln∂
c1ln∂

-------------
∆nc

2

2nc

---------,–=

nsln∂
c1ln∂

-------------
∆ns

2

2ns

---------,=

∆nc∂
c1∂

-----------
∆nc

3

4
--------- ∂

c1∂
-------

∂2Wn

n2∂
------------

⎝ ⎠
⎜ ⎟
⎛ ⎞

n nc=

.=

n2∂ )n nc=
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entirely determined by the dependence of nc on c1, and
we have

(1.10)

Substituting Eq. (1.10) into (1.9), we obtain

(1.11)

Substituting equality (1.7) into (1.11), we derive
exactly

(1.12)

where the result is expressed via the logarithmic deriv-
ative.

Analogously, repeating the above speculations as
applied to half-width ∆ns and employing the second of
definitions (1.1), we arrive at

(1.13)

Substituting equality (1.8) into (1.13), we obtain
exactly

(1.14)

Relations (1.12) and (1.14) were previously unknown.
It is obvious that equalities (1.7), (1.8), (1.12), and

(1.14) are not related with the material isolation of a
solution and the fact whether the solution is in the equi-
librium state or not. These equalities are valid for
aggregates of both nonionic and ionic surfactants. They
are true even above the CMC2, when, in addition to
spherical micelles, cylindrical and micelles of other
shapes are present in the solution (provided that their
interaction can be ignored).

The following formula is derived from Eqs. (1.7)
and (1.12):

(1.15)

Analogously, from Eqs. (1.8) and (1.14), we obtain

(1.16)

In the next paragraph, using equations (1.15) and
(1.16), we shall clarify the behavior of relative half-

∂
c1∂

-------
∂2Wn

n2∂
------------

⎝ ⎠
⎜ ⎟
⎛ ⎞

n nc=

∂3Wn

n3∂
------------

⎝ ⎠
⎜ ⎟
⎛ ⎞

n nc=

nc∂
c1∂

-------.=

∆nc∂
c1∂

-----------
∆nc

3

4
---------

nc∂
c1∂

-------
∂3Wn

n3∂
------------

⎝ ⎠
⎜ ⎟
⎛ ⎞

n nc=

.=

∆ncln∂
c1ln∂

-----------------
∆nc

4

8
---------

∂3Wn

n3∂
------------

⎝ ⎠
⎜ ⎟
⎛ ⎞

n nc=

,–=

∆ns∂
c1∂

-----------
∆ns

3

4
---------–

ns∂
c1∂

-------
∂3Wn

n3∂
------------

⎝ ⎠
⎜ ⎟
⎛ ⎞

n ns=

.=

∆nsln∂
c1ln∂

-----------------
∆ns

4

8
---------

∂3Wn

n3∂
------------

⎝ ⎠
⎜ ⎟
⎛ ⎞

n ns=

.–=

∆nc/nc( )ln∂
c1ln∂

-----------------------------
∆nc

2

2nc

---------
∆nc

4

8
---------

∂3Wn

n3∂
------------

⎝ ⎠
⎜ ⎟
⎛ ⎞

n nc=

.–=

∆ns/ns( )ln∂
c1ln∂

-----------------------------
∆ns

2

2ns

---------–
∆ns

4

8
---------

∂3Wn

n3∂
------------

⎝ ⎠
⎜ ⎟
⎛ ⎞

n ns=

.–=

widths, ∆nc/nc and ∆ns/ns, of the vicinities of the maxi-
mum and minimum of aggregation work upon an
increase in surfactant monomer concentration.

2. CALCULATIONS ON THE BASIS OF DROPLET 
AND QUASI-DROPLET MODELS
OF SURFACTANT AGGREGATES

According to the droplet model of spherical molec-
ular aggregates of a nonionic surfactant, in the range
n � 1, albeit to the left of the region of existence of
cylindrical micelles, the dependence of the aggregation
work on aggregation number n has the form [5, 6]:

(2.1)

Similarly, in the quasi-droplet model of spherical
molecular aggregates of a nonionic surfactant, in the
range n � 1, albeit to the left of the region of existence
of cylindrical micelles, we have [5, 7]

(2.2)

Hereafter, superscripts (d) and (q) refer to the drop-
let and quasi-droplet models, respectively. Parameters

b1, b3, , a1, a3, and  of the models are positive
and independent of n and c1. The physical meaning of
these parameters revealed in [5–7] allows us to find
their values, only quite approximately, from the quanti-

Wn
d( ) b1n4/3=

– c1/c10
d( )( ) 4

3
--- 2b1b3( )1/2+ln n b3n2/3.+

Wn
q( ) a1n2 a3n3/2– c1/c10

q( )( )
9a3

2

32a1
-----------–⎝ ⎠

⎛ ⎞ln n.–=

c10
d( ) c10

q( )

1

0
1.2

–1

–2

2

1.4 1.6 1.8 2.0

1

1'

2

2'

∂lnnc

∂lnc1

∂lnns

∂lnc1

c1/c10

Fig. 1. Logarithmic derivatives (1, 1') ∂lnnc/∂lnc1 and (2, 2')
∂lnns/∂lnc1 as functions of surfactant monomer concentra-
tion c1 expressed in c10 units for (1, 2) droplet and (1', 2')
quasi-droplet models of spherical surfactant aggregates.
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tative published data available on the micellization.
Note that, in both models, parameter c10 represents
monomer concentrations corresponding to the appear-
ance of the height and well of work Wn. The magnitudes
of b1, b3, a1, and a3 selected below for numerical calcu-
lations fit the ranges, which, according to [5–7], are
possible for these parameters.

Using model equations (2.1) and (2.2), values of nc

and ns are calculated as the roots of equations
(∂Wn/  = 0 and (∂Wn/  = 0. Then, from
definitions (1.1), ∆nc and ∆ns, as well as

(∂3Wn/  and (∂3Wn/  are calculated.
Figures 1 and 2 show the corresponding dependences
of logarithmic derivatives ∂lnnc/∂lnc1, ∂lnns/∂lnc1,
∂ln∆nc/∂lnc1, and ∂ln∆ns/∂lnc1 on surfactant monomer
concentration c1 expressed in c10 units. The points in the
plots refer to the values calculated through exact equa-
tions (1.7) and (1.8), as well as (1.12) and (1.14). The
following values were taken for the model parameters:
b1 = 1.625, b3 = 29.25, a1 = 0.0457, and a3 = 0.797. At
these parameter values and the surfactant monomer
concentration corresponding to CMC1, we have the fol-
lowing characteristics of the extrema:

(2.3)

n∂ )n nc= n∂ )n ns=

n3∂ )n nc= n3∂ )n ns=

d( ) nc � 10.4, ∆nc � 3.9, Wc � 34.2,

ns � 70, ∆ns � 10, Ws � 9.3,

and

(2.4)

where (d) and (q) indicate that the characteristics refer
to the droplet and quasi-droplet models, respectively.
Values of surfactant monomer concentration were
taken in the interval extending from the value, at which
difference ns – nc is equal to the sum ∆nc + ∆ns of half-
widths, to the value, at which minimum aggregation
work Ws decreases to 3. Although, at ns – nc = ∆ns + ∆nc,
monomer concentration c1 is below CMC1 (when, at the
equilibrium state of the solution, the relative fraction of
the substance in micelles is 0.1, and the minimum of the
work of aggregation is equal to approximately 10), this
magnitude determines the lower boundary of c1 values,
at which the maximum and minimum of aggregation
work are already sufficiently separated on the aggrega-
tion number axis, and the half-widths of their vicinities
are not overlapped. At monomer concentrations higher
than the concentration at Ws = 3, a passage to micelles
of other shapes is usually observed in an equilibrium
solution. Note that, for the applicability to the droplet
and quasi-droplet models to spherical aggregates, quan-
tity ns + ∆ns as a function of c1 must satisfy conditions
of the spherical packing throughout the monomer con-
centration range [5–7]. At taken values of parameters,
this is really the case.

As a result, for the droplet and quasi-droplet models,
concentration ranges of surfactant monomers turn out

to be fairly wide: c1/  = 1.104–2.114 and c1/  =
1.084–1.483, respectively. The plots in Figs. 1 and 2
relate precisely to these intervals. Note also that, at the
solution equilibrium, corresponding ranges of overall

concentration c are rather wide: c/  = 1.104–140.7

and c/  = 1.084–93.95.

It is seen that the plots in Figs. 1 and 2 are identical
to the results obtained through exact equations (1.7)
and (1.8) as well as (1.12) and (1.14). This circum-
stance testifies that model equations (2.1) and (2.2) are
consistent.

In order to estimate the right-hand sides of
Eqs. (1.12) and (1.14), we need to know the third deriv-

atives (∂3Wn/  and (∂3Wn/  in these
expressions. From the general rules for the differentia-
tion of a power function of n (according to Eqs. (2.1)
and (2.2), ∂2Wn/∂n2 is such a function) with respect to
n, we have

(2.5)

q( ) nc � 22.1, ∆nc � 7.5, Wc � 19.1,

ns � 70, ∆ns � 10, Ws � 9.3,

c10
d( ) c10

q( )

c10
d( )

c10
q( )

n3∂ )n nc= n3∂ )n ns=

∂3Wn/ n3∂ n nc=
1
nc

---- ∂2Wn/ n2∂ n nc=∼

–0.5

1.0 1.2 1.4 1.6 1.8 2.0

∂ln∆ns

∂lnc1

∂ln∆nc

∂lnc1

–1.0

–1.5

–2.0

0

–2.5

–3.0

1
1'

2'

2

c1

c10

Fig. 2. Logarithmic derivatives (1, 1') ∂ln∆nc/∂lnc1 and (2,
2') ∂lnns/∂lnc1 as functions of surfactant monomer concen-
tration c1 expressed in c10 units for (1, 2) droplet and (1', 2')
quasi-droplet models of spherical surfactant aggregates.
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and

(2.6)

Calculations performed through model equation

(2.2) reveal that, in all cases, /∂n3 > 0. At the
same time, calculations, performed through model
equation (2.1) at the aforementioned values of parame-
ters b1 = 1.625 and b3 = 29.25, disclose that

/∂n3 > 0 at n < 75 and /∂n3 < 0 at n > 75.
Number ns approaches the value ns = 75 only when sur-
factant monomer concentration reaches the right-hand

boundary of the interval c1/  = 1.104–2.114. With
allowance for estimate (2.5), the first of definitions
(1.1), and the plots in Figs. 1 and 2, instead of exact
relation (1.12), in both models we may use the estimate

(2.7)

At the same time, with allowance for estimate (2.6),
the first of definitions (1.1), relation (1.8), and the plots
in Figs. 1 and 2, instead of exact relation (1.14), we may
use the estimates

(2.8)

and

(2.9)

in the quasi-droplet and the droplet models, respec-
tively.

Taking into account relations (2.7)–(2.9), the fol-
lowing estimates are obtained from exact equations
(1.15) and (1.16):

(2.10)

for both models

(2.11)

for the quasi-droplet model, and

(2.12)

for the droplet model.
Equations (2.10)–(2.12) with allowance for Eqs.

(2.3) and (2.4), show that, in both models, ∆nc/nc

decreases with an increase in surfactant monomer con-
centration slower than ∆ns/ns; hence, the relative half-

∂3Wn/ n3∂ n ns=
1
ns

---- ∂2Wn/ n2∂( )n ns= .∼

∂3Wn
q( )

∂3Wn
d( ) Wn

d( )

c10
d( )

∆ncln∂
c1ln∂

-----------------
∆nc

2

nc

---------.–∼

∆nsln∂
c1ln∂

-----------------
∆ns

2

ns

--------- q( ),–∼

∆nsln∂
c1ln∂

-----------------
∆ns

2

2ns

--------- d( ).–∼

∆nc/nc( )ln∂
c1ln∂

-----------------------------
∆nc

2

2nc

---------,–∼

∆ns/ns( )ln∂
c1ln∂

-----------------------------
3∆ns

2

2ns

------------ q( ),–∼

∆ns/ns( )ln∂
c1ln∂

-----------------------------
∆ns

2

ns

--------- d( ),–∼

width of the vicinity of the minimum of the work of
aggregation narrows faster than that of its vicinity of
maximum.

Let us combine these conclusions with the conclu-
sion made in [10] that, at CMC1, in both the droplet and
quasi-droplet models, the inequality ∆nc/nc > ∆ns/ns is
valid, in spite of the fact that, in this inequality, ∆nc <
∆ns. Then, we can see that, beginning with the CMC1,
the ∆nc/nc > ∆ns/ns inequality is valid for both the drop-
let and quasi-droplet models and becomes stronger
with an increase in the surfactant concentration in a
solution.

3. APPLICATIONS TO THE RELAXATION 
THEORY OF SURFACTANT SOLUTIONS

Let us mark the quantities relevant to the final equi-
librium state of a solution with a wavy bar above. Sym-
bol δ at the values refers to their deviations from the
values corresponding to the final equilibrium state of a
solution (the deviations may have any sign).

At overall surfactant concentrations c above the
CMC1 and throughout the concentration interval at
which only spherical micelles are present in the solu-
tion, the material balance equation for surfactant has
the form,

(3.1)

where cM is the concentration of micelles (the total
number of micelles in solution unit volume). In a mate-
rially isolated solution, overall concentration c remains
virtually unchanged. Let us find the conditions for the
linearization of material balance equation (3.1) in the
vicinity of the final equilibrium state of a materially iso-
lated solution. For product nscM as a function of inde-
pendent variables c1 and cM, with an accuracy to the
terms on the order of (δc1)2 and δc1δcM inclusive, we
have

(3.2)

where the material isolation of the solution is not
required. For the linearization of Eq. (3.2), it is suffi-
cient that the absolute values of the third and fourth
terms of the right-hand sides will be much smaller than
the first and second terms, respectively. The conditions
for this situation are:

(3.3)

c1 nscM+ c,=

δ nscM( )
ns∂
c1∂

-------⎝ ⎠
⎛ ⎞

c1 c̃1=
c̃Mδc1 ñsδcM+=

+
1
2
---

∂2ns

c1
2∂

----------
⎝ ⎠
⎜ ⎟
⎛ ⎞

c1 c̃1=

c̃M δc1( )2 ns∂
c1∂

-------⎝ ⎠
⎛ ⎞

c1 c̃1=
δc1δcM,+

1
2
---

∂2ns

c1
2∂

----------
⎝ ⎠
⎜ ⎟
⎛ ⎞

c1 c̃1=

δc1  � ns∂
c1∂

-------
c1 c̃1=

,



324

COLLOID JOURNAL      Vol. 69     No. 3      2007

KUNI et al.

and

(3.4)

With allowance for relations (1.8), (2.8), and (2.9),
conditions (3.3) and (3.4) may be rewritten as

(3.5)

and

(3.6)

Using characteristics (2.3) and (2.4), we obtain that
the right-hand sides of inequalities (3.5) and (3.6) are
equal to 0.5 and 1.4, respectively. It is seen that both
conditions (3.5) and (3.6) are quite weak, and Eq. (3.1)
can be linearized with respect to the final equilibrium
state of the solution almost throughout the admissible

intervals c1/  = 1.104–2.114 and c1/  = 1.084–
1.483.

After the linearization of Eq. (3.1) for materially
isolated solution with account of Eq. (3.2), we obtain
[3]:

(3.7)

∂ns

c1∂
--------⎝ ⎠

⎛ ⎞
c1 c̃1=

δc1  � ñs.

δc1
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----------------------------,
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2
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d( ) c10
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δcM
1 λ̃+

ñs

------------δc1,–=

where parameter  is defined as

(3.8)

In the final equilibrium state, micelle concentration
 of a materially isolated micellar solution satisfies

the relation [3–5]

(3.9)

The following equality determining parameter 
results from Eqs. (3.8), (3.9), and (1.8):

(3.10)

The third of relations (1.4) and estimates (2.8) and
(2.9) indicate that, as the surfactant monomer concen-

tration increases,  grows (because of the effect of

exp(– ) term in Eq. (3.10)), and, at ∆ns > 10 and

Ws < 10, it may be that  > 1. Figure 3 illustrates the

dependences of  on the surfactant monomer concen-
tration for the droplet and quasi-droplet models at the
same magnitudes of parameters as in Figs. 1 and 2. It is

seen that  may achieve very high values with an
increase in monomer concentration within admissible

ranges c1/  = 1.104–2.114 and c1/  = 1.084–

1.483. The points on the /c10 axis, where  begins to
increase rapidly, lie slightly above the surfactant mono-
mer concentration at the CMC1 for a corresponding
model.

Let us formulate the conditions for the linearization
of Ws and Wc magnitudes with respect to δc1. With
allowance for Eqs. (1.4), (1.7), and (1.8), with an accu-
racy to the terms on the order of (δc1)2 inclusive, we
have

(3.11)

and

(3.12)

According to Eqs. (3.11) and (3.12), the conditions
for the linearization of δWs and δWc have the forms

(3.13)
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Fig. 3. Parameter  as a function of surfactant monomer
concentration  expressed in c10 units for (1) droplet and

(2) quasi-droplet models of spherical surfactant aggregates.
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and

(3.14)

respectively.
Using Eqs. (2.3) and (2.4), we find that the right-

hand sides of inequalities (3.13) and (3.14) are equal to
6.7 and 0.9, respectively. It is seen that condition (3.13)
is much weaker than inequalities (3.5) and (3.6), but
condition (3.14) is slightly weaker than (3.5). Hence,
Ws and Wc can be linearized with respect to δc1 even in

wider parts of admissible intervals c1/  = 1.104–

2.114 and c1/  = 1.084–1.483 than for material bal-
ance equation (3.1). Linearizing Eqs. (3.11) and (3.12)
with respect to δc1 and accounting for the meaning of
symbol δ, we arrive at

(3.15)

and

(3.16)

As was shown in [3], for the applicability of the
notions of forward and reverse fluxes of molecular
aggregates over the potential barrier of work Wn, it is
necessary to fulfill inequalities exp(Wc – Ws) � 1 and

exp(  – ) � 1. Let us clarify the constraint on δc1,

at which the fulfillment of inequality exp(  − ) � 1
ensures the fulfillment of inequality exp(Wc – Ws) � 1.
Because these inequalities are highly sensitive to con-

centration c1, let us replace them by inequalities  –

 > 2 and Wc – Ws > 2, which, according to Eqs. (1.2)
and (1.3), correspond to the fact that the half-widths of
the vicinities of the maximum and minimum of the
work of aggregation are already far apart from each
other. From Eqs. (3.15) and (3.16), we obtain

(3.17)

According to Eq. (3.17), to satisfy inequality Wc –
Ws > 2, it is necessary to have

(3.18)

that, upon the fulfillment of inequality  –  > 2,
yields precisely the desired constraint on δc1/ .
Applying relations (2.3) and (2.4) to the final equilib-
rium state of a solution, we have: (i) in the droplet

model,  –  � 24.9 and  –  ≈ 59.6; (ii) in the

quasi-droplet model,  –  � 9.8 and  –  ≈
47.9. Thus, inequality  –  > 2 is satisfied with a
fairly large excess, especially, in the case of the droplet

δc1
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model. With account of the aforementioned data, con-
straint (3.18) is presented as

(3.19)

In inequality (3.19), we took into account the case of
the quasi-droplet model, in which constraint (3.18) is
somewhat stronger than in the case of the droplet
model. This may be explained as follows. The weaker

the fulfillment of inequality  –  > 2, the stronger
the constraint (3.18). Constraint (3.19) is satisfied in
advance at δc1 > 0. When δc1 < 0, δc1 = – |δc1|, and con-
straint (3.19) may be written as |δc1|/  < 0.16. This is
approximately equivalent to the constraint imposed by
condition (3.14) on the applicability of linearized rela-
tion (3.16), and markedly stronger than the constraint
imposed by condition (3.13) on the applicability of lin-
earized expression (3.15). Thus, the obtained constraint
|δc1|/  < 0.16 fits the validity range of relations (3.16)
and (3.15).

In the theory of exponential relaxation of micellar
solutions (even containing not only spherical micelles),
an important role is played by the linearization of quan-
tity exp(Ws) (that is rather sensitive to concentration c1)
with respect to δc1 in the vicinity of the final equilib-
rium state of a solution. Let us consider this lineariza-
tion and also clarify and discuss the conditions of its
applicability.

Using the third of relations (1.4) and taking into
account that ns � 1, with a high accuracy, we obtain

(3.20)

and

(3.21)

moreover, the material isolation of the solution is not
required. Expansion in a Taylor series employing
Eqs. (3.20) and (3.21) yields

(3.22)

where we excluded the terms of the third and higher
orders with respect to δc1.

The linearization of Eq. (3.22) with respect to δc1 is
applicable, provided that the absolute values of the sec-
ond and third bracketed terms of Eq. (3.22) are much
smaller than the first bracketed term. The conditions for
this situation are

(3.23)
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and

(3.24)

Because  � 1, condition (3.23) formulated earlier

in [11] imposes quite a strong constraint on |δc1|/ . Let
us show that, when condition (3.23) is met, condition
(3.24) will already be satisfied. Using equality (1.8) and
condition (3.23), we obtain the inequality

(3.25)

which, in combination with the obvious inequality

 � 1, indicates that condition (3.24) is really
met and even with a large excess, given that condition
(3.23) is satisfied. Taking into account the meaning of
symbol δ, inequality (3.25) may be rewritten as the ine-
quality

(3.26)

that imposes the constraint on |δns|/  admitted by con-

dition (3.23). The fact that, at  � 1, condition (3.23)
is rather strong, allows us to ignore the dependence of
ns on c1 when linearizing δc1 value with respect to
exp(Ws), was mentioned in [11]. However, this could be
exactly substantiated only when using relation (1.8).

In the theory of exponential relaxation in micellar
solutions (even containing not only spherical micelles),
when linearizing (with respect to δc1) the sum of fluxes
of molecular aggregates over the potential barrier of the
work of aggregation, Wn, it is assumed that, in addition
to conditions (3.23) and (3.24), there is yet one more
condition [11]:

(3.27)

Let us demonstrate that this condition is satisfied
when condition (3.23) is met. We use estimate (2.8) and
condition (3.23). Taking into account that estimate
(2.8) may be even overestimated, we have

(3.28)

This inequality, in combination with the obvious

inequality  � 1, testifies that, when condition
(3.23) is met, condition (3.27) is really satisfied, even
with a rather large excess. Inequality (3.28) imposes the
constraint on |δ(∆ns)|/∆  admitted by condition (3.23).
The fact that condition (3.23), which is rather strong at

 � 1, enables us to ignore the dependence of ∆  on
c1 upon the linearization of the sum of fluxes of molec-
ular aggregates with respect to δc1, was noted in [11].
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ñs

----
ns∂
c1∂

-------⎝ ⎠
⎛ ⎞

c1 c̃1=
δc1  � 2.

ñs
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However, this could be exactly substantiated only using
estimate (2.8).

As was already mentioned, all what have been said
above about conditions (3.23), (3.24), and (3.27) is
valid not only for solutions containing spherical
micelles. However, only in the case of solutions con-
taining spherical micelles, relation (3.23) becomes the
main condition determining the degree of the closeness
of the state of a solution to the equilibrium that is theo-
retically admitted for the stage of exponential relax-
ation. When the solution simultaneously contains both
spherical and cylindrical micelles, in addition to condi-
tion (3.23), there is a still stronger condition [11] con-
cerning the smallness of relative deviation δc1.

Finally, according to the theory of the exponential
relaxation in micellar solutions (even containing not
only spherical micelles), when linearizing the sum of
fluxes of molecular aggregates over the potential barrier
of work Wn with respect to δc1, the following inequality
is assumed [3]:

(3.29)

In designations of [3], this relation is equivalent to
inequality |η|/  � 1, which makes it possible in gen-
eral to ignore parameter η in the theory of exponential
relaxation [3]. Using estimate (2.8), and taking into
account that it can be even overestimated, we arrive at
the inequality

(3.30)

which, in combination with obvious inequality

 � 1, ensures the fulfillment of inequality (3.29)
with a large excess. In [3], this fulfillment was moti-
vated qualitatively. Note that condition (3.23) was not
used in inequalities (3.29) and (3.30).

Let us emphasized that the material isolation of a
solution was required only for relation (3.7). The
remaining content of this section is not directly associ-
ated with the material isolation of the solution. The
presence of only spherical micelles in the solution was
significant only for relation (3.7) (and Eq. (3.1)).

The domain of the applicability of relations (1.7),
(1.8), (1.12), and (1.14) and estimates (2.7) and (2.8) to
the relaxation theory of micellar solutions is, in fact,
much wider than that used above. For example, when
considering the stage of power relaxation preceding the
final stage of exponential relaxation [3–5], together
with the dependence of the position and half-width of
the vicinity of the minimum of the work of aggregation,
an analogous dependence for the position and half-
width of the vicinity of work maximum is also signifi-
cant. The regularities of the stage of power relaxation
and the applicability of exact relations obtained in this

1
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∆ñs
2/ñs
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work to this stage will be considered in the next com-
munication.
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