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Equilibrium and nonequilibrium distributions of molecular aggregates in a solution of a nonionic surfactant are
investigated at the total surfactant concentration above the second critical micelle concentration (CMC2). The investigation
is not limited by the choice of a specific micellar model. Expressions for the direct and reverse fluxes of molecular
aggregates over the potential humps of the aggregation work are derived. These aggregation work humps set up
activation barriers for the formation of spherical and cylindrical micelles. With the aid of the expressions for molecular
aggregate fluxes, a set of two kinetic equations of micellization is derived. This set, along with the material balance
equation, describes the molecular mechanism of the slow relaxation of micellar solution above the CMC2. A realistic
situation has been analyzed when the CMC2 exceeds the first critical micelle concentration, CMC1, by an order of
magnitude, and the total surfactant concentration varies within the range lying markedly above the CMC2 but not by
more than 2 orders of magnitude. For such conditions, an equation relating the parameters of the aggregation work
of a cylindrical micelle to the observable ratio of the total surfactant concentration and the monomer concentration
is found for an equilibrium solution. For the same conditions, but in the nonequilibrium state of materially isolated
surfactant solution, a closed set of linearized relaxation equations for total concentrations of spherical and cylindrical
micelles is derived. These equations determine the time development of two modes of slow relaxation in micellar
solutions markedly above the CMC2. Solving the set of equations yields two rates and two times of slow relaxation.

Introduction

The ability of amphiphiles to engage in molecular aggregation
and micellization in aqueous solutions excites interest not only
because of multiple physicochemical and technological applica-
tions,1,2 but also because of the peculiarity of the micellization
mechanism itself.2-4 In describing this mechanism, the approach
based on methods of the nucleation theory5-7 can be especially
useful. This approach relies on the concept of the minimal work
of formation of a molecular aggregate and employs the quasi-
equilibriumandquasi-steadydistributionsofmolecularaggregates
as well as the Becker-Döring equation for the kinetics of step-
by-step aggregation. In particular, this approach succeeded in
describing the kinetics and thermodynamics of the formation of
spherical micelles (within the droplet and quasi-droplet models
of surfactant molecular aggregates) and providing a description
of the relaxation of a micellar solution at total concentrations of
surfactant between the first (CMC1) and second (CMC2) critical
micelle concentrations.7-16

If the CMC1 corresponds to the beginning of the accumula-
tion of a surfactant in spherical micelles, a further concentration
increase above the CMC1 can result in the appearance of
cylindrical micelles,2-4,17-21 the aggregation numbers of which
are considerably larger than those for spherical micelles. This
is qualified as a polymorphous transition in a surfactant solution.
Experimental and theoretical results17,21-24show that cylindrical
micelles appear if the work of aggregate formation has, as a
function of the aggregation number, two maxima: the minimum
between them and the broad, gently sloping part after the second
maximum where the work rises linearly. The first maximum and
minimum of the work correspond to critical embryos of micelles
and stable spherical micelles, respectively, while the second
maximum sets up a barrier for the transition from spherical to
cylindrical micelles with subsequent accumulation of cylindrical
micelles within the broad sloping part of the work. This
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polymorphous transition becomes noticeable when the total
surfactant concentration attains the CMC2. It introduces new
significant features in the kinetics of micellization compared
with the situation below the CMC2 when only the first potential
hump and the potential well are present for the formation of
spherical micelles. The relaxation processes that involve transi-
tions between premicellar molecular aggregates and spherical
micelles are referred to as slow relaxation at micellization.1,25

The presence of the second maximum and the broad sloping part
of the work of aggregate formation above the CMC2 should lead
to the appearance of new modes of slow relaxation in micellar
solution.

The formulation of kinetic equations of micellization describing
slow relaxation in surfactant solution under the coexistence of
spherical and cylindrical micelles and finding linearized solutions
of the kinetic equations is the main goal of this paper. It involves
the study of equilibrium and nonequilibrium distributions of
molecular aggregates at the total surfactant concentration above
the CMC2. With increasing concentration substantially above
the CMC2and with lengthening cylindrical micelles, the structural
phase transitions associated with intermicellar interactions and
the effects of excluded volume begin to play an important role
in relaxation processes.22,23,26,27Below, we confine ourselves to
the case of not too high total surfactant concentrations to consider
the molecular mechanism of transition from spherical to
cylindrical micelles as a mechanism of the step-by-step ag-
gregation due to emission and absorption of surfactant monomers.
In a realistic situation with the practical absence of micellar
collisions, when CMC2 exceeds CMC1 by an order of magnitude
and the total surfactant concentration varies within the range
lying markedly above the CMC2 but not by more than 2 orders
of magnitude, the approach proposed will allow us to find explicit
formulas for two rates and two times of slow relaxation in micellar
solution.

1. The Work of Formation of a Molecular Aggregate
in Surfactant Solution

We assume a surfactant to be nonionic. The aggregation number
(the number of molecules in an aggregate) is denoted asn. The
concentration of molecular aggregates (the number of aggregates
per unit volume) with the aggregation numbern is denoted as
cn. The aggregates withn ) 1 are monomers. Correspondingly,
c1 is the monomer concentration. The total surfactant concentra-
tion (the total number of surfactant molecules in the unit volume
of a solution) is denoted asc. For cylindrical micelles,
concentrationcn includes contributions from all possible orienta-
tions of the axes of micelles with a given aggregation number
n. All the orientations are equiprobable.

The known experimental and theoretical results17,21,24 are
summarized in Figure 1, which shows the dependence of the
work of formation of a molecular aggregate in a surfactant solution
on the aggregation number. Figure 1 refers to the case when the
fraction of the surfactant matter accumulated in cylindrical
micelles is already significant.Wn is the work of formation of
an aggregate with the aggregation numbern (below, for the sake
of brevity, we callWn the aggregation work). We expressWn in
thermal unitskT, wherek is the Boltzmann constant andT is the
absolute temperature. Other notations areWc

(1) ≡ Wn|n)nc
(1),

Ws
(1) ≡ Wn|n)ns

(1), Wc
(2) ≡ Wn|n)nc

(2), andW0 ≡ Wn|n)n0. The value

Wc
(1) of the aggregation work at its first maximum point,n ) nc

(1),
in the aggregation number axis determines the height of an
activation barrier for the formation of spherical micelles. The
valueWs

(1) corresponds to the first minimum of the work at the
point n ) ns

(1) and characterizes the depth of the potential well
where spherical micelles are accumulated. The difference
Wc

(2) - Ws
(1), whereWc

(2) is the second maximum value of the
aggregation work at the pointn ) nc

(2), determines the height of
an activation barrier for the formation of cylindrical micelles.
The valueW0 is taken at the pointn ) n0 corresponding to the
left boundary of the aggregation number range where the
dependence ofWn on n is already linear.

At n > n0, the micelle core is an elongated cylindrical body
with identical ends in the form of a hemispheres or quasi-
hemispheres. Such a shape is also called spherocylindrical. Since
the limit of the spherical packing of the hydrophobic parts of
monomers is already achieved in the hemispherical ends, further
adding the monomers to such a micelle does not lead to the
reconstruction of the ends and only elongates the cylindrical part
of a micelle. As a result, the length, area, and volume of a
cylindrical micelle turn to be linearly related to the aggregation
numbern.

The following contributions to the aggregation workWn are
considered in the droplet and quasi-droplet models of a
micelle.2-4,7,13-15A hydrophobic contribution is present because
of the advantage of the work of the transfer of the hydrophobic
parts of a surfactant monomer from a solution to the micelle
core. A surface contribution is related to the surface tension of
the micelle core. An electrical contribution is caused by the
electrical double layer created by the dipole hydrophilic parts of
surfactant monomers on the micelle surface. Finally, a concen-
tration contribution appears because of the dependence of the
aggregation work on the monomer concentration in solution. In
the main order of magnitude, the hydrophobic and concentration
contributions to the work of formation of a cylindrical micelle
are proportional to the aggregation numbern, as in the case of
spherical micelles. As was stated above, the dependence of the
area of a cylindrical micelle on the aggregation numbern is
linear. The surface and electrical contributions to the aggregation
work Wn of a cylindrical micelle are proportional to the micelle
area and, hence, are also linear functions ofn. The preceding
explains the linear dependence of the total aggregation workWn

on the aggregation number atn > n0, which is shown in Figure
1 and will be used in further discussion. Finding parameters for
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Figure 1. The work of aggregationWn as a function of the
aggregation numbern under the coexistence of spherical and
cylindrical micelles at a total surfactant concentration above the
CMC2.
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this dependence is possible without the knowledge of the specific
properties of surfactant monomers. Below, we just assume that
the estimatesns

(1) ∼ 102 andn0 ∼ 3 × 102 are valid.
The concentration contribution to the aggregation work is

universal and independent of the model of a molecular aggregate
or a specific polymorphous form of a micelle in the absence of
intermicellar interactions. In the case of a dilute solution, the
concentration contribution is known7,8to depend on the surfactant
monomer concentrationc1 via the term-(n - 1) ln c1 to give

Thermodynamic eqs 1.1, which will be important below as well
as the work Wn itself, are determined by the monomer
concentrationc1 at everyn > 1 and are valid at an arbitrary
distribution of the aggregate concentrations in a dilute solution.

In view of that stated above about the dependence of workWn

on the monomer concentrationc1 and the aggregation number
n, it is convenient to write the expression forWn at n > n0 as

where b and c1c are positive quantities independent of the
monomer concentrationc1, b - ln(c1/c1c) being the coefficient
of the linear dependence ofWn on n. Evidently, the sumb +
ln(c1c), by means of which the quantitiesb andc1c enter eq 1.2,
can be explicitly expressed and numerically estimated via the
parameters of the hydrophobic, surface, and electrical contribu-
tions to the aggregation work within the droplet or quasi-droplet
model of a micelle. In this sense, the quantityc1c will play a role
of a specific concentration of surfactant monomers in solution.
In particular, we can choosec1c to be equal to the surfactant
monomer concentration at the CMC2. We assume the concentra-
tion c1 to be not too high, so that the conditionb - ln(c1/c1c) >
0 (which was taken into account in Figure 1) fulfills. Under these
conditions only, the total number of cylindrical micelles and the
total amount of surfactant in them are finite.

With two potential humps in the aggregation work, the main
fractions of molecular aggregates are in the regions beyond the
first and second hump: 1e n < nc

(1) - ∆nc
(1), nc

(1) + ∆nc
(1) <

n < nc
(2) - ∆nc

(2), andn > nc
(2) + ∆nc

(2). Here,∆nc
(1) and∆nc

(2) stand
for the half-widths of the potential humps, and the workWn

(expressed in thermal unitskT) decreases by unity if the variable
n deviates fromnc

(1) and nc
(2) by ∆nc

(1) and ∆nc
(2), respectively.

Aggregates are spherical within the regionnc
(1) + ∆nc

(1) < n <
nc

(2) - ∆nc
(2) and cylindrical within the regionn > nc

(2) + ∆nc
(2).

The aggregates within the region 1e n < nc
(1) - ∆nc

(1) will be
called premicellar.

2. The Boltzmann Distribution of Concentrations of
Premicellar Aggregates and Spherical and Cylindrical

Micelles

Even in a nonequilibrium state of surfactant solution, a large
excess of aggregates in the regions 1e n < nc

(1) - ∆nc
(1), nc

(1) +
∆nc

(1) < n < nc
(2) - ∆nc

(2), andn > nc
(2) + ∆nc

(2) provides quasi-
equilibrium distributions of aggregate concentrations in each of
these regions separately. It fulfills regardless of the variations
in the number of aggregates in these regions due to the aggregate
fluxes over the humps. With neglecting interaggregate interac-
tions, the quasi-equilibrium distributions of the concentrations
of premicellar aggregates and spherical and cylindrical micelles
obey the Boltzmann distribution. The aggregation work in the

exponent in the distributions depends on the current monomer
concentration. The preexponential factor is determined by the
value of aggregate concentration taken at a certain chosen
aggregation number in the corresponding region. Thus the quasi-
equilibrium distributions have the Boltzmann form:

Here,c1 is the current value of the monomer concentration (at
a current moment of time),cs

(1) ≡ cn|n)ns
(1) is the current value of

the concentration of spherical micelles atn ) ns
(1), andc0 ≡

cn|n)n0 is the current value of the aggregate concentration at the
pointn) n0 corresponding to the left boundary of the aggregation
number region where the dependence ofWn on n is already
linear. We assume∆ns

(1)/ns
(1) , 1, where∆ns

(1) is the half-width
of the potential well of the workWn in the vicinity of the point
n ) ns

(1), and the workWn increases by unity whenn deviates
fromns

(1) by ∆ns
(1). Then, the equalitycs

(1) ) cM/π1/2∆ns
(1) holds,7,9

wherecM is a current value of the total concentration of spherical
micelles (the total number of spherical micelles per unit volume
of solution).

When the aggregation work has two potential humps, the
transition of subcritical molecular aggregates into spherical
micelles and the transition of spherical micelles into cylindrical
ones proceed with overcoming activation barriers. Although
premicellar aggregates, spherical micelles, and cylindrical
micelles taken separately are in quasi-equilibrium, their mutual
equilibrium can, however, be absent. The equality9

and the equality

(following from c0 ≡ cn|n)n0 andW0 ≡ Wn|n)n0, according to the
Boltzmann principle) fulfill simultaneously only at the state of
complete equilibrium. Evidently, eqs 2.2 and 2.3 together with
eqs 2.1 and the equalitycs

(1) ) cM/π1/2∆ns
(1) show that the

Boltzmann distributioncn ) c1exp(-Wn) expands over the whole
range of aggregation numbers in the state of complete equilibrium.

In view of eq 1.2, the quasi-equilibrium distribution of the
concentrations of cylindrical micelles in eqs 2.1 can be written
as

wherea ≡ ln(c1/c1c). Let us denote the total concentration of
cylindrical micelles (the total number of cylindrical micelles per
unit volume) asg and the total number of surfactant molecules
in cylindrical micelles per unit volume asN. In view of the
estimatesns

(1) ∼ 102 andn0 ∼ 3 × 102 and the inequalityns
(1) <

nc
(2) + ∆nc

(2) < n0 (see Figure 1), the contributions togandN from
the regionnc

(2) + ∆nc
(2) < n < n0 can be neglected compared with

the contribution from regionn > n0. Thus we have

∂Wn/∂c1 ) -(n - 1)/c1, ∂Ws
(1)/∂c1 ) -(ns

(1) - 1)/c1,

∂W0/∂c1 ) -(n0 - 1)/c1 (1.1)

Wn ) W0 + [b - ln(c1/c1c)](n - n0), (n > n0) (1.2)

cn ) c1e
-Wn (1 e n < nc

(1) - ∆nc
(1))

cn ) cs
(1)e-(Wn-Ws

(1)) (nc
(1) + ∆nc

(1) < n < nc
(2) - ∆nc

(2))

cn ) c0e-(Wn-W0) (n > nc
(2) + ∆nc

(2)) (2.1)

cM ) π1/2c1∆ns
(1)e-Ws

(1)

(2.2)

c0 ) c1e
-W0

(2.3)

cn ) c0e-(b-a)(n-n0) (n > n0) (2.4)

g ) ∫n0

∞
cndn, N ) ∫n0

∞
ncndn (b - a > 0) (2.5)
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where the inequalityb - a > 0 noted at the end of section 1 is
taken into account.

As is seen from eq 2.4, the quantity

represents the width of the cylindrical micelle distributioncn in
the aggregation numbers: adding this width ton - n0 decreases
the concentrationcn by e times. If n - n0 exceedsn/ - n0 by
at least 3-4 times, the contributions to the integrals in eqs 2.5
from the interval (n,∞) become relatively small.

Substituting eq 2.4 in eqs 2.5 and performing integration, we
obtain

As follows from eqs 2.6 and 2.7,n/ ) N/g. This shows thatn/

is the average aggregation number for cylindrical micelles.

3. The First and Second Critical Micelle
Concentrations

The definitions of the CMC1 and CMC2 are rather conditional
and are realized in the literature by dozens of methods permitting
the estimation of the critical micellization degree for the
appearance of spherical and cylindrical micelles. Let us specify
what we understand for the CMC1 and CMC2 in this paper.
Denoting the total number of surfactant molecules in spherical
micelles per unit solution volume asNs and assuming
∆ns

(1)/ns
(1) , 1, we have

(eq3.1 requiresonly thequasi-equilibriumdistributionof spherical
micelles). Evidently, the balance equation for the total concen-
tration c in a surfactant solution can be written as

We define the CMC1 by the numerical specification of the
micellization degree2 (or the amount ratio of the micellar and
monomeric surfactant forms) in the state of complete equilibrium
of the solution. We assume that the surfactant monomer
concentrationc1m corresponding to the CMC1 satisfies the
condition

In accordance with eq 3.2, eq 3.3 shows that the role of spherical
micelles in the balance of surfactant amount is already noticeable
atc1 ) c1m. Since cylindrical micelles are still absent atc1 ) c1m,
c1m is seen from eqs 3.2 and 3.3 to coincide nearly with the
CMC1:

Let us assignc1c in eq 1.2 as the equilibrium monomer
concentration corresponding to the CMC2. We define the CMC2
as the equilibrium total surfactant concentration at which the
ratio of the total surfactant amount in cylindrical micelles to the
surfactant amount in monomers is 1/10. In view of eq 3.2, the
role of cylindrical micelles is already noticeable atc1 ) c1c in
the surfactant amount balance. We then have

by analogy with the definition of the CMC1 via c1m in eq 3.3.
We will consider in sections 5-7 a realistic situation with

where eq 3.1 and the estimatens
(1) ∼ 102 are taken into account.

As is seen from eqs 3.2 and 3.5 and the inequality
(Ns/c1)|c1)c1c . 1, the CMC2 coincides nearly withNs|c1)c1c:

With variation in the total concentrationcM of spherical micelles
within wide limits in such a way that the ratiocM/c1 changes
from values on the order of 10-3 to values on the order of 10-1,
the surfactant monomer concentrationc1 and the quantitiesns

(1)

and∆ns
(1) stay practically constant.16 Then, as follows from eqs

3.1, 3.3, 3.4, 3.6, and 3.7, we havec1c = c1m and

Evidently, we can take somewhat different estimates in eqs
3.6 and, correspondingly, in eq 3.8. Such a replacement does not
change the conclusions obtained in sections 5-7.

4. Kinetic Equations of Micellization in Systems with
Spherical and Cylindrical Micelles

We assume the following inequalities to be valid:

First, the inequalities found in eqs 4.1 permit us to consider the
aggregation numbern as a continuous variable in the region of
the potential humps and well for the workWn. Second, these
inequalities imply that both the humps and the well of workWn

are pronounced: as is shown in Figure 1, they are distanced from
the pointsn ) 1 andn ) n0, as well as from each other.

Let us introduce the direct,J′(1), and the reverse,J′′(1), fluxes
of molecular aggregates over the first potential hump of the
aggregation work. These fluxes determine the number of
molecular aggregates overcoming (by fluctuations) the first
potential hump per unit time in the unit volume of micellar solution
from the regionn < nc

(1) - ∆nc
(1) to the regionn > nc

(1) + ∆nc
(1)

(the direct flux) and back from the regionn > nc
(1) + ∆nc

(1) to
the regionn < nc

(1) - ∆nc
(1) (the reverse flux). Evidently,J′(1) -

J′′(1) is the net flux of molecular aggregates passing by fluctua-
tions from the regionn < nc

(1) - ∆nc
(1) to the regionn > nc

(1) +
∆nc

(1).
We also introduce the direct,J′(2), and the reverse,J′′(2), fluxes

of molecular aggregates over the second potential hump of the
aggregation work. These fluxes determine the number of
molecular aggregates overcoming (by fluctuations) the second
potential hump per unit time in the unit volume of micellar solution
from the regionn < nc

(2) - ∆nc
(2) to the regionn > nc

(2) + ∆nc
(2)

and back from the regionn > nc
(2) + ∆nc

(2) to the regionn <

n/ - n0 ≡ 1/(b - a) (2.6)

g ) c0

b - a
, N )

c0n0

b - a
+ c0

(b - a)2
(b - a > 0) (2.7)

Ns ) ns
(1)cM (3.1)

c ) c1 + Ns + N (3.2)

Ns

c1
|
c1)c1m

≡ 1
10

(3.3)

CMC1 = c1m (3.4)

N
c1
|
c1)c1c

≡ 1
10

(3.5)

Ns

c1
|
c1)c1c

∼ 10,
cM

c1
|
c1)c1

∼ 1
10

(3.6)

CMC2 = Ns|c1)c1c
(3.7)

CMC2/CMC1 ∼ 10 (3.8)

∆nc
(1) . 1, ∆nc

(1)/nc
(1) , 1, ∆nc

(1)/(ns
(1) - nc

(1)) , 1

∆ns
(1) . 1, ∆ns

(1)/(ns
(1) - nc

(1)) , 1, ∆ns
(1)/(nc

(2) - ns
(1)) , 1

∆nc
(2) . 1, ∆nc

(2)/(nc
(2) - ns

(1)) , 1, ∆nc
(2)/(n0 - nc

(2)) , 1
(4.1)
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nc
(2) - ∆nc

(2). Evidently,J′(2) - J′′(2) is the net flux of molecular
aggregates passing by fluctuations from the regionn < nc

(2) -
∆nc

(2) to the regionn > nc
(2) + ∆nc

(2).
In accordance with the meaning of the fluxes introduced, the

variations of the numbers of spherical and cylindrical micelles
in time are determined in the unit solution volume by the equations

wheret is the time. Summing eqs 4.2, we arrive at the evident
result d(cM + g)/dt ) J′(1) - J′′(1). Equations 4.2 have the meaning
of the kinetic equations of micellization in systems with spherical
and cylindrical micelles. These equations can be derived from
general kinetic equations of the step-by-step aggregation (the
Becker-Döring equations5-7) by summing these equations over
aggregation numbers in the regions where spherical and,
correspondingly, cylindrical micelles are located in the aggrega-
tion axis.

As was noted in section 2, the distributions of concentrations
of molecular aggregates in the regions 1e n < nc

(1) - ∆nc
(1),

nc
(1) + ∆nc

(1) < n < nc
(2) - ∆nc

(2), andn > nc
(2) + ∆nc

(2), that is,
beyond the potential humps of the aggregation work, are
maintained in the quasi-equilibrium states. Then the distributions
of concentration of the molecular aggregates in the regions of
the first and second potential humps are quasi-steady. They are
time-independent over sufficiently long time intervals, which,
on the other hand, are too short for the concentrationsc1, cM and
g to change markedly during the slow process of approaching
the state of complete equilibrium of the micellar solution. Along
with that, the fluxesJ′(1), J′′(1), J′(2), andJ′′(2) are quasi-steady
too. This significantly simplifies the whole investigation.

We denote asc′n(1) andc′′n (1) the quasi-steady distributions of
concentration of molecular aggregates participating in the quasi-
steady direct,J′(1), and reverse,J′′(1), fluxes over the first hump
of the aggregation work. Following the ideas of the kinetic theory
of nucleation, we set the boundary conditions

on the boundaries of the first hump. The aggregate concentration
cn on the left-hand sides of eqs 4.3 refers to a quasi-equilibrium
state and is determined by the first (atn = nc

(1) - ∆nc
(1)) and the

second (atn = nc
(1) + ∆nc

(1)) of eqs 2.1. Taking into account the
inequalities of eqs 4.1, one can obtain the following analytical
expressions for the quasi-steady fluxesJ′(1) andJ′′(1):9

in which jc
+(1) is the number of surfactant monomers absorbed

(jc
+(1) > 0), from solution, by a spherical molecular aggregate

composed ofnc
(1) molecules, per unit time. The first of eqs 4.4

is analogous to the equation for the steady nucleation rate in the
theory of nucleation. The second of eqs 4.4 gives the rate of
steady breakup of spherical micelles. Equations 4.4 are similar
in their structure. The natural difference is that the breakup of

spherical micelles is prevented by the aggregation work barrier
of the height Wc

(1) - Ws
(1), and the breakup intensity is

proportional to the concentrationcs
(1) ) cM/π1/2∆ns

(1) of molec-
ular aggregates withn ) ns

(1).
The quasi-equilibrium distributioncn is given on the left and

right boundaries of the second potential hump by the second (at
n = nc

(2) - ∆nc
(2)) and, correspondingly, by the third (atn =

nc
(2) + ∆nc

(2)) of eqs 2.1. Using the same approach as that used
when deriving eqs 4.4, one can write analytical expressions for
the quasi-steady direct,J′(2), and reverse,J′′(2), fluxes of molecular
aggregates over the second potential hump as

in which jc
+(2) is the number of surfactant monomers absorbed

(jc
+(2) > 0) by a nonspherical molecular aggregate composed of

nc
(2) molecules, per unit time.
If we pass to the concentrationcs

(1) ) cM/π1/2∆ns
(1) atn ) ns

(1),
the quantityπ1/2∆ns

(1) disappears in the denominators of the
second of eqs 4.4 and the first of eqs 4.5. Then the relation of
these equations to the first of eqs 4.4 and the second of eqs 4.5
is more apparent. However, it is better to keep the total
concentrationcM of the spherical micelles in eqs 4.4 and 4.5
becausecM is more readily accessible from experiment thancs

(1).
Additionally, we can state the following: Because the aggregate
concentrationcn is in quasi-equilibrium in the regionn > nc

(2) +
∆nc

(2), then, according to the Boltzmann principle, we can
replacen0 in the definitionc0 ≡ cn|n)n0 and in the second of eqs
4.5 by any value ofn within this region. Even so, the factorc0

exp(W0) in the second of eqs 4.5 does not change. However, it
is better to keep the valuen ) n0 in this equation, from which
eqs 1.2 and 2.4 become applicable.

Relaxation in a materially isolated micellar solution leads to
a state of complete equilibrium. Since the direct and reverse
fluxes of molecular aggregates over the potential humps of the
aggregation work mutually compensate each other in the state
of equilibrium, then

where the tilde marks the fluxes in the state of equilibrium.
Equations 4.4-4.6 lead to eqs 2.2 and 2.3 obtained in section
2 for solution equilibrium without using the concept of the direct
and reverse fluxes of molecular aggregates over the potential
humps. This confirms eqs 4.4 and 4.5 along with the concept
itself (although the direct and reverse fluxes enter eqs 4.2 in the
form of their differences only).

In view of eqs 4.4 and 4.5, the right-hand sides of kinetic eqs
4.2 depend on the concentrationsc1, cM, andc0. The dependence
on cM andc0 is linear, while the dependence onc1 turns out to
be more complicated because the quantitiesjc

+(1), jc
+(2), Wc

(1), Ws
(1),

Wc
(2), W0, ∆nc

(1), ∆ns
(1), and∆nc

(2) are functions of the surfactant
monomer concentration. The quantitiesjc

+(1) andjc
+(2) are directly

proportional toc1. The quantitiesWc
(1), Ws

(1), ∆nc
(1), and∆ns

(1) can
be found as functions ofc1 within the droplet and quasi-droplet
models of nonionic spherical micelles.14,15 To determineWc

(2)

andW0 as functions ofc1, one can use the first and third of eqs
1.1, while the dependence of∆nc

(2) onc1 can be neglected in the
first approximation. In view of the first of eqs 2.7 and the definition
a ≡ ln(c1/c1c), the concentrationg on the left-hand side of the

dcM/dt ) J′(1) - J′′(1) - (J′(2) - J′′(2))

dg/dt ) J′(2) - J′′(2) (4.2)

c′n
(1)/cn = {1 (n = nc

(1) - ∆nc
(1)),

0 (n = nc
(1) + ∆nc

(1)),

c′′n
(1)/cn = {0 (n = nc

(1) - ∆nc
(1)),

1 (n = nc
(1) + ∆nc

(1))
(4.3)

J′(1) ) c1jc
+(1) exp(-Wc

(1))/π1/2∆nc
(1)

J′′(1) ) cMjc
+(1) exp[-(Wc

(1) - Ws
(1))]/π∆nc

(1)∆ns
(1) (4.4)

J′(2) ) cMjc
+(2) exp[-(Wc

(2) - Ws
(1))]/π∆nc

(2)∆ns
(1)

J′′(2) ) c0jc
+(2) exp[-(Wc

(2) - W0)]/π1/2∆nc
(2) (4.5)

J̃′(1) ) J̃′′(1), J̃′(2) ) J̃′′(2) (4.6)
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second of eqs 4.2 is a function ofc1 and a linear function ofc0.
There is one more equation relating the concentrationsc1, cM,
andc0, wherecM andc0 enter linearly. It is given by the surfactant
amount balance, eq 3.2, jointly with eqs 2.7 and 3.1. As a result,
we see that kinetic eqs 4.2 jointly with the expressions for the
fluxes given by eqs 4.4 and 4.5, as well as the balance eq 3.2
jointly with eqs 2.7 and 3.1 constitute a closed set of equations.
This equation set determines a variation in the concentrationsc1,
cM, andg in time and describes slow relaxation in materially
isolated solutions with spherical and cylindrical micelles at total
concentrations above the CMC2.

5. Accounting for the Dependence of WorkW0 on the
Monomer Concentration

We are interested in the range of variation of the average
aggregation numbern/ of cylindrical micelles defined as

wherep is just a numerical parameter. As follows from the estimate
n0 ∼ 3 × 102, the inequalityn/ . n0 still holds at the upper limit
of p noted in eq 5.1. Thus, the differencen/ - n0 practically
coincides withn/. Equations 2.6 and 5.1 yield

Therefore,n/may be regarded as both the width of the distribution
of cylindrical micelles and the average aggregation number of
cylindrical micelles. Sinceb is independent of the surfactant
monomer concentrationc1and the quantitya≡ ln(c1/c1c) depends
on c1 by means of the term ln(c1), eq 5.2 assigns the range of
variation ofc1, which we will study below. Equation 5.2 and the
inequalityn/ . n0 bring us ton0(b - a) , 1. This allows us to
reduce the second of eqs 2.7 to

As we will confirm at the end of this section, the condition

is valid if eqs 3.6 are fulfilled. In view of eqs 3.2 and 5.4, we
have

that is, cylindrical micelles give the main contribution to the
surfactant amount balance in the solution.

Using the third of eqs 1.1, the definitiona ≡ ln(c1/c1c), and
the inequalityn0 . 1, we have

whereW0
0 ≡ W0|c1)c1c. If the quantitya satisfies the limitation

expressed in (5.2), eq 5.6 can be rewritten atn0/n/ , 1 with
sufficient accuracy as

Thus, the exponent e-W0 is independent ofp at 1 ep j 5.
Using eqs 2.3 and 5.3, the independence of e-W0 onp, and the

proportionality betweenb - a andp that follows from eq 5.2,
we have

Equations 5.5 and 5.8 yield

According to eqs 5.1 and 5.9, the quantitiesn/ and c/c1 are
inversely proportional topandp2, respectively. This leads to the
known result4,19 that n/ is directly proportional to (c/c1)1/2.

Equations 5.2, 5.3, and 5.5, with the help of eq 2.3, allow us
to write

Equation 5.5 and the equalityn/ ) N/gnoted at the end of section
2 give

Using the second of eqs 2.7 ata ) 0 (atc1 ) c1c), taking into
account eq 2.3 and the definitionW0

0 ≡ W0|c1)c1c, we obtain

Expressing e-W00 in eq 5.12 with the use of the definition found
in eq 3.5 and substituting the result in eq 5.7, we have

Using eq 5.13 and the first of eqs 5.10 leads to the equation

The parameterb is determined by the nature of cylindrical micelles
and is independent of the monomer concentrationc1. The
parametern0 corresponds to a reference point chosen and,
naturally, is also constant. Therefore, the right-hand side of eq
5.14 as a whole should be constant to produce again the above
relationn/ ∝ (c/c1)1/2. On the other side, eq 5.14, as an equation
for bn0, provides a direct method of estimation of the parameter
b that is usually calculated with the aids of models.

The rootbn0 of eq 5.14 is not very sensitive to variation in
the right-hand side of the equation. This considerably simplifies
all our study. In particular, we can choose

in accordance with eq 5.4 at the upper limit of the variation of
n/ at p ) 1. Then, estimating the right-hand side of eq 5.14
(independent ofp), with the help of eqs 5.1 and 5.9 andn0 ∼
3 × 102, as 9, we obtain the approximate valuebn0 = 2 for the
root bn0. If we chose (c/c1)|p)1 ∼ 104, keeping the estimate
n/|p)1 ∼ 104, we would obtainbn0 = 3.5. Subsequently, we will
keep the estimate of eq 5.15. Then the parameterb equals

n/ ∼ 104/p (1 e p j 5) (5.1)

b - a ) 1/n/ ∼ p/104 (1 e p j 5) (5.2)

N ) c0

(b - a)2
(b - a ) 1/n/) (5.3)

c . Ns = CMC2 (5.4)

N = c (5.5)

e-W0
) e-W0

0
ean0 (5.6)

e-W0
) e-W0

0
ebn0 (5.7)

N
c1

) N
c1
|
p)1

1

p2
(1 e p j 5) (5.8)

c
c1

=
c
c1
|
p)1

1

p2
(1 e p j 5) (5.9)

eW0
=

c1

c
n/

2, eW0
(b - a) =

c1

c
n/, eW0

(b - a)2 =
c1

c

eW0
(b - a)3 =

c1

c
1
n/

(b - a ) 1/n/) (5.10)

g = c/n/ (5.11)

N
c1
|
c1)c1c

)
n0

b(1 + 1
bn0

)e-W0
0

(5.12)

e-W0
) b

10n0
(1 + 1

bn0
)-1

ebn0 (5.13)

bn0(1 + 1
bn0

)-1

ebn0 = 10
c
c1

(n0

n/
)2

(5.14)

c
c1
|
p)1

∼ 103 (5.15)
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As follows from eqs 5.9 and 5.15, the ratioc/c1 is not too high.
In view of eqs 3.6 and 3.7, the total concentrationc exceeds the
CMC2 by no more than 2 orders of magnitude. According to eq
5.1, the average aggregation numbern/ of cylindrical micelles
is not too large at such total concentrations. Thus, micelle
collisions, leading to the recombination and splitting of micelles,
are not yet important, and the Boltzmann distribution in eq 2.4
for cylindrical micelles is still applicable. Along with that, eqs
5.9 and 5.15 determine the total surfactant concentrationc that
markedly exceeds the CMC2. The range of variation ofcenvelops
almost 2 orders of magnitude.

Equation 5.16 allows us to obtain several important results at
the total concentrationc, satisfying eqs 5.9 and 5.15. Using eqs
5.2 and 5.16 anda ≡ ln(c1/c1c), we have

where the strong inequalities 1/n0 , 1 and 1/n/ , 1 are taken
into account. As follows from eq 5.17,c1 = c1c. Equations 5.13
and 5.16 give eW0 = n0

2. Bearing this in mind and using eqs 2.3,
2.7, and 5.2 andn0 ∼ 3 × 102, we find g/c1 ∼ 1/10p (1 e p j
5). The latter ensures that the surfactant solution is dilute with
respect to the cylindrical micelles.

We can also add the following: Because of the second of eqs
1.1, the exponent e-Ws(1) grows by exp[ns

(1)(2/n0 - 1/n/)] times
with increasing monomer concentrationc1 from the valuec1c up
to values defined by eq 5.17. As follows from eq 5.1 and the
estimatesns

(1) ∼ 102 andn0 ∼ 3 × 102, the exponent e-Ws(1) does
not increase significantly. Then, in view of eqs 3.1 and 2.2,Ns

andcM exceed their valuesNs|c1)c1c andcM|c1)c1c insignificantly.
Therefore the estimates

are valid along with eqs 3.6. In view of eqs 5.9 and 5.15, this
means that eq 5.4 is fulfilled, even at the upper limit ofp noted
in eq 5.9.

6. Linearization of the Surfactant Balance Equation in
the Vicinity of the Equilibrium State of a Materially

Isolated Solution

We now consider a vicinity of the equilibrium state of a
materially isolated surfactant solution. Since the solution is
nonequilibrium in this vicinity, eqs 2.2 and 2.3 are inapplicable.
As a corollary, the concentrationsc0,cM, andcare not determined
uniquely by the surfactant monomer concentrationc1. As
previously done in section 4, we will mark quantities in the state
of equilibrium with a tilde and denote the deviation of quantities
from their equilibrium value by adding the symbolδ to the left
of the quantities. The deviationδc of the total surfactant
concentration can be considered to be zero in a materially isolated
solution. Then the surfactant amount balance given by eq 3.2
establishes a relation between the deviationsδc1 andδc0 and the
deviationsδcM andδg of the total concentrations of spherical
and cylindrical micelles. We will find this relation.

It is sufficient for our study if the relation

holds in accordance with eq 5.2 in the final equilibrium state of
a materially isolated surfactant solution, as well as eqs 5.1, 5.9,
5.10, and 5.15. Below, we will indeed see that the possibility of
linearization of eq 3.2 in the vicinity of the equilibrium state

imposes a severe restriction on the smallness of the relative
deviation ofb - a from b - ã. This restriction provides that,
in addition to eq 6.1, eq 5.2 holds with a high accuracy in the
whole vicinity of the final equilibrium state, allowing the
linearization of eq 3.2. Along with eq 5.2, eq 5.3 and the first
of eqs 2.7 are valid in the same vicinity.

To simplify the study, we perform the linearization of these
formulas and the definitiona ≡ ln(c1/c1c). Using eq 2.3 in the
final equilibrium state of solution, we obtain

The condition of linearization with respect toδc1 in eqs 6.2 can
be written as the condition of neglecting the quadratic in theδc1

term in the second of eqs 6.2 (which is the most sensitive toδc1)
compared with the linear in theδc1 term kept in this equation.
We then have

The inequality given in eq 6.3 gives the required condition of
linearization of the balance eq 3.2. With linear dependence on
c0 in eq 5.3 and the first of eqs 2.7, a restriction on the smallness
of the deviationδc0 is not required in eqs 6.2. Let us rewrite the
left-hand side of eq 6.3 with the help of the first of eqs 6.2 as
|δ(b- a)| (the parameterb is independent ofc1and, consequently,
δb ) 0). Then eq 6.3 confirms that eq 5.2 holds, together with
eq 6.1, with a high accuracy within the whole vicinity of the final
equilibrium state, allowing the linearization of eq 3.2. With the
aid of eq 6.1, the condition given in eq 6.3 can be rewritten as

Using the third of eqs 6.2, we find

Substituting eq 6.5 in the right-hand side of the second of eqs
6.2, we obtain

With allowance for eq 3.1 to be valid for spherical micelles
at quasi-equilibrium, the balance eq 3.2 linearized leads for a
materially isolated solution to

Here, we setns
(1) ) ñs

(1) with good accuracy because of eq 6.4
and low sensitivity of the quantityns

(1) to the monomer
concentrationc1.16 Putting eq 6.6 in eq 6.7, we have

Applying eqs 5.1, 5.9, 5.15, and the last of eqs 5.10 to the final
equilibrium state of solution, we obtain e-W̃0(b - ã)-3 > 105 .
1. Thus, the first term on the left-hand side of eq 6.8 can be

b = 2/n0 (5.16)

c1 = c1c(1 + 2/n0 - 1/n/) (5.17)

Ns/c1 ∼ 10, cM/c1 ∼ 1/10 (5.18)

b - ã ) 1/ñ/ ∼ p/104 (1 e p j 5) (6.1)

δa ) 1
c̃1

δc1 ) 1

c̃0
e-W̃0

δc1

δN ) 1

(b - ã)2
δc0 + 2e-W̃0 1

(b - ã)3
δc1

δg ) 1
(b - ã)

δc0 + e-W̃0 1

(b - ã)2
δc1 (6.2)

|δc1|/c̃1 , (2/3)(b - ã) (6.3)

|δc1|/c̃1 , 2/3ñ/ (6.4)

δc0 ) -e-W̃0 1
b - ã

δc1 + (b - ã)δg (6.5)

δN ) e-W̃0 1

(b - ã)3
δc1 + 1

b - ã
δg (6.6)

δc1 + ñs
(1)δcM + δN ) 0 (6.7)

δc1 + ñs
(1)δcM + e-W̃0 1

(b - ã)3
δc1 + 1

b - ã
δg ) 0 (6.8)
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omitted. Then eq 6.8 gives, with high accuracy,

Excluding the deviationδc1 on the right-hand side of eq 6.5 with
the help of eq 6.9, we find

Equations 6.9 and 6.10 reveal the sought-after relation of the
deviationsδc1 andδc0 to the deviationsδcM andδg.

Substituting eq 6.9 in eq 6.6 yields

Equation 6.11 expresses the relation between the deviationsδN
and δcM of the quantitiesN and cM that is accessible from
experiment.

Applying eq 6.1 and the last two of eqs 5.10 to the final
equilibrium state of solution, we rewrite eqs 6.9 and 6.10 in the
form

where the coefficients ofδcM andδg are expressed through the
characteristics of an equilibrium surfactant solution. All these
characteristics are accessible from experiment. The ranges of
variation of the quantitiesñ/ and c̃ are determined by eqs 5.1,
5.9, and 5.15 applied to the final equilibrium state. Equations
6.11-6.13 cover the situation when spherical and cylindrical
micelles are not in mutual quasi-equilibrium and are not
equilibrated with premicellar molecular aggregates.

7. The Set of Linearized Relaxation Equations for the
Total Concentrations of Spherical and Cylindrical

Micelles

To simplify the study, let us now perform a linearization of
the kinetic equations of micellization, eqs 4.2, with respect to
small deviations of quantities from their final equilibrium values
in a materially isolated surfactant solution. As a result, we obtain

Below, we derive analytical expressions for the deviations on
the right-hand sides of eqs 7.1.

We start from the deviationδ(J′(1) - J′′(1)). According to eqs
4.4, the dependences ofJ′(1) andJ′′(1) on jc

+(1), Wc
(1), and∆nc

(1) are
identical. In view of the equalityJ̃′′(1) ) J̃′(1) (the first of eqs 4.6),
the variations ofjc

+(1), Wc
(1), and∆nc

(1) are then mutually canceled
when findingδ(J′(1) - J′′(1)). To find the deviation of the exponent
eWs(1) that is very sensitive toc1, we employ the second of eqs
1.1. Ignoring the dependence ofns

(1) and∆ns
(1) on c1, which will

be justified below, and taking into account the inequalityns
(1) .

1, we finally arrive, with the help of eqs 4.4 and 4.6, at

In accordance with the second of eqs 1.1, the condition of
applicability of linearized eq 7.2 (the condition of neglecting
quadratic and higher-order corrections in the deviationδc1) is
|δc1|/c̃1 , 2/ñs

(1). The high relative smallness of the deviationδc1

following from this and the estimatens
(1) ∼ 102 justifies

neglecting the dependences of the quantitiesns
(1) and∆ns

(1) onc1

in view of their weak sensitivity toc1.16

Let us now pass to the deviationδ(J′(2) - J′′(2)). According
to eqs 4.5, the dependences ofJ′(2) andJ′′(2) on jc

+(2), Wc
(2), and

∆nc
(2) are identical. In view of the equalityJ̃′′(2) ) J̃′(2) (the

second of eqs 4.6), the variations ofjc
+(2), Wc

(2), and∆nc
(2) are then

mutually canceled when findingδ(J′(2) - J′′(2)). To find the
deviation of the exponent eWs(1), we again employ the second of
eqs 1.1. To find the deviation of the exponent eW0 that is even
more sensitive toc1 than is eWs(1), we use the third of eqs 1.1.
Ignoring again the dependences ofns

(1) and ∆ns
(1) on c1 and

accounting for eqs 4.5 and 4.6, we finally obtain

In accordance with the second and third of eqs 1.1, the conditions
of applicability of linearized eq 7.3 are|δc1|/c̃1 , 2/ñs

(1) and
|δc1|/c̃1 , 2/n0. In view of the estimatesns

(1) ∼ 102 andn0 ∼
3 × 102, the second condition is slightly stronger than the first
one. Therefore, neglecting the dependences ofns

(1) and∆ns
(1) on

c1 in eq 7.3 is even more justified than it is in eq 7.2. Although
eqs 7.2 and 7.3 refer to the deviations of the differences of the
direct and reverse fluxes of molecular aggregates, the separate
expressions for the direct and reverse fluxes were important in
deriving eqs 7.2 and 7.3.

To build a relaxation theory, we have to add linearized eqs
6.12 and 6.13 to eqs 7.2 and 7.3. The condition of applicability
of eqs 6.12 and 6.13 is eq 6.4. As is seen from eq 5.1 and the
estimatesns

(1) ∼ 102 andn0 ∼ 3 × 102, the condition expressed
in eq 6.4 is much stronger than the aforementioned conditions
of applicability of eqs 7.2 and 7.3. Therefore, the condition in
eq 6.4 determines the degree of accessible-for-theory closeness
of a materially isolated surfactant solution to its final complete
equilibrium state.

Equations 6.12 and 6.13 permit us to express the deviations
δc1 andδc0 in eqs 7.2 and 7.3 through the deviationsδcM and
δg that are accessible from experiment. Taking this into account,
let us represent the right-hand sides of eqs 7.2 and 7.3 in the form
of linear combinations of the deviationsδcM andδg to write eqs
7.1 as

where the coefficientsR11, R12, R21, andR22are to be determined.
Applying eq 2.3 and the first of eqs 5.10 to the final equilibrium

state and using eqs 6.12, 6.13, and 7.1-7.4 yield

δc1 ) -eW̃0
ñs

(1)(b - ã)3δcM - eW̃0
(b - ã)2δg (6.9)

δc0 ) ñs
(1)(b - ã)2δcM + 2(b - ã)δg (6.10)

δN ) -ñs
(1)δcM (6.11)

δc1 = -
c̃1

c̃

ñs
(1)

ñ/

δcM -
c̃1

c̃
δg (6.12)

δc0 =
ñs

(1)

ñ/

2
δcM + 2

ñ/

δg (6.13)

d(δcM)/dt ) δ(J′(1) - J′′(1)) - δ(J′(2) - J′′(2))

d(δg)/dt ) δ(J′(2) - J′′(2)) (7.1)

δ(J′(1) - J′′(1)) ) J̃′(1)(ñs
(1)

c̃1
δc1 - 1

c̃M
δcM) (7.2)

δ(J′(2) - J′′(2)) ) J̃′(2)(n0 - ñs
(1)

c̃1
δc1 + 1

c̃M
δcM - 1

c̃0
δc0) (7.3)

d(δcM)/dt ) -R11δcM - R12δg

d(δg)/dt ) -R21δcM - R22δg (7.4)

R11 = [(ñs
(1))2

ñ/c̃
+ 1

c̃M
]J̃′(1) - [(n0 - ñs

(1))ñs
(1)

ñ/c̃
+

ñs
(1)

c̃
- 1

c̃M
]J̃′(2)

R12 =
ñs

(1)

c̃
J̃′(1) - (n0 - ñs

(1)

c̃
+

2ñ/

c̃ )J̃′(2)

R21 = [(n0 - ñs
(1))ñs

(1)

ñ/c̃
+

ñs
(1)

c̃
- 1

c̃M
]J̃′(2)
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Only the direct fluxesJ̃′(1) andJ̃′(2) of molecular aggregates over
the first and second potential humps enter eqs 7.5, both the fluxes
being taken at the final equilibrium state. The fluxes are given,
in view of the equalitiesJ̃′(1) ) J̃′′(1) andJ̃′(2) ) J̃′′(2), by any of
eqs 4.4 and 4.5 with referring the quantities in them to the final
equilibrium state of the solution (marking the quantities with a
tilde). Evidently,J̃′(1) > 0 andJ̃′(2) > 0.

The ranges of the accessible-for-theory variations of quantities
ñ/ andc̃ are determined by eqs 5.1, 5.9, and 5.15 applied to final
equilibrium. Taking them and the estimatesns

(1) ∼ 102 andn0 ∼
3 × 102 into account, we reduce eqs 7.5, with the relative error
on the order of the small parameterÑs/c̃ ) ñs

(1)c̃M/c̃ in eq 5.4, to
considerably simpler formulas:

There is no need for preliminary assumptions on the flux values
J̃′(1) andJ̃′(2) in eqs 7.6. The factors beforeJ̃′(1) andJ̃′(2) in eqs
7.6 are expressed through the characteristicsñs

(1), ñ/, c̃M, andc̃
of the equilibrium surfactant solution, which are accessible in
experiment. The dependence onn0 has been dropped out in the
factors.

Equations 7.4 and 7.6 form a closed set of two linearized
relaxation equations describing the molecular mechanism of the
time development of deviationsδcM andδgof total concentrations
of spherical and cylindrical micelles from their values in the
finalequilibriumstateof thematerially isolatedsurfactant solution.
The condition of linearization is given by eq 6.4. This set of
equations determines the establishment of the mutual quasi-
equilibrium of the spherical and cylindrical micelles as well as
the establishment of their total equilibrium with premicellar
molecular aggregates. FindingδcM andδg from the equation set
allows one to easily find the deviationsδN andδc1 by using eqs
6.11 and 6.12.

If the spherical shape of a micelle becomes unrealizable because
of the structure and packing conditions of surfactant monomers,
micellization starts with the formation of cylindrical micelles at
once. In this case, when spherical micelles are absent, eq 6.12,
with allowance for eq 5.11 in the final equilibrium of solution,
shows that eq 6.4 guarantees the fulfillment of the condition
|δg|/g̃ , 2/3. The analysis of the set of relaxation equations
under the coexistence of spherical and cylindrical micelles would
confirm that eq 6.4 guarantees not only the condition|δg|/g̃ ,
2/3, but also the condition|δcM|/c̃M , 4/3. Thus, although eq
6.4 requires, in view of eq 5.1, the relative deviation|δc1|/c̃1 of
the surfactant monomer concentration to be very small compared
with unity, eq 6.4 permits the relative deviations|δcM|/c̃M and
|δg|/g̃ of the total concentrations of spherical and cylindrical
micelles to be not too small compared with unity. Therefore, the
deviations of the total concentrations of spherical and cylindrical
micelles from their values in the final equilibrium state of
surfactant solution can be observable in experiment.

Two independent functions of time,δcM andδg, upon entering
eqs 7.4, correspond to two slow relaxation modes and, with that,
two relaxation times of micellar solution markedly above the
CMC2. The general solution of eqs 7.4 is

whereA1 andA2 are two arbitrary constants of integration. The
constantsB1 andB2 are related toA1 andA2 as

The quantitiesθ1 andθ2 are determined by the expressions

Evidently, the integration constantsA1 and A2 are associated
with the initial deviationsδcM|t)0 andδg|t)0.

The inequalitiesθ1 > 0 andθ2 > 0, which mean that the
quantitiesθ1 andθ2 are real and positive, can be proved from
eqs 7.9 and 7.6 by taking into account the inequalityc̃ > Ñs )
ñs

(1)c̃M (which certainly holds because of eq 5.4) and the
positiveness ofJ̃′(1) andJ̃′(2). Jointly with eqs 7.7, the inequalities
θ1 > 0 andθ2 > 0 give a kinetic substantiation for monotonically
approaching (without oscillations) the state of final equilibrium
for a materially isolated solution with spherical and cylindrical
micelles. Although the fact that approaching the final equilibrium
is natural, its kinetic substantiation is an important argument to
the benefit of the above kinetic theory.

The inequalitiesθ1 > 0 andθ2 > 0 show thatθ1 andθ2 in eqs
7.7 have the meaning of relaxation rates. Correspondingly, the
quantitiestr1 andtr2, defined astr1 ≡ 1/θ1 andtr2 ≡ 1/θ2, stand
for the relaxation times. Analytical expressions for these times
follow from eqs 7.9.

Concluding Remarks

The introduction of quasi-equilibrium Boltzmann distributions,
eqs 2.1, and the direct and reverse fluxes (eqs 4.4 and 4.5) of
molecular aggregates over the first and second potential humps
of the aggregation work are important for the description of the
molecular mechanism of slow relaxation in surfactant solutions
with spherical and cylindrical micelles. This allows us to construct
and analyze the kinetic eqs 4.2 for micellization in solutions with
a total surfactant concentration above the CMC2. The study
conducted is not limited by the choice of a specific micellar
model.

Equation 5.14 plays a significant role in the study of internal
ties between the equilibrium characteristics of a micellar solution
markedly above the CMC2. In particular, it links the parameter
b of the aggregation work of a cylindrical micelle, which is
independent of the monomer concentrationc1, with the ratio
(c/c1)/n/

2, which is independent4,19 of the total surfactant
concentrationc because the average aggregation numbern/ for
cylindrical micelles and the concentrationc belong to the ranges
given by eqs 5.1, 5.9, and 5.15 (wheren/ is proportional to
(c/c1)1/2). Equation 5.14 allows for finding an approximate equality
(eq 5.16) for the parameterb and proving that estimates given
by eqs 3.6 forNs/c1 andcM/c1 at the CMC2 stay valid at the total
surfactant concentration markedly exceeding the CMC2.

The linear relations between the deviations ofN, c1, c0 and
cM, g given by eqs 6.11-6.13 and linearized eqs 7.2 and 7.3 for
differences in the direct and reverse fluxes of molecular aggregates
over the first and second humps of the aggregation work are
basic in constructing an analytical theory of relaxation of micellar
solutions. As a result, eqs 7.2, 7.3, and 6.11-6.13 allow us to

R22 = (n0 - ñs
(1)

c̃
+

2ñ/

c̃ )J̃′(2) (7.5)

R11 =
1
c̃M

(J̃′(1) + J̃′(2)), R12 =
ñs

(1)

c̃
J̃′(1) -

2ñ/

c̃
J̃′(2)

R21 = - 1
c̃M

J̃′(2), R22 =
2ñ/

c̃
J̃′(2) (7.6)

δcM ) A1e
-θ1t + A2e

-θ2t, δg ) B1e
-θ1t + B2e

-θ2t (7.7)

B1

A1
) 1

R12
(θ1 - R11),

B2

A2
) 1

R12
(θ2 - R11) (7.8)

θ1 )
R11 + R22

2
+ [(R11 - R22

2 )2

+ R12R21]1/2

,

θ2 )
R11 + R22

2
- [(R11 - R22

2 )2

+ R12R21]1/2

(7.9)
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write the closed set of two linearized relaxation equations (eqs
7.4) with coefficients disclosed by eqs 7.6. The set of eqs 7.4
is valid for the situation when the main contribution to the
surfactant amount in solution is made by cylindrical micelles
(but below the total surfactant concentrations at which the net
micellar structure and ordering transitions become important27).
The equation set cannot be expanded to the situation when
cylindrical micelles are not the main contributors to the surfactant
balance or, moreover, are absent altogether. The set of eqs 7.4
describes the molecular mechanism of the time development of
the total concentrations of spherical and cylindrical micelles in

the vicinity of final equilibrium of a materially isolated surfactant
solution and leads to analytical expressions for two characteristic
rates,θ1 and θ2, and two characteristic times,tr1 ≡ 1/θ1 and
tr2≡ 1/θ2, of slow relaxation in micellar solution markedly above
the CMC2.
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