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NUCLEATION, AND ASYMMETRY OF CHEMICAL POTENTIAL RELATIVE TO SIGN 
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An analytical relationship has been derived for the chemical potential of vapor 
as a function of the magnitude and sign of the nuclear charge on the threshold of 
barrierless nucleation. 

The presence of charged nuclei in a supersaturated vapor lowers the level of the chemical 
potential on the threshold of barrierless nucleation. The threshold chemical potential depends 
on the magnitude of the nuclear charge. A finer effect — especially nonlinear with respect 
to the field — is the senstivity of the threshold chemical potential to the sign of the charge. 
The present work has been devoted to a study of the dependence of the threshold chemical po
tential of vapor on the magnitude and sign of the nuclear charge. The development of this 
relationship is based on general thermodynamic theory [1] and a procedure of series expansion 
in the curvature parameter [2, 3] for a drop in the electric field of the nucleus, this drop 
containing in its surface layer a spontaneous dipole moment. 

For the vapor that is in equilibrium with the drops, tlie dimensionless chemical potential 
bv (expressed in heat units kT and referred to the value for a plane interface in the absence 
of a field), as a function of the number of molecules of the drop v, has the following form 
as given in [3, Eq. (17)]: 

bv « | ov-V. [l - ̂  + 1 c2) v-./. + cBv-i] 

~la,v-V.|l + 2(cx + jc2-^v-V, -lctv-V*± 4(c5 -J^v"
1] (1) 

where, as in [3, Eq. (10)], 
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cx s (4np^/3)
v'X00, Ca = 2 ̂ JipJ/S/'-Xwy. 

c3 = (4npJ/3)v,x««c.<7a, c4 = (4jip™/3)'
/,*1/2«„ (2) 

*-T'(2).- - f ^ 
and as in [3, (14) and (15)], 

M^»J * ̂ iri—J • (3) 
All of the notation used in [1-3] has been kept intact. The terms with coefficients cx, 
c6 in (1) are correction factors. The products of such terms will be neglected, as was done 
previously. 

In accordance with (2) and (3), the following identity given in [3, Eq. (16)] is valid 

ac -±-ax (4) 

When we take into account the results that are already known to us, as given in [2, Eq 
(33) and (44)], we conclude from (2) that c4 ̂  Ci and c6 ̂  c5 (which signifies in particular 
that c« and c9 have the same sign), and 

c5= — 4nKq&oJ3kT, x~l (x>0) # (5) 

As ean be seen from (2), the coefficients cs and c6 have the feature that they are odd 
(uneven) with respect to charge. We will break up Eq. (1) into parts that are even and odd 
with respect to charge. We will use superscripts "+" and "—M for the respective cases q = 
|q| and q = —|cj|. Subsequently setting c6 = c3 for simplicity, we obtain in place of (1) 

6?«fc5±6j (6) 
where 

65«|mrV.|i -(c t +|c1)irV.|_l^1rV.|'i + 2 ^ + lc%- *4)v-V. - j-c.irV.1 (7) 

4J sj| av-V._l^V.)cf . <8> 

Obviously, the multiplier of c* in (8) vanishes at the point 

v = 2<y3a (9) 

being positive when v > v and negative when v < v. Now noting that from (6) it follows thrft 

tf-K-^ (10) 
we conclude 

« - « > 0 w b « i v > v j ( C s + > 0 ) { u ) 

ftv~*v<0whenv<v J 
and _ 

65-«;<OwhenV>v | ( c+ < 0 ) # ( 1 2) 

&v — &v > 0 when v < v J 

Calculating by the use of (7) the value of by0 at the point v = v, which can be determined 
by the equality (9), and considering that b v vanishes at this point, we obtain from (6), 
after applying the identity (4), 

*-T'&r['-w(<>+a*-7*)fcf] . 
It should be noted that the value of v as defined by the equality (9), with q = ±q0 (qo is 
the elementary charge), lies close to values on the order of 1-10, such that Eqs. (10)-(13) 
are only approximations. 



of b v
+ from bv° in (6) is also odd with respect to q. In higher orders with respect to 

cmVo""*' *> the difference v* — v0 may contain terms that are both odd and even with respect 
to q. Although these terms are outside the framework of the second approximation with re
spect to curvature, we must keep in view the possibility in principle that they may appear. 
Summarizing, we write 

v±~v0=zfcv1+v2 (23) 

W | ^ m v - V . , K/v^^Vo 7', |v2/v0|^^vi
v- (24) 

(vx and va are certain quantities, the explicit values of which are not required). 

Expanding b°+ and b°_ in the vicinity of the point v0 in Taylor series, and taking (14) 
and (23)-(24) into account, we obtain for the first term in the right-hand side of (21) 

frv%+ b°v- - 2#0 + ± ^ \ [K + v2)* + (v, - v2)»] + . . . = 2bl9 [1 + 0 (cW9)} (25) 

where it is noted that the differentiation, with respect to v, of the power function of v 
(all of the functions we are considering are just such finctions) gives rise to an additiona 
factor of smallness v~l. This remark will be kept in view in the subsequent calculations. 
Next, expanding b^+ and b^_ in the vicinity of the point v0 in a Taylor series, and taking 
(23)-(24) into account, we obtain for the second term in the right-hand side of (21) 

i\rf — 0v- = — 

dv 
.2v1 + ... = b*fl(cW/*) . (26) 

From (21), (25), and (26), and also considering the first of the relationships in (20), it 
follows that 

b-b°*> (27) 

where the relative error has the order of cm
2v0~

2'3, the same as in the entire theory of 
expansion with respect to the curvature parameter. 

Next, again expanding b°+ and b°- in the vicinity of the point v0 in a Taylor series, 
and taking (14) and (23)-(24) into account, we obtain for the first term in the right-hand 
side of (22) 

3! dv* 

[(Vi+v.P-fa-v,)"] 

[(vx + v2)« + (vx - v2)3] +... = blfi (fo-*9) . (28) 

Equation (28) shows that v2 can make a contribution on the same order of magnitude as vx; 
therefore, we have also brought v2 into the analysis. Next, again expanding b^ + and b^- in 
the vicinity of the point v0 in a Taylor series, and taking into account (23)-(24), we ob
tain for the second term in the right-hand side of (22) 

dv I • 2 v » + i r S I [(vi + v»)* + (vi-v2)s]+...=2&J.fl+0(C^
a/*)l . (29) 

|v«=va *• av* lv«=Vo 

From (22), (28), and (29), and taking into account the second of the relationships in (20), 
it follows that 

J--26S, (30) 

where the relative error has the previous order of magnitude cm
av0~

2'3. The explicit 
values of vi and va did not actually appear in the final results (27) and (30). 

The calculation of the right-hand sides of the equalities (27) and (30) is accomplished 
on the basis of Eqs. (7) and (8) by means of the value of v0 defined by the relationship 
(17) [the correction terms in (7) are already found by means of the formula of first approxl* 
mation (16) for the value of v 0 ] . As a result, we have 

where we have taken into account the identity (4); and 



-i'frn'-"(-+f>-^fr)-> 
[we have retained in (32) the correction terms, even though the corrections to Eq, (8) itself 
may be of the same order of magnitude]. Dividing (32) by (31), we also obtain 

which determines the relation of the fine structure of the doublet of chemical potential 
values to the center of the doublet. A comparison of Eq. (31) (in which ct does not appear) 
with experimental results can provide information on the coefficient cu and thereby can 
serve as a criterion of the consideration of an adsorption nature of the induced surface 
polarization #*. that was used in [2] as a basis for the estimate c* ^ cx. 

not 
the 
which gives still smaller value for the ratio |ba/bs|. 

Let us recall now that in the original expression for the chemical potential in terms 
of the radius of the tension surface r [2, Eq. (43)], it was not the coefficient c5 that was 
present in the parameters 66, but the coefficient c6. The appearance of terms with the co
efficient c5 in (1) is due entirely to the change from the independent variable r to the in
dependent v [3, Eq. (12)]. We can say that the coefficient c3 (in the parameter 6S) describes 
only the shift in reference point for the variable v. This shift (along with that 
related to the presence of the nucleus in the drop [3]) does not influence, however, the 
maximum value of the function bv~. From this it is evident that if we had not made the sim
plifying assumption c6 = c5 in Eq. (6), then in Eqs. (32) and (33) in place of ct we would 
have the coefficient c£. However, eirice c«* and ct have the same physical nature and are 
close in order of magnitude and identical in sign, we will not give any further considera
tion to this difference. 

We will now determine the limitations on the chargenq = zq0 (z • 1, 2, ...) for which 
Eqs. (14)-(33) are valid. It is obviously necessary that the value of v0 determined by the 
formula of the first approximation (16) must satisfy the conditions we found previously for 
applicability of the explansion in the curvature parameter ([3, Eq. (32)]* 

cmv-i/3 < 1, z2 (cl/cm) v-i ^ 1, | z | (| c\ \/cm) v-«/« ^ 1 ^ (34) 

where c3° = c3/z
a, c3° = c3/z [i.e., c3° and c3° are obtained from the coefficients c3 and 

c5 determined from Eqs. (2) and (5) by replacing q by q0, so that these quantities do not 
depend on z]. 

Here also, actually, the correction to v0 itself that is given by the formula of the 
second approximation (17) and the additional correction vx (and all the more v2) for the 
root v* in (23), will not be relatively small, such that in the end, the conditions (34) 
will be observed for v = xr- as well (which, strictly speaking, should net be required). Thus, 
we substitute into (34) in place of v the value of v0 determined from Eq. (16). Considering 
the equality aq = z2aqo that ensues from (3) (aqo does not depend on z), and also using the 

identity (4), we obtain 

Cm (2an \ ~ l / 3 *> 1*1 I /2 f l / T V 2 / 3 / Q c N 

| z | / 3 V a I 4cm \2\1/3cm \ a J 

The second of the conditions (35) is not related to the charge, and it is always fulfilled. 
The first and third of the conditions (35) impose a lower limit on |z|. This limit will be 
less restrictive for larger values of 2aq0/a (of course, we should still remember the 
limitation |zj^ 1 due to the existence of the elementary charge). 

Considering cm and 2aQ la as assigned, we will determine what values of c3° and z will 
give a maximum in the ratio |ba/bs| within the limits of applicability of the theory, and 
will also determine the order of magnitude of this maximum. Segregating in (33) the de
pendence on z and limiting ourselves to the first approximation (for which we can be sure), 
we have 

*In accordance with what was said in [3], we have replaced cx by cm in (34), where cm is 
the greater of the values cx and c2. 
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\t>a/b'\=j{(\cl\/\z\)(2a<!Jar}. (36) 

As the maximum allowable value of the curvature parameter cm\)0~
x' 3 appearing in the left-hand 

side of the first of the inequalities (35) we can take ̂ 1/5. Obviously, the left-hand sides 
of the first and third of the inequalities (35) reach their maximum values of vL/5 and ^1 
simultaneously, with 

\c\ I ~ 5*c* (2aja)y't | z | ~ 53/acif {2ajafv> ( 

Here, the product of the left-hand sides of these inequalities also reaches its maximum 
value ^1/5. The value of |ba/bs|, according to (36), is equal to this particular product, 
to within a factor of 16/9. We can see that the relationships (37) determine the optimal 
values of c5° and z (within the limits of applicability of the theory) at which |b

a/bs| has 
a maximum. This is equal to 

I &a/&'Uax~ 16/45-0.36 

and hence is completely independent of cm and 2(Zq0/a. Since \z\ actually assume only inte
gral values 1, 2, 3, ..., the realization of the maximum still requires that the right-hand 
side of the second of the relationships (37) must lie close to one of such values. It is 
actually necessary for it to be considerably less than unity. If this condition is not ful
filled with given values of cm and 2a^Ja% then the corresponding substance cannot manifest 
any significant sign asymmetry of the thresholds of barrierless nucleation, whatever may 
really be the values of |c5°| and |z| compatible with the third of the inequalities (35). 

Just as close to the optimal values of c5° and z that are required by the relationships 
(37) do we find reinforcement of the process-of forming water drops on singly charged ions 
(z = ±1) at a temperature ^0°C. Using the available data for water, we have in accordance 
with (2), (3), and (5): c ^ c ^ 0.5, c2 ̂  0.36, c5° ̂  1.4X, a ^ 9.9, and a q o ^ 160 (for 
water, ? 0» < 0* and 47rqo#WkT ̂  -4.2 [4-7]). Next (with z - ±1, i.e., q - iq0), we find 
from (9) and (13): v ̂  11 and b^* = 0.016. Since along with c5° > 0, the condition c5

+ > 
0 is also fulfilled, it then follows from (11) that b v

+ — bv"~ > 0 when v ^ 11. Now we have 
2<ZqQ/a ̂  32, and, according to (17), v 0 ^ 43. By means of (31) and (33) we find bs ^1.2 
and ba/bs ca. 0.075 H . The value of bs is close to that observed experimentally [8, 9]. This 
provides support for the estimate c* ^ cx (adsorption nature of ^ e ) . As regards the ratio 
ba/bs, according to [8] and [9], this ratio is 40.19 and +0.11, respectively, where we have 
particularly emphasized that in either case the value is positive. This means that the 
experiment requires that the values ofx are positive. We came to the same conclusion in 
[2] by means of two theoretical arguments that provide mutual support for each other. The 
agreement with experiment will be not only qualitative but also quantitative if we set 
xc~ +2.5 (i.e., c 5

0 ^ 3.5) and x^ +1.5 (i^e., c5
0'^ 2.1) on the basis of data from [8] and 

[9], respectively. This is also in agreement with a theoretical prediction [2] of the order 
of magnitude of x, With the value of *> found from experiment, the left-hand side of the 
last of the inequalities of <*35) is no-greater than 0.7, which is adequate for fulfillment 
of this inequality with some reserve. The left-hand side of the first of the inequalities 
of (35) is equal to approximately 0.16, auch that this inequality also (a strong inequality) 
can be considered to be fulfilled for practical purposes. The fact that the experimentally 
observed value of ba/bs is somewhat smaller than that allowed by the estimate (38) is ex
plained by the deviation of the actual values |c5°| ̂  2.1-3.5 and |z| = 1 from the optimal 
values |c5°| ̂  4 and |z| ̂  0.7 that are required by the relationships of (37) (with cm — 
0.5 and 2aqo/a ^ 32). 

When we speak of a comparison with experiment, we should keep in view that rapid gen
eration of drops as the chemical potential of the vapor is increasedt may begin, owing to 
an increase of fluctuations, slightly before the threshold of barrierless nucleation. 
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