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Equilibrium and nonequilibrium distributions of molecular aggregates in a solution of a nonionic surfactant are
investigated at the total surfactant concentration above the second critical micelle concentratigh T@®li@vestigation
is not limited by the choice of a specific micellar model. Expressions for the direct and reverse fluxes of molecular
aggregates over the potential humps of the aggregation work are derived. These aggregation work humps set up
activation barriers for the formation of spherical and cylindrical micelles. With the aid of the expressions for molecular
aggregate fluxes, a set of two kinetic equations of micellization is derived. This set, along with the material balance
equation, describes the molecular mechanism of the slow relaxation of micellar solution above theAQkHlistic
situation has been analyzed when the GM&ceeds the first critical micelle concentration, CM8y an order of
magnitude, and the total surfactant concentration varies within the range lying markedly above the@Ma by
more than 2 orders of magnitude. For such conditions, an equation relating the parameters of the aggregation work
of a cylindrical micelle to the observable ratio of the total surfactant concentration and the monomer concentration
is found for an equilibrium solution. For the same conditions, but in the nonequilibrium state of materially isolated
surfactant solution, a closed set of linearized relaxation equations for total concentrations of spherical and cylindrical
micelles is derived. These equations determine the time development of two modes of slow relaxation in micellar
solutions markedly above the CMCSolving the set of equations yields two rates and two times of slow relaxation.

Introduction If the CMC, corresponds to the beginning of the accumula-
tion of a surfactant in spherical micelles, a further concentration
increase above the CMCcan result in the appearance of
cylindrical micelles>~417-21the aggregation numbers of which
are considerably larger than those for spherical micelles. This
is qualified as a polymorphous transition in a surfactant solution.

The ability of amphiphiles to engage in molecular aggregation
and micellization in aqueous solutions excites interest not only
because of multiple physicochemical and technological applica-
tions 2 but also because of the peculiarity of the micellization
mechanism ftseff. ¢ In describing this mechanism, the approach Experimental and theoretical resdft8t24show that cylindrical
based on methods of the nucleation théofgan be especially

useful. This approach relies on the concept of the minimal work micelles appear if the work of aggregate formation has, as a
: PP P . function of the aggregation number, two maxima: the minimum

cquilbriam and quas-stoady dribdions of molecularaggregates CLYeen them and the broad, gently sioping partafte the second

as well as the BeckerDoring equation for the kinetics of step- maximum where the work rises I|nearl_y_. The first maximum and

by-step aggregation. In particular, this approach succeeded i minimum of the work correspond to critical embryos of micelles

describing the kinetiés andthermoydynamics of the formation of and _stable spherical mlc_:elles, respectl\{gly, while the s_econd

spherical micelles (within the droplet and quasi-droplet models maximum sets up a barrier for the transition from spherical to
P P . P cylindrical micelles with subsequent accumulation of cylindrical

of surfactant _molecular_aggregate_s) and prowdlngades_cnptlonmice”es within the broad sloping part of the work. This
of the relaxation of a micellar solution at total concentrations of
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polymorphous transition becomes noticeable when the total #a
surfactant concentration attains the CM@ introduces new
significant features in the kinetics of micellization compared
with the situation below the CMgGvhen only the first potential

hump and the potential well are present for the formation of w®
spherical micelles. The relaxation processes that involve transi- @
tions between premicellar molecular aggregates and spherical / \
micelles are referred to as slow relaxation at micellizatién.

The presence of the second maximum and the broad sloping part
of the work of aggregate formation above the CMGould lead

to the appearance of new modes of slow relaxation in micellar 7s
solution.

The formulation of kinetic equations of micellization describing
slow relaxation in surfactant solution under the coexistence of
spherical and cylindrical micelles and finding linearized solutions
of the kinetic equations is the main goal of this paper. It involves
the study of equilibrium and nonequilibrium distributions of Figure 1. The work of aggregatioiV, as a function of the
molecular aggregates at the total surfactant concentration aboveéidgregation numben under the coexistence of spherical and
the CMG. With increasing concentration substantially above cylindrical micelles at a total surfactant concentration above the
the CMG and with lengthening cylindrical micelles, the structural z
phase transitions associated with intermicellar interactions andW(cl) of the aggregation work at its first maximum point= nél),

the effects of excluded volume begin to play an important role i, "the aggregation number axis determines the height of an

i i ,23,26,2 i . . . . . .
in relaxation processés: "Below, we confine ourselvesto  activation barrier for the formation of spherical micelles. The
the case of not too high total surfactant concentrations to conS|derva|ueW(sl) corresponds to the first minimum of the work at the

the molecular mechanism of transition from spherical to ointn — n® and characterizes the deth of the potential well
cylindrical micelles as a mechanism of the step-by-step ag- P s . P P .
where spherical micelles are accumulated. The difference

gregation due to emission and absorption ofsurfactantmonomersw(z) W W | _
In a realistic situation with the practical absence of micellar We — Ws’» whereWg” is the second maximum value of the

collisions, when CMGexceeds CMEby an order of magnitude ~ @ggregation work at the point= n?, determines the height of
and the total surfactant concentration varies within the range an activation barrier for the formation of cylindrical micelles.
lying markedly above the CMgbut not by more than 2 orders The valueW is taken at the point = ng corresponding to the

of magnitude, the approach proposed will allow us to find explicit 1eft boundary of the aggregation number range where the
formulas for two rates and two times of slow relaxation in micellar dependence o\, on n is already linear.

oA g

solution. At n > ng, the micelle core is an elongated cylindrical body
with identical ends in the form of a hemispheres or quasi-

1. The Work of Formation of a Molecular Aggregate hemispheres. Such a shape is also called spherocylindrical. Since
in Surfactant Solution the limit of the spherical packing of the hydrophobic parts of

monomers is already achieved in the hemispherical ends, further

We assume a surfactantto be nonionic. The aggregation numbegdding the monomers to such a micelle does not lead to the
(the number of molecules in an aggregate) is denotet ake reconstruction of the ends and only elongates the cylindrical part
concentration of molecular aggregates (the number of aggregatef a micelle. As a result, the length, area, and volume of a

per unit volume) with the aggregation numbweis denoted as  cylindrical micelle turn to be linearly related to the aggregation
Cn. The aggregates withh= 1 are monomers. Correspondingly, numbern.

c1 is the monomer concentration. The total surfactant concentra- The following contributions to the aggregation wotk are
tion (the total number of surfactant molecules in the unit volume cgonsidered in the droplet and quasi-droplet models of a

of a solution) is denoted as. For cylindrical micelles, micelle2-47.13-15 A hydrophobic contribution is present because
concentratiore, includes contributions from all possible orienta-  of the advantage of the work of the transfer of the hydrophobic
tions of the axes of micelles with a given aggregation number parts of a surfactant monomer from a solution to the micelle
n. All the orientations are equiprobable. core. A surface contribution is related to the surface tension of
The known experimental and theoretical restits* are the micelle core. An electrical contribution is caused by the
summarized in Figure 1, which shows the dependence of theelectrical double layer created by the dipole hydrophilic parts of
work of formation of a molecular aggregate in a surfactant solution surfactant monomers on the micelle surface. Finally, a concen-
on the aggregation number. Figure 1 refers to the case when theration contribution appears because of the dependence of the
fraction of the surfactant matter accumulated in cylindrical aggregation work on the monomer concentration in solution. In
micelles is already significan®, is the work of formation of  the main order of magnitude, the hydrophobic and concentration
an aggregate with the aggregation numbgelow, for the sake  contributions to the work of formation of a cylindrical micelle

of brevity, we callW, the aggregation work). We expréés in are proportional to the aggregation numbeas in the case of
thermal unitkT, wherek is the Boltzmann constant affds the spherical micelles. As was stated above, the dependence of the
absolute temperature. Other notations Wé) = W, lp=no area of a cylindrical micelle on the aggregation numbes
v\fsl) =W, | VV(CZ) = W, |, andWP = Wi|n—n,. The value linear. The surface and electrical contributions to the aggregation
° ‘ work W, of a cylindrical micelle are proportional to the micelle
(25) Aniansson, E. A. G.; Wall, S. NI. Phys. Chem1974 78, 1024. area and, hence, are also linear functions.ofhe preceding

(26) Glatter, O.; Fritz, G; Linqlner, H.; Brunner-Popela, J.; Mittelbach, R.; explains the linear dependence of the total aggregation WBI’k
Strey, R.; Egelhaaf, S. U.angmuir200Q 16, 8692. h . b hich is sh in Fi
(27) Zilman, A.; Safran, S. A.; Sottmann, T.; Strey, [Ritngmuir2004 20, on the aggregation numbermt no, which is shown in Figure

2199. 1 and will be used in further discussion. Finding parameters for
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this dependence is possible without the knowledge of the specificexponent in the distributions depends on the current monomer
properties of surfactant monomers. Below, we just assume thatconcentration. The preexponential factor is determined by the

the estimates ~ 102 andny ~ 3 x 1 are valid.
The concentration contribution to the aggregation work is

value of aggregate concentration taken at a certain chosen
aggregation number in the corresponding region. Thus the quasi-

universal and independent of the model of a molecular aggregateequilibrium distributions have the Boltzmann form:

or a specific polymorphous form of a micelle in the absence of
intermicellar interactions. In the case of a dilute solution, the
concentration contribution is knowfto depend on the surfactant
monomer concentratiogy via the term—(n — 1) In c; to give

W /ac, = —(n — D), aWMac, = —(nY — 1)/c,,
MW/ac, = —(n, — D)lc, (1.1)

Thermodynamic egs 1.1, which will be important below as well
as the workW, itself, are determined by the monomer
concentratiorc; at everyn > 1 and are valid at an arbitrary
distribution of the aggregate concentrations in a dilute solution.

In view of that stated above about the dependence of Wrk
on the monomer concentratiaa and the aggregation number
n, it is convenient to write the expression ff, atn > ng as

W, = WP+ [b—In(c,/c,)l(n—ny), (n>ny) (1.2)

where b and c;c are positive quantities independent of the
monomer concentratioty, b — In(ci/cic) being the coefficient
of the linear dependence ¥, on n. Evidently, the sunb +
In(cye), by means of which the quantitiésandc,c enter eq 1.2,

c,=ce ™ 1=n<n®-And)
1
c,= cgl)e_(""“_""(sb (M + AnlY < n < n® — Anl)

¢, = e W) (> @ 4 An®) (2.1)
Here,c; is the current value of the monomer concentration (at
a current moment of timey{” = c,|,._,» is the current value of
the concentration of spherical micellesrat= ngl), andc® =
Cnln=n, IS the current value of the aggregate concentration at the
pointn=ng corresponding to the left boundary of the aggregation
number region where the dependenceVgf on n is already
linear. We assuman{/n" < 1, whereAn{" is the half-width
of the potential well of the work\}, in the vicinity of the point
n=n, and the workW, increases by unity when deviates
fromn” by AnY). Then, the equalitg™” = cy/z12An" holds?®
wherecy is a current value of the total concentration of spherical
micelles (the total number of spherical micelles per unit volume
of solution).

When the aggregation work has two potential humps, the

can be explicitly expressed and numerically estimated via the transition of subcritical molecular aggregates into spherical

parameters of the hydrophobic, surface, and electrical contribu-

tions to the aggregation work within the droplet or quasi-droplet
model of a micelle. In this sense, the quantiywill play a role
of a specific concentration of surfactant monomers in solution.
In particular, we can choosg. to be equal to the surfactant
monomer concentration at the CM®Ve assume the concentra-
tion ¢, to be not too high, so that the conditibn- In(ci/cyc) >
0 (which was taken into account in Figure 1) fulfills. Under these
conditions only, the total number of cylindrical micelles and the
total amount of surfactant in them are finite.

With two potential humps in the aggregation work, the main

fractions of molecular aggregates are in the regions beyond the

first and second hump: % n < n® — An®, n® + An® <
n<n@— An@, andn > n®+ An®. Here An" andAn{® stand
for the half-widths of the potential humps, and the wkk
(expressed in thermal uni3) decreases by unity if the variable
n deviates fromn{ and n® by An{" and An?, respectively.
Aggregates are spherical within the regiqﬂ‘? + An(cl) <n<
n? — An? and cylindrical within the regiom > n&® + An®.
The aggregates within the region<in < n® — An{ will be
called premicellar.

2. The Boltzmann Distribution of Concentrations of
Premicellar Aggregates and Spherical and Cylindrical
Micelles
Even in a nonequilibrium state of surfactant solution, a large
excess of aggregates in the regions h < n® — An®, n® +
ANY < n < n@ — An?, andn > n® + An® provides quasi-

micelles and the transition of spherical micelles into cylindrical
ones proceed with overcoming activation barriers. Although
premicellar aggregates, spherical micelles, and cylindrical
micelles taken separately are in quasi-equilibrium, their mutual
equilibrium can, however, be absent. The equdlity

12 W

oy = 7%c,AnMe” (2.2)
and the equality
C=ce ™" (2.3)

(following from c® = ¢n|n=n, aNdWP = Wj|n=n,, according to the
Boltzmann principle) fulfill simultaneously only at the state of
complete equilibrium. Evidently, eqs 2.2 and 2.3 together with
egs 2.1 and the equalitg” = cw/7¥2An{" show that the
Boltzmann distributior, = ¢; exp(—W,) expands over the whole
range of aggregation numbers in the state of complete equilibrium.

In view of eq 1.2, the quasi-equilibrium distribution of the
concentrations of cylindrical micelles in egs 2.1 can be written
as

¢, =% ©AW (n > (2.4)

wherea = In(ci/cic). Let us denote the total concentration of
cylindrical micelles (the total number of cylindrical micelles per
unit volume) agy and the total number of surfactant molecules
in cylindrical micelles per unit volume ay. In view of the

equilibrium distributions of aggregate concentrations in each of estimates\’” ~ 10? andno ~ 3 x 12 and the inequality{” <
these regions separately. It fulfills regardless of the variations n® + An® < n, (see Figure 1), the contributionsgandN from
in the number of aggregates in these regions due to the aggregatghe regiom® + Anl® < n < ny can be neglected compared with

fluxes over the humps. With neglecting interaggregate interac-

tions, the quasi-equilibrium distributions of the concentrations

of premicellar aggregates and spherical and cylindrical micelles

obey the Boltzmann distribution. The aggregation work in the

the contribution from regiom > ng. Thus we have

g=ﬁ:cndn, sz;:ncndn (b—a>0) (2.5)
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_1
~ 10

C1=Csc

where the inequality — a > 0 noted at the end of section 1 is N
taken into account. c,
As is seen from eq 2.4, the quantity

(3.5)

by analogy with the definition of the CMQria ¢;m in eq 3.3.

n—ne=1b-a (2.6) We will consider in sections-57 a realistic situation with
represents the width of the cylindrical micelle distributmnn N, Cy 1
the aggregation numbers: adding this widtimte ny decreases ’ ~ 10, S ~ 10 (3.6)
the concentratiom, by e times. If n — ng exceeds, — ng by 1le=cy 1le=¢,
at least 3-4 times, the contributions to the integrals in eqs 2.5 . .
from the interval fi,:0) become relatively small. where eq 3.1 and the estimat) ~ 107 are taken into account.
Substituting eq 2.4 in egs 2.5 and performing integration, we AS IS seen from egs 3.2 and 3.5 and the inequality
obtain (NgJ/C1)|c,=c,c > 1, the CMG coincides nearly withNs|c,=c,,:
CMC, = N, _ 3.7
P cono P 2 l ¢=Cy, (3.7)

9= » N= + ; (b—a>0) (27) o .
b—a b—a (b—a) With variation in the total concentratia@g of spherical micelles

within wide limits in such a way that the ratigy/c; changes

As follows from egs 2.6 and 2.7, = N/g. This shows than, from values on the order of 18to values on the order of 16,
is the average aggregation number for cylindrical micelles. e surfactant monomer concentratimrand the quantities(sl)
3. The First and Second Critical Micelle andAn” stay practic?jlly consta;iﬁThin, as fOlélows from egs
Concentrations 3.1, 3.3, 3.4, 3.6, and 3.7, we hagg = Cin an
The definitions of the CMgand CMG are rather conditional CMC,/CMC, ~ 10 (3.8)

and are realized in the literature by dozens of methods permitting
the estimation of the critical micellization degree for the Evidently, we can take somewhat different estimates in eqs
appearance of spherical and cylindrical micelles. Let us specify 3.6 and, correspondingly, in eq 3.8. Such a replacement does not

what we understand for the CMGnd CMG in this paper. change the conclusions obtained in sectiong 5
Denoting the total number of surfactant molecules in spherical L . o )
micelles per unit solution volume adls and assuming 4. Kinetic Equations of Micellization in Systems with

Spherical and Cylindrical Micelles
We assume the following inequalities to be valid:

AR < 1, we have

N, = e, (3.1) 1 1)1 1)1 1
AnD > 1 AnPInP <1, AnP/(n® — n) <1
(eq 3.1 requires only the quasi-equilibrium distribution of spherical
micelles). Evidently, the balance equation for the total concen- An(”> 1, An®M/(n® — n®) <1, AnI(N® — n) <1
tration c in a surfactant solution can be written as
2 2)1/ (2 1 2 2
c=c,+N,+N 32  An=1 AnZUn® —nd) <1, An(ny —nf?) <1
(4.1)
We define the CMg by the numerical specification of the
micellization degre®(or the amount ratio of the micellar and
monomeric surfactant forms) in the state of complete equilibrium
of the solution. We assume that the surfactant monomer
concentrationcyy, corresponding to the CM(Csatisfies the

First, the inequalities found in eqs 4.1 permit us to consider the
aggregation number as a continuous variable in the region of
the potential humps and well for the wok,. Second, these
inequalities imply that both the humps and the well of widrk

are pronounced: asis shownin Figure 1, they are distanced from

condition the pointsn = 1 andn = no, as well as from each other.
N Let us introduce the direc;V), and the reverse,'®, fluxes
_S = 1 (3.3) of molecular aggregates over the first potential hump of the
Cile=c,, 10 aggregation work. These fluxes determine the number of

molecular aggregates overcoming (by fluctuations) the first
In accordance with eq 3.2, eq 3.3 shows that the role of sphericalpotential hump per unittime in the unit volume of micellar solution
micelles in the balance of surfactantamount s already noticeablefrom the regiom < n’ — Anl" to the regiom > n{") + An{"

atc, = ¢ Since cylindrical micelles are still absentat= cim, (the direct flux) and back from the region> n + An® to
Cim is seen from eqs 3.2 and 3.3 to coincide nearly with the o regiom < n® — An® (the reverse flux). Evidenthyg @ —
CMCy: J'M s the net flux of molecular aggregates passing by fluctua-
CMC, = ¢y, (3.4) ior(wg from the regiom < n® — An{" to the regiom > n{") +
ng’.
Let us assignci in eq 1.2 as the equilibrium monomer We also introduce the direct®, and the reversg, @, fluxes
concentration corresponding to the CM@/e definethe CMg ~ Of molecular aggregates over the second potential hump of the

as the equilibrium total surfactant concentration at which the aggregation work. These fluxes determine the number of
ratio of the total surfactant amount in cylindrical micelles to the Molecular aggregates overcoming (by fluctuations) the second
Surfactant amount |n monomers |S 1/10 In VieW Of eq 32’ the pOtentIa| hump pel’unlttlme n the Un|tVo|Ume Of m|Ce”arso|ut|on
role of cylindrical micelles is already noticeableat= c; in from the regiom < n? — An? to the regiom > n® + An?)

the surfactant amount balance. We then have and back from the region > n® + An® to the regionn <
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n® — An@. Evidently,J® — J'@ is the net flux of molecular
aggregates passing by fluctuations from the region n® —
An? to the regionn > n® + An®.

In accordance with the meaning of the fluxes introduced, the
variations of the numbers of spherical and cylindrical micelles
in time are determined in the unit solution volume by the equations

dCM/dt == \]'(1) — J”(l) j— (J'(Z) _ JH(Z))

dg/dt = J@ — 3@ (4.2)

wheret is the time. Summing egs 4.2, we arrive at the evident
resultdéy + g)/dt=J® — 3D, Equations 4.2 have the meaning
of the kinetic equations of micellization in systems with spherical
and cylindrical micelles. These equations can be derived from

general kinetic equations of the step-by-step aggregation (the

Becker-Doring equation¥ ) by summing these equations over
aggregation numbers in the regions where spherical and,
correspondingly, cylindrical micelles are located in the aggrega-
tion axis.

As was noted in section 2, the distributions of concentrations
of molecular aggregates in the regionssin < n® — An{®,
n® + An® < n < n@ — An®, andn > n® + An@, that is,
beyond the potential humps of the aggregation work, are
maintained in the quasi-equilibrium states. Then the distributions
of concentration of the molecular aggregates in the regions of

Kuni et al.

spherical micelles is prevented by the aggregation work barrier
of the height W" — WY, and the breakup intensity is
proportional to the concentratiaf” = cw/z2An of molec-

ular aggregates with = n.

The quasi-equilibrium distributiog, is given on the left and
right boundaries of the second potential hump by the second (at
n = n® — An®) and, correspondingly, by the third (at=
n® + An®) of egs 2.1. Using the same approach as that used
when deriving egs 4.4, one can write analytical expressions for
the quasi-steady dired®, and reversel’ @, fluxes of molecular
aggregates over the second potential hump as

IO =i @ expl- (W — W) YwrAnPAnf?

J@= coji(z) exp[— (\N(CZ) - WO/ zAnff)
in which j7@ is the number of surfactant monomers absorbed
(jj(z) > 0) by a nonspherical molecular aggregate composed of
n® molecules, per unit time.

If we pass to the concentratiafl’ = cy/z12AnM atn = n{,
the quantitynl’ZAn(sl) disappears in the denominators of the
second of egs 4.4 and the first of egs 4.5. Then the relation of
these equations to the first of egs 4.4 and the second of eqs 4.5
is more apparent. However, it is better to keep the total
concentratiorcy of the spherical micelles in eqs 4.4 and 4.5

(4.5)

the first and second potential humps are quasi-steady. They areyecausey is more readily accessible from experiment togh

time-independent over sufficiently long time intervals, which,
on the other hand, are too short for the concentratigre, and

g to change markedly during the slow process of approaching
the state of complete equilibrium of the micellar solution. Along
with that, the fluxesI'®, J'@), 7@, andJ'@ are quasi-steady
too. This significantly simplifies the whole investigation.

We denote as;M andc, @ the quasi-steady distributions of
concentration of molecular aggregates participating in the quasi-
steady direct)®, and reverse]'®, fluxes over the first hump
of the aggregation work. Following the ideas of the kinetic theory
of nucleation, we set the boundary conditions

1 (n=n{ - An{),
1 1
0 (n=n®+ AnM),

c Wi ~ [

c®ic, = :

0 (n=n®— AnM),

(4.
1 (n=n®+ An{)

3)

Additionally, we can state the following: Because the aggregate
concentratiore, is in quasi-equilibrium in the region > n® +
An®, then, according to the Boltzmann principle, we can
replaceny in the definitionc® = ¢,|n=n, and in the second of eqs
4.5 by any value oh within this region. Even so, the facto?
exp(\P) in the second of egs 4.5 does not change. However, it
is better to keep the value= ng in this equation, from which
egs 1.2 and 2.4 become applicable.

Relaxation in a materially isolated micellar solution leads to
a state of complete equilibrium. Since the direct and reverse
fluxes of molecular aggregates over the potential humps of the
aggregation work mutually compensate each other in the state
of equilibrium, then

jl(l) — ju(l) jr(2) — ju(Z)

(4.6)

where the tilde marks the fluxes in the state of equilibrium.
Equations 4.44.6 lead to egs 2.2 and 2.3 obtained in section

on the boundaries of the firsthump. The aggregate concentration? for solution equilibrium without using the concept of the direct

¢y on the left-hand sides of egs 4.3 refers to a quasi-equilibrium
state and is determined by the first tet= n — An")) and the
second (ah = n" + An{") of egs 2.1. Taking into account the
inequalities of egs 4.1, one can obtain the following analytical
expressions for the quasi-steady flux® and J'@:9

I =cj™ exp W)z ?An

(D

3'W = cj @ expl-(WeY — WmAnPAnl? (4.4)

in which j;® is the number of surfactant monomers absorbed
(i@ > 0), from solution, by a spherical molecular aggregate
composed oﬁgl) molecules, per unit time. The first of egs 4.4

and reverse fluxes of molecular aggregates over the potential
humps. This confirms eqs 4.4 and 4.5 along with the concept
itself (although the direct and reverse fluxes enter eqs 4.2 in the
form of their differences only).

In view of eqgs 4.4 and 4.5, the right-hand sides of kinetic egs
4.2 depend on the concentratianscy, andc®. The dependence
oncy andc? is linear, while the dependence onturns out to
be more complicated because the quantjfi€d j; @, W, Wb,

W2 Wo, An, AnD, andAn® are functions of the surfactant
monomer concentration. The quantiljgég) andji(z) are directly
proportional tcc;. The quantities\, W, AnY), andAn can
be found as functions af; within the droplet and quasi-droplet
models of nonionic spherical micell&!5 To determineW?)

is analogous to the equation for the steady nucleation rate in theand\WP as functions ot;, one can use the first and third of eqs

theory of nucleation. The second of eqs 4.4 gives the rate of
steady breakup of spherical micelles. Equations 4.4 are similar
in their structure. The natural difference is that the breakup of

1.1, while the dependence ah?) onc; can be neglected in the
firstapproximation. In view of the first of eqs 2.7 and the definition
a = In(ci/cy), the concentratiog on the left-hand side of the
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second of egs 4.2 is a function ofand a linear function of°. N_N 1 (1<p=5) (5.8)
There is one more equation relating the concentrat@nsy, c, - Cylpes p2 =p= :
andc?, wherecy andc®enter linearly. Itis given by the surfactant

amount balance, eq 3.2, jointly with eqs 2.7 and 3.1. As aresult, Equations 5.5 and 5.8 yield

we see that kinetic eqgs 4.2 jointly with the expressions for the

fluxes given by egs 4.4 and 4.5, as well as the balance eq 3.2 c_c 1 (l<ps<5) (5.9)
jointly with egs 2.7 and 3.1 constitute a closed set of equations. G Cilps p2 =p= '

This equation set determines a variation in the concentrations

cv, andg in time and describes slow relaxation in materially According to egs 5.1 and 5.9, the quantitigsand c/c; are
isolated solutions with spherical and cylindrical micelles at total inversely proportional tp andp?, respectively. This leads to the

concentrations above the CMC

5. Accounting for the Dependence of WorkWP on the
Monomer Concentration

We are interested in the range of variation of the average

aggregation numbar, of cylindrical micelles defined as

n,~10% (1<ps5) (5.1)

wherepis justa numerical parameter. As follows from the estimate

no ~ 3 x 1%, the inequalityn, > ng still holds at the upper limit
of p noted in eq 5.1. Thus, the differenog — ng practically
coincides withn,. Equations 2.6 and 5.1 yield

b—a=1nh~p10" (1<p=s5) (5.2)

known resutt1® that n, is directly proportional to@c;)2
Equations 5.2, 5.3, and 5.5, with the help of eq 2.3, allow us
to write

%

G G G
eV ~ =" 2 M- a) =~ r e¥(b — a)® = -

C
(b — a)*~ Elnl b-a=1h) (5.10)

*

Equation 5.5 and the equality = N/g noted at the end of section
2 give

g=c/n, (5.11)

Using the second of egs 2.7at= 0 (atc; = ¢y¢), taking into

Thereforen, may be regarded as both the width of the distribution ccount eq 2.3 and the definitiah = W0jc,~c,, we obtain

of cylindrical micelles and the average aggregation number of

cylindrical micelles. Sincé is independent of the surfactant
monomer concentratian and the quantitg = In(c,/c,) depends
on c¢; by means of the term Inf), eq 5.2 assigns the range of
variation ofcs, which we will study below. Equation 5.2 and the
inequalityn, > ng bring us tong(b — a) < 1. This allows us to
reduce the second of egs 2.7 to

CO

T (b-ay

(b—a=1/n) (5.3)

As we will confirm at the end of this section, the condition

c> N,= CMC, (5.4)
is valid if egs 3.6 are fulfilled. In view of eqs 3.2 and 5.4, we
have
N=c (5.5)
that is, cylindrical micelles give the main contribution to the
surfactant amount balance in the solution.
Using the third of eqs 1.1, the definitian= In(ci/c;c), and
the inequalitynp > 1, we have
g W = g Wt (5.6)
whereW) = WO/, If the quantitya satisfies the limitation
expressed in (5.2), eq 5.6 can be rewrittemgh, < 1 with
sufficient accuracy as

— — W0
e W =g Wi

(5.7)
Thus, the exponent ¥’ is independent op at 1 <p < 5.

Using egs 2.3 and 5.3, the independence¥f enp, and the
proportionality betweei — a andp that follows from eq 5.2,
we have

N

5 (5.12)

= &) 1) we
b (1 + bno)e

€1 =Cyc

Expressing e’ in eq 5.12 with the use of the definition found
in eq 3.5 and substituting the result in eq 5.7, we have

~w_ b O
e 10”0(1 + bno) e

Using eq 5.13 and the first of eqs 5.10 leads to the equation

(5.13)

b 1 -t by c(Mo 2
nol+b— e =10"-— (5.14)
nO Cl n*

The parametdris determined by the nature of cylindrical micelles
and is independent of the monomer concentratign The
parameterny corresponds to a reference point chosen and,
naturally, is also constant. Therefore, the right-hand side of eq
5.14 as a whole should be constant to produce again the above
relationn, O (c/c))¥2 On the other side, eq 5.14, as an equation
for bry, provides a direct method of estimation of the parameter
b that is usually calculated with the aids of models.

The rootbny of eq 5.14 is not very sensitive to variation in
the right-hand side of the equation. This considerably simplifies
all our study. In particular, we can choose

A S (o (5.15)
C1lp=1

in accordance with eq 5.4 at the upper limit of the variation of
n, at p = 1. Then, estimating the right-hand side of eq 5.14
(independent op), with the help of eqs 5.1 and 5.9 ang ~

3 x 1% as 9, we obtain the approximate valus = 2 for the
root bng. If we chose €¢/c1)|p=1 ~ 10% keeping the estimate
Nilp=1~ 10%, we would obtairbny = 3.5. Subsequently, we will
keep the estimate of eq 5.15. Then the parame&quals
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b= 2/n, (5.16)

As follows from eqs 5.9 and 5.15, the ratifg; is not too high.
In view of eqgs 3.6 and 3.7, the total concentratiaxceeds the
CMC; by no more than 2 orders of magnitude. According to eq
5.1, the average aggregation numhegof cylindrical micelles
is not too large at such total concentrations. Thus, micelle
collisions, leading to the recombination and splitting of micelles,
are not yet important, and the Boltzmann distribution in eq 2.4
for cylindrical micelles is still applicable. Along with that, eqs
5.9 and 5.15 determine the total surfactant concentratibat
markedly exceeds the CMCThe range of variation afenvelops
almost 2 orders of magnitude.

Equation 5.16 allows us to obtain several important results at

the total concentratiog, satisfying eqs 5.9 and 5.15. Using eqs
5.2 and 5.16 and = In(cy/cyc), we have

C, = C 1+ 2/ny— 1) (5.17)
where the strong inequalitiesrh/<< 1 and 1h, < 1 are taken
into account. As follows from eq 5.1¢; = c;.. Equations 5.13
and 5.16 give ¥’ = ne2. Bearing this in mind and using egs 2.3,
2.7,and 5.2 ando ~ 3 x 1% we findg/c; ~ /1 (1< p <

5). The latter ensures that the surfactant solution is dilute with
respect to the cylindrical micelles.

We can also add the following: Because of the second of eqs

1.1, the exponent®4® grows by exphi’(2/n, — 1/n,)] times
with increasing monomer concentratiorfrom the valuec;c up

to values defined by eq 5.17. As follows from eq 5.1 and the
estimatemgl) ~ 102 andng ~ 3 x 1% the exponent@® does
not increase significantly. Then, in view of eqs 3.1 and Rl2,
andcy exceed their values|c,=c,. andcu|¢,=c,. insignificantly.
Therefore the estimates

NJc, ~ 10, ¢,/c, ~ 1/10 (5.18)
are valid along with egs 3.6. In view of egs 5.9 and 5.15, this
means that eq 5.4 is fulfilled, even at the upper limipafoted

in eq 5.9.

6. Linearization of the Surfactant Balance Equation in
the Vicinity of the Equilibrium State of a Materially
Isolated Solution

We now consider a vicinity of the equilibrium state of a
materially isolated surfactant solution. Since the solution is
nonequilibrium in this vicinity, eqs 2.2 and 2.3 are inapplicable.
As a corollary, the concentration3 cy, andc are not determined
uniquely by the surfactant monomer concentration As
previously done in section 4, we will mark quantities in the state
of equilibrium with a tilde and denote the deviation of quantities
from their equilibrium value by adding the symhbto the left
of the quantities. The deviatiodc of the total surfactant
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imposes a severe restriction on the smallness of the relative
deviation ofb — a from b — &. This restriction provides that,
in addition to eq 6.1, eq 5.2 holds with a high accuracy in the
whole vicinity of the final equilibrium state, allowing the
linearization of eq 3.2. Along with eq 5.2, eq 5.3 and the first
of eqs 2.7 are valid in the same vicinity.

To simplify the study, we perform the linearization of these
formulas and the definitioa = In(ci/cic). Using eq 2.3 in the
final equilibrium state of solution, we obtain

1. 1w
da= Elécl f:Oe oc,
1 0 —\\P 1
ON= + 2e
(b — &) 5
1 0 —\\O 1
6g=-——0c"+ o 6.2
) ¢ (b — a)? “ (6:2)

The condition of linearization with respectde; in eqs 6.2 can
be written as the condition of neglecting the quadratic injthe
term in the second of egs 6.2 (which is the most sensitiveip
compared with the linear in théc, term kept in this equation.
We then have

|0c,|/E, < (2/3)(b — &) (6.3)

The inequality given in eq 6.3 gives the required condition of
linearization of the balance eq 3.2. With linear dependence on
c®in eq 5.3 and the first of eqs 2.7, a restriction on the smallness
of the deviationdc? is not required in eqs 6.2. Let us rewrite the
left-hand side of eq 6.3 with the help of the first of eqs 6.2 as
|0(b— a)| (the parametdris independent af; and, consequently,
ob = 0). Then eq 6.3 confirms that eq 5.2 holds, together with
eq 6.1, with a high accuracy within the whole vicinity of the final
equilibrium state, allowing the linearization of eq 3.2. With the
aid of eq 6.1, the condition given in eq 6.3 can be rewritten as

|0c,|/E, < 2/3R, (6.4)
Using the third of eqgs 6.2, we find
o0 =—e" L s5c + (b &)og 6.5)

b—a

Substituting eq 6.5 in the right-hand side of the second of eqs
6.2, we obtain

1
b—

=eW 1 —30C,
b—4a)
With allowance for eq 3.1 to be valid for spherical micelles
at quasi-equilibrium, the balance eq 3.2 linearized leads for a
materially isolated solution to

oN

209 (6.6)

concentration can be considered to be zero in a materially isolated

solution. Then the surfactant amount balance given by eq 3.2

establishes a relation between the deviatidbmsndoc® and the
deviationsocy anddg of the total concentrations of spherical
and cylindrical micelles. We will find this relation.

It is sufficient for our study if the relation

b—a=1/h~p10" 1<p=5) (6.1)

holds in accordance with eq 5.2 in the final equilibrium state of

oc, + APoc, + ON=0 (6.7)
Here, we sengl) = ﬁgl) with good accuracy because of eq 6.4
and low sensitivity of the quantityn(sl) to the monomer
concentratiorc;.1® Putting eq 6.6 in eq 6.7, we have

1
- 35cl+
)

1 _
=09=0 (6:8)

oc, + iMsc,, + e’V"O( s

a materially isolated surfactant solution, as well as egs 5.1, 5.9,Applying egs 5.1, 5.9, 5.15, and the last of egs 5.10 to the final

5.10, and 5.15. Below, we will indeed see that the possibility of
linearization of eq 3.2 in the vicinity of the equilibrium state

equilibrium state of solution, we obtain®(b — &)3 > 1P >
1. Thus, the first term on the left-hand side of eq 6.8 can be
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omitted. Then eq 6.8 gives, with high accuracy,

oc, = —e"iP(b — #)%c, — e¥'(b—8)%g  (6.9)

Excluding the deviatiodc; on the right-hand side of eq 6.5 with
the help of eq 6.9, we find

oc” = (b — a)%c,, + 2(b — &)0g (6.10)

Equations 6.9 and 6.10 reveal the sought-after relation of the

deviationsoc; and ocP to the deviationsicy and dg.

Substituting eq 6.9 in eq 6.6 yields

ON = —iMoc,, (6.11)

Equation 6.11 expresses the relation between the deviatdns
and ocy of the quantitiesN and ¢y that is accessible from
experiment.

Applying eq 6.1 and the last two of eqs 5.10 to the final
equilibrium state of solution, we rewrite egs 6.9 and 6.10 in the
form

¢ ﬁ(sl) ¢
5Cl = — Eﬁ—écM - Eég (6.12)
Ao 2
oc? =~ —6cM —0g (6.13)
n* n*

where the coefficients afcy anddg are expressed through the
characteristics of an equilibrium surfactant solution. All these

characteristics are accessible from experiment. The ranges of

variation of the quantitief, andt are determined by eqgs 5.1,
5.9, and 5.15 applied to the final equilibrium state. Equations
6.11-6.13 cover the situation when spherical and cylindrical
micelles are not in mutual quasi-equilibrium and are not
equilibrated with premicellar molecular aggregates.

7. The Set of Linearized Relaxation Equations for the
Total Concentrations of Spherical and Cylindrical
Micelles

To simplify the study, let us now perform a linearization of
the kinetic equations of micellization, egs 4.2, with respect to
small deviations of quantities from their final equilibrium values
in a materially isolated surfactant solution. As a result, we obtain
(S(J'(l) _ Jn(Z))

d(dcy,)/dt = J'@) — 5@ —

d(©g)/dt = 6(I® — J3'?) (7.1)

Below, we derive analytical expressions for the deviations on
the right-hand sides of egs 7.1.

We start from the deviatiod(J'Y — J'®). According to eqs
4.4, the dependences®f) andJ'® onj: ™, W, andAn® are
identical. In view of the equality’® = I (the first of eqs 4.6),
the variations of! ", W, andAn{" are then mutually canceled
when findingd(J® — J'@). To find the deviation of the exponent
e that is very sensitive te;, we employ the second of eqs
1.1. Ignoring the dependencemd? andAn{" on ¢;, which will
be justified below, and taking into account the inequai&f/»

1, we finally arrive, with the help of eqs 4.4 and 4.6, at

1

~(1)
6(\.]'(1 J”(l)) = J'(l)( 601 - E_aCM) (72)
M
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In accordance with the second of egs 1.1, the condition of
applicability of linearized eq 7.2 (the condition of neglecting
guadratic and higher-order corrections in the deviatioy) is
|0c4|/& < 2/, The high relative smallness of the deviatitm
following from this and the estimatel” ~ 1@ justifies
neglecting the dependences of the quanthi@sandAngl) onc
in view of their weak sensitivity ta;.16

Let us now pass to the deviatiei{J @ — J'?). According
to eqgs 4.5, the dependencesJé® andJ'®@ onj @, W2, and
An? are identical. In view of the equalit}'@ = J@ (the
second of egs 4.6), the variationg 5, W?, andAn® are then
mutually canceled when finding(J® — J'@). To find the
deviation of the exponent¥”, we again employ the second of
egs 1.1. To find the deviation of the exponeWt that is even
more sensitive t@; than is ¥<*, we use the third of egs 1.1.
Ignoring again the dependences P and An{” on ¢, and
accounting for egs 4.5 and 4.6, we finally obtain

1
() 1

6(J'(2) JH(Z)) — J'(z) acl =+ = 6CM — —6C (73)

l

In accordance with the second and third of egs 1.1, the conditions
of applicability of linearized eq 7.3 argcy|/é; < 2/A% and
|0¢1|/& < 2/no. In view of the estimates(” ~ 102 andng ~

3 x 10?, the second condition is slightly stronger than the first
one. Therefore, neglecting the dependence¥'dandAn{" on

c1in eq 7.3 is even more justified than it is in eq 7.2. Although
egs 7.2 and 7.3 refer to the deviations of the differences of the
direct and reverse fluxes of molecular aggregates, the separate
xpressions for the direct and reverse fluxes were important in
deriving egs 7.2 and 7.3.

To build a relaxation theory, we have to add linearized eqs
6.12 and 6.13 to egs 7.2 and 7.3. The condition of applicability
of eqs 6.12 and 6.13 is eq 6.4. As is seen from eq 5.1 and the
estimatesi! ~ 10?2 andnp ~ 3 x 1(?, the condition expressed
in eq 6.4 is much stronger than the aforementioned conditions
of applicability of eqs 7.2 and 7.3. Therefore, the condition in
eq 6.4 determines the degree of accessible-for-theory closeness
of a materially isolated surfactant solution to its final complete
equilibrium state.

Equations 6.12 and 6.13 permit us to express the deviations
oc; anddc? in egs 7.2 and 7.3 through the deviatiaitg, and
dgthat are accessible from experiment. Taking this into account,
let us represent the right-hand sides of eqs 7.2 and 7.3 in the form
of linear combinations of the deviatiofsy anddg to write eqs
7.1 as

d(6c,,)/dt =
d(og)/dt =

—044,0Cy — 0409

0,09

where the coefficients 1, o12, 021, andagzare to be determined.
Applying eq 2.3 and the first of egs 5.10 to the final equilibrium
state and using egs 6.12, 6.13, and-774 yield

—0,0Cy — (7.4)

(n(l)) ~ (n, — ﬁ(l))ﬁ(l) Ao B
oy = Liyo (=T = Lie
fi,c c,\,I f,c t Ty

(1) _ 5@

- g Lo ny — fAg 2n )50

27 g ¢ c.

(N, — ﬁ(l))ﬁ(l) Ao 11~

e T v L

* M
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n— A 2n). ooy =Ae "+Ae " og=Be™+Be " (7.7)

Ay, = T_'_? J (7.5)
whereA; andA; are two arbitrary constants of integration. The

Only the direct fluxe§'® and¥ @ of molecular aggregates over ~ constants; and B, are related to\; andA; as
the first and second potential humps enter eqs 7.5, both the fluxes B B
being taken at the final equilibrium state. The fluxes are given, 1o i(g —) 2= i(g —a (7.8)
H H A (1 (1 (2 F1(2 A 1 11)' A 2 11) .
in view of the equalitieg'® = J'® andJ @ = J'@), by any of 1 O 2 2
egs 4.4 and 4.5 with referring the quantities in them to the final N ) )
equilibrium state of the solution (marking the quantities with a The quantities); and 0, are determined by the expressions
tilde). Evidently,J® > 0 andJ®@ > 0.

The ranges of the accessible-for-theory variations of quantities , _ 0y T O + (all ~ OLZZ)2 + 0 ]1/2
A, andg are determined by egs 5.1, 5.9, and 5.15 applied to final ~ * 2 2 s
equilibrium. Taking them and the estimat&8 ~ 10? andng ~ Oyt 0y, 03 — Opp)? vz
3 x 1(%into account, we reduce eqs 7.5, with the relative error 27 2 N 2 T 00 (7.9)
on the order of the small parametey¢ = ﬁgl)(:M/(”: ineq5.4, to . . . )
considerably simpler formulas: Evidently, the integration constanfs and A, are associated
with the initial deviationsdcy|i=o and dg|i=o.
1 e 2R The inequalities9; > 0 and6, > 0, which mean that the
oy =—QY+39), o,=—3W-—23@ quantitiest, and 6, are real and positive, can be proved from
Cm c ¢ egs 7.9 and 7.6 by taking into account the inequaity Ns =
. A&u (which certainly holds because of eq 5.4) and the
Oy = _Nijr(2), Oy = @31(2) (7.6) positiveness o' @ andJ @), Jointly with egs 7.7, the inequalities
Cum C 61> 0andf, > 0 give a kinetic substantiation for monotonically

approaching (without oscillations) the state of final equilibrium
There is no need for preliminary assumptions on the flux values for a materially isolated solution with spherical and cylindrical
J® andJ®@ in egs 7.6. The factors befod? andJ®@ in egs micelles. Although the fact that approaching the final equilibrium
7.6 are expressed through the characterifﬁ’dsﬁ*, tu, andt is natural, its kinetic substantiation is an important argument to
of the equilibrium surfactant solution, which are accessible in the benefit of the above kinetic theory.
experiment. The dependencemyhas been dropped outinthe ~ Theinequalitie®); > 0 and6, > 0 show that); and6, in eqs
factors. 7.7 have the meaning of relaxation rates. Correspondingly, the
Equations 7.4 and 7.6 form a closed set of two linearized quantitiest;; andty, defined ad,; = 1/, andt,; = 1/6,, stand
relaxation equations describing the molecular mechanism of thefor the relaxation times. Analytical expressions for these times
time development of deviatiodsy anddgof total concentrations  follow from eqs 7.9.
of spherical and cylindrical micelles from their values in the )
final equilibrium state of the materially isolated surfactant solution. Concluding Remarks
The condition of linearization is given by eq 6.4. This set of  The introduction of quasi-equilibrium Boltzmann distributions,
equations determines the establishment of the mutual quasi-egs 2.1, and the direct and reverse fluxes (eqs 4.4 and 4.5) of
equilibrium of the spherical and cylindrical micelles as well as molecular aggregates over the first and second potential humps
the establishment of their total equilibrium with premicellar of the aggregation work are important for the description of the
molecular aggregates. Findingy anddg from the equation set ~ molecular mechanism of slow relaxation in surfactant solutions
allows one to easily find the deviatioddl anddc; by using eqs with spherical and cylindrical micelles. This allows us to construct
6.11 and 6.12. and analyze the kinetic egs 4.2 for micellization in solutions with
Ifthe spherical shape of a micelle becomes unrealizable becaus@ total surfactant concentration above the GMThe study
of the structure and packing conditions of surfactant monomers, conducted is not limited by the choice of a specific micellar
micellization starts with the formation of cylindrical micelles at model.
once. In this case, when spherical micelles are absent, eq 6.12, Equation 5.14 plays a significant role in the study of internal
with allowance for eq 5.11 in the final equilibrium of solution, ties between the equilibrium characteristics of a micellar solution
shows that eq 6.4 guarantees the fulfillment of the condition markedly above the CMLCIn particular, it links the parameter
|0gl/g < 2/3. The analysis of the set of relaxation equations b of the aggregation work of a cylindrical micelle, which is
under the coexistence of spherical and cylindrical micelles would independent of the monomer concentratmnwith the ratio

confirm that eq 6.4 guarantees not only the conditibyl/g < (c/c))/n,?, which is independeft® of the total surfactant
2/3, but also the conditiofcy|/Ev < 4/3. Thus, although eq  concentratiorc because the average aggregation numbéor
6.4 requires, in view of eq 5.1, the relative deviatjén,|/t; of cylindrical micelles and the concentratiobelong to the ranges
the surfactant monomer concentration to be very small comparedgiven by egs 5.1, 5.9, and 5.15 (wheigis proportional to
with unity, eq 6.4 permits the relative deviatiofdey |/ and (c/cy)Y3). Equation 5.14 allows for finding an approximate equality

|00|/§ of the total concentrations of spherical and cylindrical (eq 5.16) for the parametérand proving that estimates given
micelles to be not too small compared with unity. Therefore, the by eqgs 3.6 folNJ/c; andcy/c; at the CMG stay valid at the total
deviations of the total concentrations of spherical and cylindrical surfactant concentration markedly exceeding the GMC
micelles from their values in the final equilibrium state of The linear relations between the deviationd\bfc,, c® and
surfactant solution can be observable in experiment. cw, g given by eqs 6.116.13 and linearized eqgs 7.2 and 7.3 for
Two independent functions of timégy anddg, upon entering differencesin the direct and reverse fluxes of molecular aggregates
egs 7.4, correspond to two slow relaxation modes and, with that, over the first and second humps of the aggregation work are
two relaxation times of micellar solution markedly above the basicin constructing an analytical theory of relaxation of micellar
CMC,. The general solution of eqs 7.4 is solutions. As a result, egs 7.2, 7.3, and 6:5113 allow us to



Slow Relaxation in Micellar Systems Langmuir, Vol. 22, No. 4, 2008643

write the closed set of two linearized relaxation equations (egs the vicinity of final equilibrium of a materially isolated surfactant
7.4) with coefficients disclosed by eqs 7.6. The set of eqs 7.4 solution and leads to analytical expressions for two characteristic
is valid for the situation when the main contribution to the rates,8; and #,, and two characteristic timet; = 1/6; and
surfactant amount in solution is made by cylindrical micelles t,,= 1/6., of slow relaxation in micellar solution markedly above
(but below the total surfactant concentrations at which the net the CMG,.

micellar structure and ordering transitions become impottant
The equation set cannot be expanded to the situation when
cylindrical micelles are not the main contributors to the surfactant upport of Russian Foundation for Basic Research (Grant
balance or, moreover, are absent altogether. The set of eqs 7.%4?83_32134)

describes the molecular mechanism of the time development of '

the total concentrations of spherical and cylindrical micelles in LA052136M
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