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Local mechanical equilibrium conditions for interfaces and
thin films of arbitrary shape*

ANATOLY I. RUSANOV and ALEKSANDR K. SHCHEKINy

Mendeleev Centre, St. Petersburg State University, 199034 St. Petersburg, Russia

(Received 21 March 2005; in final form 21 April 2005)

A general approach to thermodynamics of arbitrarily and non-uniformly curved interfaces
and films is formulated on the basis of the total non-diagonal pressure tensor including the
case of external fields. The concept of a dividing surface is reformulated and generalized. The
local mechanical equilibrium conditions are derived for interfaces and thin films containing
not completely developed surface layers. A more general definition of the disjoining pressure
is given for thin films non-uniform in thickness. The cases of flat, wedge-shaped, cylindrical
and spherical films are analysed. The mechanical equilibrium condition including the dis-
joining and capillary pressures is derived for the surface of the transitional zone of a wetting
film on a flat substrate. The results obtained are compared with the literature data.

1. Introduction

Among numerous relationships of interfacial mechanics
and thermodynamics, the conditions of local mechanical
equilibrium seem to be the most widely known, espe-
cially for a uniformly curved isotropic interface in a fluid
system. In this simplest case, the condition of mechan-
ical equilibrium along an interface is typically reduced to
the constancy of surface tension and the condition of
equilibrium across the interface is given by the classical
Laplace (also named Young–Laplace) equation for the
capillary pressure

P� � P� ¼ �ðc1 þ c2Þ ð1Þ

where P is the pressure, � is the surface tension, c1 �
1/R1 and c2 � 1/R2 are the principal surface curvatures
(R1 and R2 are the principal curvature radii), and super-
scripts � and � are the symbols of adjacent bulk phases.
As a real interface is a three-dimensional non-uniform
region and curvature is a geometrical notion, Gibbs [1]
specialized equation (1) by introducing a geometrical
dividing surface and investigated the dependence of
surface tension on the dividing surface location. Further
development and generalization of the mechanical
equilibrium condition proceeded (mainly during the
second half of the 20th century) along the lines of

accounting for the effects of high curvature of small
objects and interfacial and bulk anisotropy, the non-
uniformity of surface curvature, and the influence of
external fields leading to a non-diagonal form of the
pressure and surface tension tensors [2–21]. Here, we
present general and simultaneously simple-in-form
relationships describing the interfacial mechanical
equilibrium condition.

The situation with thin films looks intricate. A thin
film is a more complex object than an interface. Because
of deficiency of space, the surface layers of a thin film
are incompletely developed and overlap each other.
This has two consequences. First, the tension of a
thin film is not equal to the sum of surface tensions
on the film sides (or to the double surface tension in
the case of a symmetrical film). Thus, the surface
tension of a thin film (we shall give a corresponding
definition below) differs from ordinary interfacial ten-
sion. Second, an additional mechanical–thermodynamic
quantity, the disjoining pressure, appears as a state
parameter of a film. For a flat thin film between bulk
phases � and � (we use superscript � for the
mother phase of the film), the film tension � f (not to
be confused with the phase symbol � used as a
superscript only), the surface tensions of the film sides
� � and ��, and the disjoining pressure � are related by
the equation [22]

� f ¼ �� þ �� þ�H ð2ÞyDevoted to Professor Ben Widom in honour of his out-
standing contribution to colloid and interface science.
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where H is the film thickness. The thermodynamics of
thin films [22] also yields the relationship

@ð�� þ ��Þ

@H
¼ �� Hð Þ ð3Þ

The disjoining pressure was first defined by Derjaguin
[23] (see also [24]) as the difference between an external
pressure P� and the pressure P� in the film mother phase
provided it has the same values of temperature and
chemical potentials as in the film:

� � P� � P � ð4Þ

A modified definition was suggested by Rusanov and
Kuni [25] as

� � PN � P � ð5Þ

where PN is the normal component of the pressure
tensor inside a film. Although the definitions expressed
in (4) and (5) are identical for flat films, the significance
of equation (5) is in its local character. In principle, this
allows one to extend the definition also to films of
arbitrary shape (we shall give examples below).
Although the theory of thin films was formulated

mainly for plane-parallel films, there were attempts to
analyse films having a complicated shape. The most
popular object was the transitional zone between a
liquid bulk phase and a wetting thin film covering a
horizontal flat solid surface. For the free surface of the
transitional zone of variable thickness H, Derjaguin
suggested the mechanical equilibrium condition [23, 24]

�ðc1 þ c2Þ þ�ðHÞ ¼ Pc ð6Þ

where � is the surface tension of the free surface, Pc

is the capillary pressure (i.e. P��P� or P��P�) of an
equilibrium drop or a meniscus. This approach was used
in a number of publications [26–30] (other references are
given in review [31]) and was applied, in particular, for
estimating the line tension at wetting. A modification of
equation (6) was also suggested including the additional
factor cos ’ where ’ is the local slope angle at the film/
fluid interface [32, 33]. However, in all publications, the
disjoining pressure was used locally as defined for a flat
film, and the results are applicable only to slightly
non-uniform (in thickness) films. Below, we describe
a general and rigorous approach to characterize the
mechanical equilibrium condition for a non-uniform
thin film with arbitrary slopes of its surfaces and an
arbitrary gradient of its thickness. To formulate the
equilibrium condition, the concept of dividing surface
is required both for interfaces and thin films. However,
this important concept of surface thermodynamics itself

needs a reformulation, and we begin with consideration
of this problem.

2. Reformulation of the dividing surface concept

As already mentioned, the dividing surface concept was
introduced by Gibbs. However, Gibbs did not give a
mathematically exact definition and confined himself
rather to an intuitive description from which a reader
can understand the following. First, a dividing surface
should reproduce a real shape of an interface. Second,
the location of a dividing surface can be chosen arbi-
trarily. After Gibbs, the following procedure is typically
used for shifting a dividing surface: if a particular
dividing surface is given, other positions of the dividing
surface can be found by consistently relocating all its
points along a surface normal by a definite (the same
for all points) distance. Mathematically, all surfaces
obtained in this way are conformal to each other, so that
surface relief reproduction is understood as conformity
in this case. If we imagine orthogonal curvilinear coordi-
nates u1, u2, u3 whose coordinate surface u1� u2 coin-
cides with a dividing surface, we can say that the third
coordinate line is restricted to be straight in the above
approach.

An idea of a more general approach [17, 18] can be
formulated as follows. The interfacial region is typically
characterized at every point by the density (concentra-
tion) gradient. The family of gradient lines forms
interfacial metrics, which, as is usual, is characterized
by the metric tensor

gik � rui � ruk ¼
X3
j¼1

ð@xj=@uiÞð@xj=@ukÞ ði, k ¼ 1, 2, 3Þ

ð7Þ

where r is the radius vector of a space point, rui is its
partial derivative with respect to the curvilinear coordi-
nate ui (vector rui is directed along the tangent to the
coordinate line ui); x1� x, x2� y, and x3� z are the
Cartesian space coordinates, the dot symbolizes a scalar
product of vectors. It is seen from equation (7) that an
orthogonal coordinate system diagonalizes the metric
tensor, so that only the components gii remain. The
square roots of gii are also known as the Lame
coefficients hi ¼ rui ¼

ffiffiffiffiffi
gii
p

yielding the length elements
dli¼ hidui. We now define the coordinate surface u1� u2
of such a coordinate system as a dividing surface.
In other words, we define a dividing surface as the
coordinate surface normal to the direction of gradients
in an orthogonal curvilinear coordinate system that
diagonalizes the metric tensor of an interfacial region.
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The equation of a dividing surface is given by the
condition

u3 ¼ u30 ð8Þ

where u30 is a constant that can be chosen arbitrarily.
Passing from one to another position of a dividing
surface now proceeds not along the normal straight line
to the surface, but along the coordinate line u3, which
can be curved (e.g. because of the influence of external
fields). In this complex case, positions of a dividing
surface separated by a finite distance are not conformal
any more. However, differentiation along the normal
coincides with that along the u3 coordinate since we
deal with an orthogonal coordinate system.
A dividing surface possesses a network of coordinate

lines and has its own two-dimensional metrics obeying
the following rules. First, in accordance with the Dupin
theorem of differential geometry, the coordinate lines
coincide with the surface curvature lines in the coordi-
nate system chosen. In other words, the curvatures c1
and c2 along the directions u1 and u2 are the principal
curvatures (maximum and minimum among all the
surface curvatures at a given point). Second, the simple
Rodrigues formula is valid:

nui ¼ rui ci ði ¼ 1, 2Þ ð9Þ

where n is the unit vector normal to a dividing surface.
Equation (9) shows that the variation of surface orien-
tation at moving along a coordinate line is determined
only by the curvature in a given direction. For the
displacement of an elementary fragment of a dividing
surface along the coordinate line u3, we have the relation

@ ln li
h3@u3

¼
@ ln hi
h3@u3

¼ ci ði ¼ 1, 2Þ ð10Þ

where li is the length of the coordinate line ui. We shall
use these relationships below.

3. The mechanical equilibrium condition for an interfacial

element

We select, with the coordinate surfaces, an element of
the interfacial zone between bulk phases � and �
(figure 1). Let the element be located in between the
coordinates u1, u1þ�u1; u2, u2þ�u2; and u �3 , u

�
3

(superscripts � and � mark quantities on the corres-
ponding phase side, but not necessarily related to the
phases themselves; the element is arbitrary not only in
width, but also in height and may not cover the whole
thickness of the interface). The condition of mechanical

equilibrium for a given element states that the total force
acting on the element is zero, that is

�

I
ðP � dAÞ ¼ �

I
P dA ¼ 0 ð11Þ

where P is the total pressure tensor (including the
contribution of external fields if any [18]), dA ¼ m dA is
the vector of the element surface differential (m is the
unit vector of the outer normal to the element surface,
A is the surface area), �P¼�P � m is the vector of force
applied to the unit element surface (the stress vector),
the integration is carried out over the whole closed
surface of the element. The element surface includes six
facets. Correspondingly, the integral in equation (11)
splits into six summands (we shall now supply each
vector P with a subscript indicating the facet orienta-
tion). The integrals for the lower and upper facets
are written as P3ðu

�
3 Þ�l1ðu

�
3 Þ�l2ðu

�
3 Þ and P3ðu

�
3Þ�l1ðu

�
3Þ

�l2ðu
�
3Þ where �l1¼ h1�u1 and �l2¼ h2�u2 are the

portions of the coordinate lines u1 and u2 falling into the
element chosen on the level of a corresponding facet. We
have dA1¼�l2 dl3¼�l2h3 du3 for the facet perpendicu-
lar to direction 1, and dA2¼�l1 dl3¼�l1h3 du3 for the
facet perpendicular to direction 2. We shall write the
integrals pairwise as differences since the forces acting
on subtending facets are directed oppositely. We now
represent equation (11) as

P3ðu
�
3 Þ�l1ðu

�
3 Þ�l2ðu

�
3 Þ � P3ðu

�
3Þ�l1ðu

�
3Þ�l2ðu

�
3Þ

��

Z u�
3

u�
3

P1�l2h3 du3 ��

Z u�
3

u�
3

P2�l1h3 du3 ¼ 0 ð12Þ

1

2

n

∆l10

R10

∆l20

R20

α

β

Figure 1. Element of a curved interface.
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where the sign � before a quantity symbolizes its
increment when passing from one opposite facet to the
other along directions 1 and 2.
We now place, inside the element, a dividing surface

with a certain coordinate u30 and the area �l10�l20.
The dividing surface divides the element under con-
sideration into the parts � and � (figure 1), each on the
side of a corresponding phase. We now imagine part �
to be filled with the matter of phase �, and part � with
the matter of phase � under the condition of mechanical
equilibrium. By analogy with equation (12), we may
write separately for each part

P�
3 ðu

�
3 Þ�l1ðu

�
3 Þ�l2ðu

�
3 Þ � P �

3 ðu
�
30Þ�l10�l20

��

Z u30

u �
3

P �
1 �l2h3 du3 ��

Z u30

u �
3

P �
2 �l1h3 du3 ¼ 0, ð13Þ

P�3ðu30Þ�l10�l20 � P�3ðu
�
3Þ�l1ðu

�
3Þ�l2ðu

�
3Þ

��

Z u�
3

u30

P�1�l2h3 du3 ��

Z u�
3

u30

P�2�l1h3 du3 ¼ 0 ð14Þ

Subtracting equations (13) and (14) from equation (12),
we arrive at the expression

½P �
3 ðu30Þ � P�3ðu30Þ��l10�l20 þ ½P3ðu

�
3 Þ

� P�
3 ðu

�
3 Þ��l1ðu

�
3 Þ�l2ðu

�
3 Þ

� ½P3ðu
�
3Þ � P�3ðu

�
3Þ��l1ðu

�
3Þ�l2ðu

�
3Þ

þ�r1�l20 þ�r2�l10 ¼ 0 ð15Þ

where we have introduced the element tension vectors

r1 �
1

�l20

Z u30

u�
3

ðP �
1 � P1Þ�l2h3 du3

"

þ

Z u�
3

u30

ðP�1 � P1Þ�l2h3 du3

#
ð16Þ

r2 �
1

�l10

Z u30

u�
3

ðP �
2 � P2Þ�l1h3 du3

"

þ

Z u�
3

u30

ðP�2 � P2Þ�l1h3 du3

#
ð17Þ

Physically, r1 and r2 represent, for each of the cross-
sections of the interfacial element, excess stresses
at the lines �l20 and �l10, respectively. A difference
between the vectors r1 and r2 gives evidence of the

two-dimensional anisotropy of an interface, while
equality corresponds to isotropic states.

The last step remains. We divide equation (15) by
�l10�l20 and let �u1 and �u2, as well as �l10 and �l20,
decrease to zero to proceed to a rigorous local relation-
ship. Then the mechanical equilibrium condition finally
takes the form

P �
3 ðu30Þ � P�3ðu30Þ

¼ �
@r1

@l10
�
@r2

@l20
� ½P3ðu

�
3 Þ � P �

3 ðu
�
3 Þ�

h1ðu
�
3 Þh2ðu

�
3 Þ

h10h20

þ ½P3ðu
�
3Þ � P�3ðu

�
3Þ�

h1ðu
�
3Þh2ðu

�
3Þ

h10h20
ð18Þ

with

r1 �
1

h20

Z u30

u�
3

ðP�
1 �P1Þh2h3 du3þ

Z u�
3

u30

ðP�1 �P1Þh2h3 du3

" #

ð19Þ

r2 �
1

h10

Z u30

u�
3

ðP�
2 �P2Þh1h3 du3þ

Z u�
3

u30

ðP�2 �P2Þh1h3 du3

" #

ð20Þ

Equation (18) is very general and applicable to an
interface of any nature and aggregative state. As is seen
from equations (19) and (20), the mechanical surface
anisotropy (when r1 6¼ r2) is not necessarily related to
the anisotropy of bulk phases and can be realized even
at the boundary of isotropic phases, for example, as a
result of the surface shape anisotropy.

Passing to the analysis of equation (18), we first have
to formulate three scalar relationships contained in this
vector equation. Let us introduce the unit vectors e1, e2,
and e3 along the coordinate lines of the above coordi-
nate system and write the expressions

P3 ¼
X3
i¼1

Pi3ei ð21Þ

rk ¼
X3
i¼1

rikei ðk ¼ 1, 2Þ ð22Þ

where the additional subscript i refers to the vector
components along direction i. Putting equations (21)
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and (22) in (18) yields

X3
i¼1

½P�
i3ðu30Þ � P�i3ðu30Þ�ei

¼ �
X3
i¼1

@�i1
@l10

ei �
X3
i¼1

�i1
@ei
@l10
�
X3
i¼1

@�i2
@l20

ei �
X3
i¼1

�i2
@ei
@l20

�
X3
i¼1

½Pi3ðu
�
3 Þ � P�

i3ðu
�
3 Þ�

h1ðu
�
3 Þh2ðu

�
3 Þ

h10h20
ei

þ
X3
i¼1

½Pi3ðu
�
3Þ � P�i3ðu

�
3Þ�

h1ðu
�
3Þh2ðu

�
3Þ

h10h20
ei ð23Þ

To evaluate the derivatives of the unit vectors, we use
the standard Serret–Frenet formulas of differential
geometry

dt=dl ¼ cn, dn=dl ¼ �ctþ Tb, db=dl ¼ �Tn ð24Þ

where t is the unit vector of the tangent to a space line
(a coordinate line in our case), n is the unit vector of
the line principal normal, b is the unit vector of the
binormal, c is the line curvature, T is the line torsion
(to be zero for the above coordinate system), and l is
the line length. For the coordinate lines on the dividing
surface, we have t¼ e1, n¼�e3, and b¼�e2 for l � l10
and t¼ e2, n¼�e3, and b¼�e1 for l � l20. Applying
now equation (10), we obtain the following expressions
for the unit vector derivatives:

@e1
@l10
¼ �

e3
R10

,
@e2
@l10
¼ 0,

@e3
@l10
¼

e1
R10

ð25Þ

@e2
@l20
¼ �

e3
R20

,
@e1
@l20
¼ 0,

@e3
@l20
¼

e2
R20

ð26Þ

where R10 and R20 are the principal curvature radii of
the dividing surface.
After putting equations (25) and (26) in equation (23)

and subsequent scalar multiplying equation (23) by e1,
e2, and e3, we obtain three scalar equations

P�
13ðu30Þ�P�13ðu30Þ

¼�
�31
R10
�
@�11
@l10
�
@�12
@l20
� ½P13ðu

�
3 Þ�P�

13ðu
�
3 Þ�

h1ðu
�
3 Þh2ðu

�
3 Þ

h10h20

þ ½P13ðu
�
3Þ�P�13ðu

�
3Þ�

h1ðu
�
3Þh2ðu

�
3Þ

h10h20
ð27Þ

P�
23ðu30Þ�P�23ðu30Þ

¼�
�32
R20
�
@�21
@l10
�
@�22
@l20
� ½P23ðu

�
3 Þ�P�

23ðu
�
3 Þ�

h1ðu
�
3 Þh2ðu

�
3 Þ

h10h20

þ ½P23ðu
�
3Þ�P�23ðu

�
3Þ�

h1ðu
�
3Þh2ðu

�
3Þ

h10h20
ð28Þ

P �
33ðu30Þ � P�33ðu30Þ

¼
�11
R10
þ
�22
R20
�
@�31
@l10
�
@�32
@l20

� ½P33ðu
�
3 Þ � P �

33ðu
�
3 Þ�

h1ðu
�
3 Þh2ðu

�
3 Þ

h10h20

þ ½P33ðu
�
3Þ � P�33ðu

�
3Þ�

h1ðu
�
3Þh2ðu

�
3Þ

h10h20
ð29Þ

It is of note that the quantities �12 and �21 are not equal
since the vectors �1 and �2 are determined by two
different equations, (16) and (17). It also follows from
equations (16) and (17) that all the quantities �11, �12,
�31, �32, �21, and �22 in equations (27)–(29) depend not
only on the choice of the dividing surface location, but
also on the choice of coordinates u �3 and u�3 . Below, we
regard some particular cases of equations (27)–(29).

4. The mechanical equilibrium condition at an interface

In the case of an ordinary interface, an interfacial
element considered in the preceding section (figure 1)
can be chosen so that its upper and lower boundaries are
located inside bulk phases � and �. Then both the
differences in brackets in equation (18) vanish, whereas
the element tension vectors r1 and r2 given by equations
(19) and (20) are converted into the vector components
c1 and c1 of the surface tension tensor. As a result,
equation (18) is reduced to its simplest form [19, 20]

P �
3 ðu30Þ � P�3ðu30Þ ¼ �

@c1
@l10
�
@c2
@l20

ð30Þ

where the surface tension vectors �1 and �2 are defined as

c1 �
1

h20

Z u30

�1

ðP�
1 �P1Þh2h3 du3þ

Z 1
u30

ðP�1 �P1Þh2h3 du3

� �
ð31Þ

c2 �
1

h10

Z u30

�1

ðP�
2 �P2Þh1h3 du3þ

Z 1
u30

ðP�2 �P2Þh1h3 du3

� �
ð32Þ

One may understand the integral infinite limits in
equations (31) and (32) as any coordinates beyond the
interfacial region (where the integrands become zero).
Note that the simplicity of the mechanical equilibrium
condition was attained by using vector notations in
equation (30). Earlier tensorial formulations for the
general case [16, 21] looked much more complicated. As
compared with all previous formulations, equation (30)
also has an advantage in generality since it was derived
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under the assumption that the normal-to-interface
coordinate line was curved.
Correspondingly to equation (30), equations (27)–

(29), after passing to an ordinary interface, take the
forms

P �
13ðu30Þ � P�13ðu30Þ ¼ �

�31
R10
�
@�11
@l10
�
@�12
@l20

ð33Þ

P �
23ðu30Þ � P�23ðu30Þ ¼ �

�32
R20
�
@�21
@l10
�
@�22
@l20

ð34Þ

P �
33ðu30Þ � P�33ðu30Þ ¼

�11
R10
þ
�22
R20
�
@�31
@l10
�
@�32
@l20

ð35Þ

As the pressure tensor is formed under the influence
of the spatial distribution of matter, it is natural to
suppose that, in the absence of external fields, the
diagonalization of the metric tensor also leads to the
diagonalization of the pressure tensor, which, in turn,
causes the diagonalization of the surface tension tensor.
Since we have chosen the coordinate system that
diagonalizes the metric tensor, we can assume that, in
the absence of external fields, all off-diagonal tensorial
components are zeroes in equations (33)–(35). For this
simple case, equations (33)–(35) become

@�11
@l10
¼ 0 ð36Þ

@�22
@l20
¼ 0 ð37Þ

P �
33ðu30Þ � P�33ðu30Þ ¼

�11
R10
þ
�22
R20

ð38Þ

Equation (38) is the generalized Laplace equation
derived first by Buff [2, 3] for anisotropic systems.
Passing to mechanically isotropic phases, equation (38)
changes to the classical Laplace equation.
For mechanically anisotropic interfaces, the scalar

surface tension � can be defined as

� �
�11 þ �22

2
ð39Þ

Introducing also the local mean curvature of the
dividing surface

c �
1

2

1

R10
þ

1

R20

� �
�

c1 þ c2
2

ð40Þ

and using the identity

2�c � �11c1 þ �22c2 �
1

2
ð�11 � �22Þðc1 � c2Þ ð41Þ

we can rewrite the mechanical equilibrium condition
across an interface, equation (38), in the form

P �
33ðu30Þ � P�33ðu30Þ ¼ 2�cþ

1

2
ð�11 � �22Þðc1 � c2Þ ð42Þ

It is seen from equation (41) that returning the local
mechanical equilibrium condition to its classical Laplace
form is possible both because of the isotropy of surface
tension and surface curvature.

The surface tension vectors defined by equations (31)
and (32) are dependent on the dividing surface location.
To show this dependence explicitly, it is enough to
differentiate equations (31) and (32) with respect to
u30 or l30 at a given physical state with accounting for
equation (10). In particular, for the principal compo-
nents �11 and �22 and for the surface tension �, we have

@�11
@l30
þ
�11
R20
¼ P�

11 l30ð Þ � P�11 l30ð Þ ð43Þ

@�22
@l30
þ
�22
R10
¼ P�

22 l30ð Þ � P�22 l30ð Þ ð44Þ

@�

@l30
þ �c�

1

4
ð�11 � �22Þðc1 � c2Þ

¼
P �
11 l30ð Þ þ P �

22 l30ð Þ

2
�
P�11 l30ð Þ þ P�22ðl30Þ

2
ð45Þ

For the case of isotropic and uniform bulk phases,
equation (45) can be written as

@�

@l30
þ �c�

1

4
ð�11 � �22Þðc1 � c2Þ ¼ P � � P� ð46Þ

The above surface tension components were defined as
excess quantities by integrating over two principal cross-
sections of an interface. Such a surface tension is
equivalent to the real interface by force and is called
force-defined surface tension. In the thermodynamics of
curved interfaces, there is also moment-defined surface
tension, which is equivalent to a real interface by the
moment and derived as an excess quantity by integrating
over the interfacial volume. The general definition of the
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moment-defined surface tension tensor �mik is [18]

�mik ¼
1

h10h20

Z u30

�1

ðP �
ik � PikÞh1h2h3 du3

�

þ

Z 1
u30

ðP�ik � PikÞh1h2h3 du3

�
ð47Þ

The isotropic surface tension is again defined as

�m �
�m11 þ �

m
22

2
ð48Þ

As follows from equations (31), (32), and (47), all the
components of the force- and moment-defined surface
tensions are identical for a flat interface (the conse-
quence of the fact that all the Lame coefficients are
unities in Cartesian coordinates) but generally different
for curved interfaces. However, it is possible to find such
a position of a dividing surface (Gibbs’ surface of ten-
sion) for which the isotropic force- and moment-defined
surface tensions, � and �m are equal. This condition can
be written as [18]

�11 þ �22 ¼ �
m
11 þ �

m
22 ð49Þ

The components �mik are also dependent on the
dividing surface location. Using equation (10) and
differentiating equation (47) with respect to u30 or l30
at a given physical state, we obtain for the principal
components of the surface tension tensor and the
isotropic surface tension

@�m11
@l30
þ �m11

1

R10
þ

1

R20

� �
¼ P �

11 � P�11 ð50Þ

@�m22
@l30
þ �m22

1

R10
þ

1

R20

� �
¼ P �

22 � P�22 ð51Þ

@�m

@l30
þ 2�mc ¼

P �
11 l30ð Þ þ P�

22 l30ð Þ

2
�
P�11 l30ð Þ þ P�22ðl30Þ

2

ð52Þ

In the case of isotropic bulk phases, equation (52)
becomes

@�m

@l30
þ 2�mc ¼ P � � P� ð53Þ

and is a generalization of the known Kondo equation
for a spherical interface [34]. In the completely isotropic

case, it follows from equations (38) and (53) that the
condition

@�m

@l30
¼ 0 ð54Þ

should be fulfilled for the surface of tension when
�m¼ �. Equation (54) was formulated by Kondo [34] as
a condition of minimum of �m and was understood for a
long time as an indication of the surface of tension. In
this capacity, however, equation (54) fails for aniso-
tropic interfaces and should be replaced by equation
(49) that is an actual attribute of the surface of tension.
Indeed, it follows from (52), (49), and (42) for the
surface of tension:

@�m

@l30
¼

1

2
ð�11 � �22Þðc1 � c2Þ þ

P �
11 þ P �

22

2
� P �

33

� �

�
P�11 þ P�22

2
� P�33

" #
ð55Þ

Equation (55) shows that the validity of equation (54)
for the surface of tension is possible only a totally
isotropic system (both in bulk phases and at an
interface). For a simple cylindrical interface as an
example, a minimum of surface tension does exist in
the �m(l30) curve, but the minimum location does not
correspond to the position of surface of tension [18].

Returning to the general case, the right-hand sides of
equations (45) and (52) are identical. This leads to the
relationship

@�

@l30
þ �c�

1

4
ð�11 � �22Þðc1 � c2Þ ¼

@�m

@l30
þ 2�mc ð56Þ

Equation (56) shows that, in spite of the equality of the
force- and moment-defined surface tensions (�m¼ �) for
the surface of tension, their derivatives always remain
different, including the case of total isotropy when
equation (56) is reduced to

@�

@l30
¼
@�m

@l30
þ �mc ð57Þ

Since we derived the local mechanical equilibrium
conditions at interface in terms of the force-defined
surface tension, we need expressions relating the force-
and moment-definitions to each other. To obtain such
relationships, we first represent equations for �m11, �

m
22,

�11 and �22 in a slightly different form. Let us take the
dividing surface for the origin of a scale for l3 and
introduce a new variable � � l3� l30. Expanding hi in a
power series of � in the vicinity of hi0 yields

hi ¼ hi0ð1þ ci�Þ ð58Þ
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which is a strict result for the case of a rectilinear
coordinate u3 (when all higher order terms are zeros)
or, in general, an approximation for the case when the
effective thickness of the interface is small as compared
with the curvature radii Ri0. Using equation (58), we
obtain from equations (47), (31), and (32)

�mii ¼

Z 1
�1

ðP�, �ii � PiiÞð1þ c1�Þð1þ c2�Þ d� ð59Þ

�11 ¼

Z 1
�1

ðP�, �11 � P11Þð1þ c2�Þ d� ð60Þ

�22 ¼

Z 1
�1

ðP�, �22 � P22Þð1þ c1�Þ d� ð61Þ

where P�, �ii � P �
ii for �<0 and P�,�ii � P�ii for �>0

(i¼ 1, 2). By differentiating equation (59) with respect
to c1 or c2, we obtain the following expressions relating
the principal values of surface tension and the isotropic
surface tensions in the force and moment definitions:

�11 ¼ �
m
11 �

@�m11
@ ln c1

ð62Þ

�22 ¼ �
m
22 �

@�m22
@ ln c2

ð63Þ

� ¼ �m �
1

2

@�m11
@ ln c1

þ
@�m22
@ ln c2

� �
ð64Þ

Of course, equations (62)–(64) obeys the above restric-
tions related to equation (58).

5. The mechanical equilibrium condition at the surface of

a thin film

We now return to equations (27)–(29) and apply them
to one of the sides of a thin film. Let � be the film
mother phase and � the surrounding medium adjacent
to the film side under consideration. Obviously, the
film surface layer on the outer side is developed com-
pletely, and this allows us to choose the u�3 coordinate as
located inside phase �. Then P3ðu

�
3Þ ¼ P�3ðu

�
3Þ, and the

last term in equation (18) disappears. As a consequence,

equations (27)–(29) take the form

P �
13ðu30Þ � P�13ðu30Þ ¼ �

�31
R10
�
@�11
@l10
�
@�12
@l20
� ½P13ðu

�
3 Þ

� P �
13ðu

�
3 Þ�

h1ðu
�
3 Þh2ðu

�
3 Þ

h10h20
ð65Þ

P �
23ðu30Þ � P�23ðu30Þ ¼ �

�32
R20
�
@�21
@l10
�
@�22
@l20
� ½P23ðu

�
3 Þ

� P �
23ðu

�
3 Þ�

h1ðu
�
3 Þh2ðu

�
3 Þ

h10h20
ð66Þ

P �
33ðu30Þ � P�33ðu30Þ ¼

�11
R10
þ
�22
R20
�
@�31
@l10
�
@�32
@l20
� ½P33ðu

�
3 Þ

� P �
33ðu

�
3 Þ�

h1ðu
�
3 Þh2ðu

�
3 Þ

h10h20
ð67Þ

where the coordinate u�3 demarcates two film parts
relayed to the opposite sides of the film. Since a thin
film is non-uniform everywhere inside, the choice of
the coordinate u�3 is pure conditional. If there are no
external fields and bulk phases � and � are not only
uniform, but also isotropic, all the off-diagonal elements
of the bulk pressure tensors, as well as the correspond-
ing components of vectors P �

3 and P�3 , are zeroes. Then
equations (65) and (66) become even simpler:

�31
R10
þ
@�11
@l10
þ
@�12
@l20
þ P13ðu

�
3 Þ

h1ðu
�
3 Þh2ðu

�
3 Þ

h10h20
¼ 0 ð68Þ

�32
R20
þ
@�21
@l10
þ
@�22
@l20
þ P23ðu

�
3 Þ

h1ðu
�
3 Þh2ðu

�
3 Þ

h10h20
¼ 0 ð69Þ

Accounting for the uniformity (the coordinates can be
omitted) and isotropy of the bulk phases (P11¼P22¼

P33¼P), equation (67) can be written as

P � � P� ¼
�11
R10
þ
�22
R20
�
@�31
@l10
�
@�32
@l20

� ½P33ðu
�
3 Þ � P��

h1ðu
�
3 Þh2ðu

�
3 Þ

h10h20
ð70Þ

In the absence of external fields, the pressure tensor is
formed under the influence of the space metrics. Since
the metric tensor of a film has the diagonal form in the
curvilinear orthogonal coordinate system chosen in this
work (see section 2), the pressure tensor can be also
considered as diagonal in all parts of the film. As a
consequence, the surface tension vectors will contain
only �11 and �22 normal components. In this simple
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case, equations (68)–(70) are replaced by relationships

@�11
@l10
¼
@�22
@l20
¼ 0 ð71Þ

P � � P� ¼
�11
R10
þ
�22
R20
� ½P33ðu

�
3 Þ � P��

h1ðu
�
3 Þh2ðu

�
3 Þ

h10h20
ð72Þ

For a flat film, the coordinate system chosen trans-
forms into the Cartesian one (x, y, z), and the Lame
coefficient ratio in equation (72) becomes unity. In
addition, the terms related to curvature vanish.
Denoting P33ðu

�
3 Þ as the normal component PN(z

�) of
the pressure tensor, we arrive at the relationship

P � � P� ¼ P � � PNðz
�Þ ð73Þ

Equation (73) is reduced to the known equilibrium
condition PN¼P� and also yields the definition of
the disjoining pressure of a thin film expressed in
equation (5). Since the coordinate z� is chosen arbi-
trarily, equation (73) shows PN to be independent of z
and, hence, of spatial coordinates at all.
The simplest case of a non-uniform (in thickness) film

is a wedge-shaped film with plane sides. If the wedge
sides are identical, it is natural to introduce the middle
plane as a basement for the interfacial element con-
sidered in section 3 (figure 2). The dividing surfaces are
plane in this case, and the coordinate system is the

cylindrical one with the coordinates u1¼ r, u2¼ z, u3¼ ’
and with the Lame coefficients h1¼ 1, h2¼ 1, h3¼ r.
Equation (72) now becomes

P � � P� ¼ P � � P33ð’
�Þ ð74Þ

from where P33 is seen to be again a constant (with
respect to the coordinate ’ this time). Denoting it as PN,
we can again define the disjoining pressure as was shown
in equation (5). We see that introducing the disjoining
pressure for a film of variable thickness bears no diffi-
culties in this case. If phase � is a fluid phase of uniform
pressure, equation (74) leads to the absurd conclusion of
the independence of the disjoining pressure on the film
thickness. This only means that the wedge shape is
impossible for a free film. However, the wedge-shaped
film is quite realizable if a liquid fills in a wedge-shaped
slit in a rigid solid (figure 2). If one chooses a dividing
surface as the natural solid boundary surface and, set-
ting u30 ¼ u�3 , carries out the integration in equations (16)
and (17) over the liquid region, then P� in equation (74)
should be interpreted as the surface local pressure
created by internal stresses in the solid. At every surface
point, these internal stresses counterbalance the dis-
joining pressure and, of course, are dependent on the
location on the surface (on the coordinate r).

The cylindrical coordinates are also natural for a
simple case when a film itself is of the shape of a circular
cylindrical surface. The dividing surfaces are also cylin-
drical in this case (with radii 0<R10<1 , R20¼ 1 ).

Figure 2. Element of a thin wedge-shaped film.
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The coordinates are chosen as u1¼ ’, u2¼ z, u3¼ r, and
the Lame coefficients are h1¼ r, h2¼ 1, h3¼ 1.
Correspondingly, equation (72) takes the form

P � � P� ¼
�11
R10
� P33ðr

�Þ � P �½ �
r�

R10
ð75Þ

If one chooses r� in themiddle of the film (r�¼R10�H/2),
equation (75) can be written as

P � � P� ¼
�011
R10
� P0

N � P �
� �

1�
H

2R10

� �
ð76Þ

where H is the distance between the dividing surfaces of
the film (the film thickness), P0

N � P33ðR10 �H=2Þ is the
normal component of the pressure tensor at the middle
surface, and �011 � �11 R10 �H=2ð Þ is also related to the
middle surface.
A similar formulation can be made for a spherical film

when R10¼R20¼R0 and �11¼ �22¼ �. The spherical
coordinates are u1¼ �, u2¼ ’, and u3¼ r and, corres-
pondingly, h1¼ r, h2¼ r sin �, and h3¼ 1. Then from
equation (72) we have

P � � P� ¼
2�

R0
� P33ðr

�Þ � P �½ �
r�2

R2
0

ð77Þ

or

P � � P� ¼
2�0

R0
� P0

N � P �
� �

1�
H

2R0

� �2

ð78Þ

where P0
N � P33ðR0 �H=2Þ and �0 � � R0 �H=2ð Þ, the

superscript ‘0’ refers to the middle spherical surface
inside the film.
If a cylindrical or spherical film is a wetting film of

uniform thickness between a cylindrical or spherical
solid body and a vapour, we can choose coordinate
u�3 at the solid surface setting r�¼Rn where Rn is the
radius of the solid body. As a result, we obtain from
equations (75) and (77)

P� � P� ¼
�11
R10
� P s

N � P �
� 	 Rn

R10
ð79Þ

P � � P� ¼
2�

R0
� P s

N � P �
� 	R2

n

R2
0

ð80Þ

where P s
N � P33 Rnð Þ is the normal pressure on the solid

surface. According to equation (5), the difference
Ps
N � P � in equations (79) and (80) has a meaning of

the film disjoining pressure. Equations (79) and (80) are
important in the thermodynamics of heterogeneous

nucleation on cylindrical or spherical wettable solid
particles [35].

6. The transitional zone of a wetting film

We now apply equation (72) to the transitional zone
of a wetting film on a rigid flat solid surface. As the
coordinate u�3 is taken arbitrarily inside the film, we
may bring it into coincidence with the solid surface
(figure 3) to refer the whole film interior to the film
surface layer at the boundary with an external fluid.
Then P33ðu

�
3 Þ acquires the meaning of the normal

pressure Ps
N on the solid surface. In accordance with

equation (72), we obtain

P � � P� ¼
�11
R10
þ
�22
R20
� ½Ps

N � P ��
h1ðu

�
3 Þh2ðu

�
3 Þ

h10h20
ð81Þ

The transitional zone metrics looks complex: the
coordinate surface u1� u2 is non-uniformly curved at
the boundary with a fluid and is plane at the boundary
with a solid. The contribution of the capillary pressure
vanishes at the solid surface, so that the only cause of
a difference between Ps

N and P� is the interaction and
overlapping of the opposite surface layers of the film.
Therefore, the difference Ps

N � P � may be termed a local
disjoining pressure

�ðu�1 , u
�
2 Þ � Ps

N � P � ð82Þ

In this definition, it is shown that the local disjoining
pressure depends on the longitudinal coordinates,
similarly to all other quantities on the right-hand side
of equation (72). Using equation (82), equation (72) is
written in the form

P � � P� ¼
�11
R10
þ
�22
R20
��

h1ðu
�
3 Þh2ðu

�
3 Þ

h10h20
ð83Þ

u3
∆ l1(0)

u1

∆ l1(u3)
α

β

Figure 3. Element of the transitional zone of a wetting film.
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In the particular case of a cylindrical dividing
surface (R20¼ 1 , h2¼ 1), the condition expressed in
equation (83) is reduced to

P� � P� ¼
�11
R10
��

h1ðu
�
3 Þ

h10
ð84Þ

Comparing figures 1 and 3, it is seen that the film
surface curvature in figure 3 is negative. Taking this into
account, it is convenient to write equations (83) and (84)
in a general form as

P� � P � ¼ Pc þ�L ð85Þ

where Pc is the capillary pressure and L is the Lame
coefficient ratio

L �
h1ðu

�
3 Þh2ðu

�
3 Þ

h10h20
ð86Þ

Above, we used explicit expressions for L correspond-
ing to the simplest coordinate systems. In more complex
cases, equation (10) can be used for the evaluation of L.
Subsequently applying equation (10) to h1 and h2 with
the integration from u30 to u�3 and putting the results in
equation (86), we obtain

L ¼ exp 2

Z u�
3

u30

du3h3 u3ð Þc u3ð Þ

� �
ð87Þ

where

c u3ð Þ �
1

2

1

R1 u3ð Þ
þ

1

R2 u3ð Þ

� �
ð88Þ

is the local mean curvature of the coordinate surface
u1–u2. By applying the mean-value theorem and putting
h3 du3¼ dl3, we can rewrite equation (87) as

L ¼ expð2 �cc�l3Þ ð89Þ

where �cc is the averaged value of c(u3) and �l3 is the
length of the segment of the coordinate line 3 between
u30 and u �3 (the curvilinear ‘thickness’ of the film). For a
thin film whose real local thickness H is considerably
smaller than any of the principal curvature radii of
a dividing surface, we have �cc�l3 � 1 and �cc � c u30ð Þ ¼ c
where c is as previously the mean curvature of
the dividing surface, and, naturally, �l3 � H. As a
consequence, equation (89) is represented in an
approximate form

L � 1þ 2cH ð90Þ

It is valid L91 at the negative mean curvature of a film
(as a reminder, we have c<0 since the curvature centre
is located on the side of phase �).

In the approximation of an isotropic surface tension
of a film (or rigorously for a cylindrical surface),
equation (85) can be written in the form

P� � P � ¼ �2�cþ�L ð91Þ

With L¼ 1 equation (91) corresponds to Derjaguin’s
equation (6), except that � in equation (6) was treated
as the disjoining pressure of a flat film of an appropriate
thickness. This assumption was maintained in all
subsequent publications. As mentioned above, the
cosine of the local slope angle was introduced, instead
of L, in some versions of equation (6) [32, 33] for the
case when the disjoining pressure was defined with
respect to the normal to the horizontal plane, but not to
the inclined film surface. Such inconsistency was
avoided in our derivation by using curvilinear coordi-
nates. As a result, the disjoining pressure acts along the
normal to both the above film surfaces, so that equating
the Lame coefficient ratio L to the above cosine looks
problematic. It is also of note that using the Cartesian
coordinates (as a unique case related to the use of the
cosine) has one more undesirable consequence: the
capillary part of equation (91) becomes inexact. This is
related to the fact that the pressure tensor of the
transitional zone becomes non-diagonal in the Cartesian
coordinates, which requires returning to the more gen-
eral case, equation (70). As was shown above, L¼ 1 not
only for a flat film, but also for a wedge-shaped film.
Therefore, the condition L � 1 can happen to be not
bad approximation for calculations according to
equation (90) if the film profile is not very much
different from the wedge shape and the profile curvature
is sufficiently small.

We now have to discuss the well-known fact that the
film surface tension � in equation (91) does not coincide
with the macroscopic surface tension (or with the sum of
tensions on two sides of a thick film). A relation between
these quantities does exist, but is known only for the
case of a flat film up to the present, equation (3). In our
case ��þ �� has been replaced by � that, in accordance
with equation (16), is the integral estimated from the
coordinate u�3 . When integrating equation (3), it is
convenient to count off u�3 from the dividing surface.
With this convention, u�3 coincides with the curvilinear
‘thickness’ of the film at the beginning of integration.
If this ‘thickness’ is considered as a constant in the
process of integration (when the real film thickness
increases without limit), the quantity � changes to the
macroscopic (tabular) surface tension ��1 in the typical
case when the film thickness is much greater that the
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thickness of a completely developed surface layer at the
�� boundary. The integration of equation (3) then yields

� Hð Þ ¼ ��1 þ

Z 1
H

� hð Þ dh ð92Þ

Naturally, equation (92) is applicable only to a thin film
that is slightly non-uniform in thickness when equation
(90) is valid. Putting equation (92) in equation (91) and
accounting for equation (90), we arrive at the equation

P� � P� ¼ �2 ��1 þ

Z 1
H

� hð Þ dh��H

� �
cþ� ð93Þ

Equation (85) with L¼ 1, with treating � as the
disjoining pressure of a flat-parallel film, and with
taking tabular values of surface tension for estimating
capillary pressure, was used many times for the cal-
culation of a sufficiently gradual profile of the transi-
tional zone. Our local equation (85) is valid for a profile
of an arbitrary slope. It is important, however, for an
arbitrary profile that the above local disjoining pressure
of a film of varying thickness is not equivalent to the
disjoining pressure of a flat film of a corresponding
thickness and should be calculated separately, with the
use of a given profile shape. Since the profile itself is to
be calculated from the known dependence of the local
disjoining pressure and the local film surface tension
on the film thickness, the problem can be solved by
the method of successive approximations. Herewith, the
wedge-shaped profile can be taken for the zero approxi-
mation. However, the solution of this problem lies out
of the scope of this paper.
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