
sible; and further decrease in the foam volume, although it proceeds from the surface, oc
curs in the form of simultaneous disintegration of large volumes of foam. For such an aval
anchelike process, it is probably sufficient that only some of the bubbles achieve "critical" 
sizes. For this mechanism of disintegration of the foam column, the foam lifetime is the 
time for achievement of the "critical" dispersion. This is determined by the rate of in
ternal disintegration, the initial dispersion, and the value of the "critical" dispersion it
self. Between these two different mechanisms for disintegration of the foam column, differ
ent intermediate variants are possible: in particular, ones with gradual disintegration of 
the column, which is explained by the polydispersion of the foam and other factors. 
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THEORY OF NUCLEATION ON CHARGED NUCLEI. 

4. CALCULATION OF THE WORK OF FORMATION FOR A DROPLET 

IN THE STRONG FIELD OF A CHARGED NUCLEUS 

F. M. Kuni, A. K. Shchekin, and A. I. Rusanov .. UDC 536.423.4.001 

We have determined in analytical form the work of formation for a droplet not 
in equilibrium with the vapor as a function of the number of molecules in the 
droplet and the charge of the nucleus, in the strong field of which the drop
let grows. 

The most important item which nucleation theory obtains from thermodynamics is the work 
of formation for a droplet. The general thermodynamic expression for the work of formation 
for a droplet growing on a charged nucleus and not in equilibrium with the vapor was obtained 
in [1]. Based on the method developed in [2] for the expansion with respect to the curvature 
parameter for a droplet in the strong field of a charged nucleus, we calculate the thermo
dynamic parameters entering into this expression. Based on the assumption that the escape 
of vapor molecules in the droplets is independent of vapor density, we extend it to droplets 
which are not found in equilibrium with the vapor. 

In the method of expanding in the curvature parameter, we used six dimensionless param
eters ([2], Eqs. (9), (14), and (35)) 
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(\ =: A^T, u2 =: 2Xxy00/r1 63 == tooU^/r^ 

5 = _ A _ ,s - ? M*M ^ — <̂7 (1) 
2^r pa.3 V dp J J ° 2u„r* 

where we expressed the induction in terms of q and r (D = q/r 2). All the symbols from [1, 2] 
are completely retained. The results obtained in the second approximation of the method are 
reduced to the following: ([2], Eqs. (28), (36), (38), (40), and (43)): 

q9 = q&ooo + 2y00r*b5 + ^ - fa - -J- «» + 0 ( 3 ) 

r \ 2 
R = r(l + 6i + 6&) (4) 

(5) 

(6) 

where we again expressed the induction in terms of q and r. 

To the accuracy assumed in Eqs. (2)-(6), in all further calculations we will neglect the 
derivatives of the parameter 6X> ..., 66 higher-order terms without additionally stipulating 
this. 

For nucleation theory, another characteristic of the droplet — the number of molecules 
in the droplet, v — proves to be more convenient than the radius r of its surface of tension. 
It is specifically this number v which, as an independent variable characterizing the drop
let, enters into the original Zeldovich nucleation equation which has a finite-difference 
form with respect to this number. Being dimensionless, the number v is more convenient than 
the radius r for formulating the degree of approximation and the region of applicability for 
this theory. 

In order to determine v, we may arbitrarily assume that the bulk properties achievable 
by the liquid inside are retained from the surface layer right down to the center of the 
droplet. In fact, inside the droplet we find a nucleus (material of a different nature) and, 
furthermore, at very small distances from the nucleus the density of the liquid begins to de
pend on this distance. This leads only to a difference between v and the true number of mole
cules of the material condensed in the droplet by some relatively small value (for low small 
curvature parameter) vn which can be calculated; this difference may be assumed to be con
stant (not depending on v). The existence of vn only means a shift in the scale of the vari
able v, selected as an independent functional argument. This shift, in the case of an insol
uble nucleus, does not have physical meaning. It is not apparent in calculation of the 
amount of vapor condensed in the droplets: The decrease in saturation of the vapor begins to 
be appreciable only when the droplets attain large sizes, when the shift vn becomes in gener
al vanishingly small in relative magnitude. 

Bearing in mind what has been said above, and also taking into account the definition of 
equimolecular surface and the fact that on the outside at distances on the order of the sur
face layer, the material is close in density to a homogeneous vapor, we will have v = (4TTR3/3)» 

pa (pa is the number density of the molecules in the liquid). Solving this relative to R, we 
obtain 

*=(7*Jip°)VA. (7) 

Since the parameters 61, ... 66 themselves are small, they may be expressed in terms of 
v using a first-approximation formula 

'=(VP~) V'V V« (8) 

which obviously follows from Eqs. (2), (4), and (7). Substituting Eq. (8) into Eq. (1), we 
obtain 

6i = CiV-,/s, 62 = c2v-,/», 63 = c3v-4/% 64 = c4v-v», 65 = c5v-1, 66 = c6v""1, (9 ) 

where 
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ct = (4npi/3)'" ?.., c2 = 2 (4.TP- '3)
1''' X. T«, C3 = (4JTP£, 3)

v' x.u„<f. 

ci = (4npS/3)
,/'ftl/2«.D1 

5- 3 ' u L , c , = - r — • 
Substituting Eq. (9) into Eq. (2), and then the obtained result into Eq. (7), we find 

that 

R = (VP»)V» (I - -fCfV'v'+ T C 3 V " V > ) ' (11) 

j n turn, substituting Eq. (11), together with Eq. (9), into Eq. (4) and then solving Eq. (4) 
relative to r, we will have 

r = ("/4«pS)V. [l - (cx + ±c^ v-V. + 4- ̂ 3v-
4/« - V 1 ] . (12) 

As is well known in nucleation theory, an especially important role is played by the 
chemical potential as a function of v. It is more convenient to deal with the dimensionless 
chemical potential expressed in thermal units kT: 

b^ii/kT . (13) 

where we have indicated by the subscript its dependence on v (let us furthermore recall that 
the chemical potential is reckoned from the value for a flat interface in the absence of a 
field). Directing our attention to determining bv, let us first of all introduce two dimen
sionless parameters 

n__ 3 foco (4*PZ V7' 4JIYOO / 3 \V. 

„ _ o "-01 ( 4 j ,P» X1' _ 4™*,? ( 4*P° \U kTpl \ 3 J kT \ 3 / (15) 

where an (in contrast to a) depends on q. From Eqs. (10), (14), and (15) follows identity 
aq/a = 2c3/c2, which may be written as 

ac3 = — agc2m (16) 

Determining (13) with the use of (6), (9), and (12), taking into account in this case (14) 
and (15), and then using the identity (16) in the result obtained, we arrive at 

6V = -J-av'/.|l - (Cl + - L C 2 ) v - ' / . + C6V-iJ (17) 

—Lafr'L [l + 2 (c, + ±c2 -c4j v-V. —j-c,v-v. + 4 (c6 - A c.) V*] . 

Let us designate as £v the dimensionless density (degree of supersaturation) in the 
vapor, found in equilibrium with the droplet of v molecules. From the formula for an ideal 
gas, we have bv = In £v. Substituting this into the left-hand side of (17), we obtain a re
lationship which defines in explicit form the dependence of £v on v (and q). This relation
ship generalizes, by means of corrections with coefficients cx, ..., c6, the familiar Kelvin-
Thomson relationship. If the electric field of the nucleus is strong, then the corrections 
are substantial. It is evident that the existence of a charge on the nucleus for each v de
creases the density of the vapor found in equilibrium with the droplet. In proportion to the 
decrease in v, in expression (17) the term witn the coefficient aq begins to increase more 
rapidly than the term with the coefficient a; so that bv, after achieving a maximal value 
brnax (depending on the magnitude of the charge and its size), then decreases, rapidly passing 
through zero. 

For the number of molecules v in a droplet which is found in equilibrium with the vapor, 
having a given dimensionless density £ and correspondingly a given dimensionless chemical 
potential b = In £, we have the equation b = bv [where bv is defined by Eq. (17)]. Obviously, 
if b > bmax, then the equation b = bv does not have positive solutions; if b < b m a x (and b > 
0), then there will be two positive solutions. The greater of these solutions corresponds to 
unstable equilibrium of the droplet with the vapor (the critical droplet); and the smaller of 
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Inese solutions corresponds to stable equilibrium. It is important that, for a sufficiently 
high value of the ratio an/a, the stable solution falls within the region of v values achipv^, 
by our method. - -

Another important parameter in nucleation theory is the work of formation for the drop
let W. In the case we have considered so far, when the droplet is found in equilibrium with 
the vapor (unstable or stable), the work W (which in this case will be designated as We) coin^ 
cides with the change in the grand thermodynamic potential of the system Aft, occurring in the 
system upon formation of the droplet. The general thermodynamic expression for We = Aft has 
already been obtained ([1], Eq. (50)). We give it as: 

r = !5-Vra-4nfl><7 + J£L-^1 + AQ„ , (18) 
3 of 

where we have omitted the subscripts a and 3 for the surface layer of the droplet on the 
boundary with the vapor; also, we have expressed the area of the surface of tension in terms 
of its radius r, and we have used the abbreviations u = (l/e° — l/ea)/S-n ([2], definition 
(8)). The work Aftn for introducing a nucleus from the vapor into the liquid which is found 
at the same chemical potential bv (and temperature T) depends on bv (and T). 

Let us determine the explicit dependence of We on v. Setting u = Uoo (as was shown in 
[2], the relative error in this ease is much less than the curvature parameter) and also tak
ing into account Eqs. (3) and (5), we reduce Eq. (18) to 

^=~T«cr=(l-251-666) + -^-^[l + 4-61_A64 + -l66-4-66] + AQn-4Ji.^. (19) 
o o r L 4 4 4 6 J 

It is more convenient to deal with the dimensionless work of formation expressed in thermal 
kT units: 

&~e
v = We/kT (20) 

where we have indicated its dependence on v by the subscript. Substituting Eq. (19) into 
Eq. (20), using in this case Eqs. (9), (12), (14)-(16), we obtain 

ST% = - L f l v § / . 
3 

1 _ 4 L + - i - ca] v-V. - 8c5v-i + -j- aqv-lU 

- Y C * V ~ 4 U + T{C*- TC6)v"1] + f lM' 

5 / . 1 

4 3 
l + -fk+ -fc2-c4)v-V» 

(21) 

where 

f (M ss (AQn—4nqffi0„)/kT (22) 

(we do not indicate the dependence on the fixed temperature T). 

If, as is indeed the case, we have not specified the number v of molecules in the drop
let found in equilibrium with the vapor, but rather specify the chemical potential b of the 
vapor (or, which is the same thing, it density £ = exp b), then in Eq. (21) we must mean by 
v the root of the equation b = bv. Correspondingly, the argument bv of the function f(bv) 
must be replaced by b. The difference between the values in expression (21) upon substitu
tion into this equation of the largest (critical droplet) and the smallest roots is the 
activation barrier for nucleation. The exponent, which involves the activation barrier with 
a minus sign, just determines the rate of fluctuation nucleation on charged nuclei. 

The importance of knowing the work of formation ̂ "v for the droplet* not found in equilib
rium with the vapor is explained by the fact that it is precisely the derivative with respect 
to this work #""/== (d{Fv/dv)b which enters into the relationship 

PvAPv-i=exp#-; (23) 

(which stems from the Zeldovich nucleation equation), where Pv-i is the number of vapor mole
cules absorbed per unit time by droplets of v — 1 molecules and P̂J is the number of vapor 
molecules released per unit time by droplets of v molecules. 

*As before, we assume the work is expressed in thermal kT units, 
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If the vapor density £ = exp b coincides with £v = exp bv, the droplets are found in 
equilibrium with the vapor.. Then the release of vapor molecules by the droplets (as the re
sult of which v goes to v — 1) is compensated by absorption of vapor molecules by the drop
let (as a result of which v — 1 goes back to v). In this case, we have P^/P^-i = 1 . If we 
now have that the vapor density £ = exp b becomes different while the droplets retain the 
prior number of molecules, then the parameter PV-i (being proportional to the vapor density) 
Is increased by a factor of (exp b)/(exp b v); the magnitude of P̂J practically remains as be
fore (the droplet, as a dense formation, is weakly sensitive to a change in the vapor). As 
a result, the left-hand side of Eq. (23) becomes equal not to unity but to exp (bv — b). Tak
ing the logarithm of Eq. (23), we then obtain 

@~v = — b + bv r (24) 

We use this relationship, based on physical considerations and the properties of #~v (which 
are just the ones that are important in nucleation theory), to determine the work of forma
tion for the droplet not found in equilibrium with its surrounding vapor. Collecting to
gether all the assumptions of the theory in physically substantiated confirmation of the in
dependence of Pv relative to vapor density, we thereby avoid the difficulties arising in 
direct computation of "̂v connected with the existence in the general case of a nonequilib-
rium layer of material between the droplet and the vapor. 

Substituting Eq. (17) into Eq. (24), we then integrate this relationship with respect 
to v (for constant b). We obtain 

Srv = v = — bv -f av'/. I" J — 2 U + — c2) v-v. — 2cbv~1} 

+ ^v-v. [l + ^ + ±c2 - c4) v-V, - ± CjV-</. + (̂ 5 - - f r.) v-i] + C (b) 
(25) 

where C(b) is the constant of integration (a function of b). In order to determine this, we 
must take into account the fact that when we know v, which is equal to the number of mole
cules in the droplet found in equilibrium with the vapor of a given chemical potential b, ex
pression (25) should coincide with Eq. (21). On the other hand, obviously we may choose this 
value of v as the independent variable, and the parameter b in Eq. (25) may be replaced by 
bv. Proceeding in this manner, and in this case taking into account Eq. (17), we obtain 
(after combining like terms) an expression which differs from Eq. (21) only in the replace
ment of f(bv) by C(bv). Since in fact there should not be such a difference, we have C(bv) = 
f(bv). By virtue of the arbitrariness of v, this means C(b) = f(b),* which determines C(b) in 
Eq. (25). 

According to Eqs. (17) and (21), the parameters by and # V do not depend on b. Differ
entiating Eq. (21) with respect to v for constant b, we obtain 

#"v = &v , (26) 

where T\ = (d*&~v/dv2)bl b'v==dbv/dv . Using Eqs. (17) and (21), we may represent Eq. (25) in the 
form 

&-y = -(b—bv)v + 9-v—f(bv) + f(b) • (27) 

The work for introducing the nucleus from the vacuum into the liquid is equal to the differ
ence between the grand thermodynamic potentials-of the liquid around the insoluble nucleus 
and the pure liquid, when they have the same chemical potential b (and also the same volume 
and temperature). When we change b by the amount db, this difference changes by vndb, where 
vn is familiar to us as the difference between the number of molecules of pure liquid which 
would arrive at the region occupied by the nucleus and the adjacent surface layer and the 
true number of molecules in this region. In the case of the vapor, the analogous number vn

p 

will be much less than vn. Then integrating vndb with respect to b and taking into account 
the fact that in the corrections induced by the deviation of b from the value boo = 0 we may 
neglect the compressibility of the liquid and the nucleus, we obtain for the function f(b), 
defined by relationship (22), and the function C(b) equal to it, 

*For b > b m a x — only in the sense of analytical continuity. 
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/(6) = C(&)=/,+v„fc, ( 

where we have neglected (by virtue of the fact that vn^ << vn) the work for introducing the 
nucleus into the vapor. Substituting Eq. (28) into Eq. (27), we find* 

^ v = - (b - 6V) (v - vn) + V% ( 2 9 ) 

where v — vn is the true number of molecules of liquid in the droplet. 

When b < bmax (and b > 0), the equation b = bv has two positive roots in which, accord
ing to (24), the condition # Y = o is satisfied. The larger root provides the maximum for 
the function 3TV [otherwise, it would not decrease with an increase in v for large v, as is 
required for Eq. (25) when b > 0] and the smaller root provides the minimum (there cannot be 
two maxima in succession). When b = b m a x, both positive roots to the equation b = bv merge. 
In addition to #"7 = 0 we also have #Y' = 0, which follows from Eq. (26) and the relationship 
bv

f = 0 (the necessary condition for the existence of a maximum at bv for roots which coin
cide) . Merging of the maximum and minimum for the function #\ at its inflection point means 
that, when b attains the value b m a x > the nucleation of the droplet on a charged nucleus occurs 
not in a fluctuation manner but in a barrier-free manner. Finally, when b > b^ax, the equa
tion b = b v generally does not have positive roots. According to (24), the derivative # V 
nowhere tends toward zero: The function #"v monotonically decreases with an increase in v. 

Thus, Eqs. (17), (21), (22), (25), and (28) in analytical form determine for the droplet 
in the field of a charged nucleus all the parameters, whose calculation is entrusted to the 
thermodynamics of nucleation by nucleation theory. The presence in <FV of the "generating 
property" expressed by Eq. (24) gives Eq. (25) special significance: The other two formulas, 
(17) and (21), may be obtained from this one. In fact, differentiating (25) with respect to 
v (for constant b) and comparing the result with (24), we arrive at (17). Substituting the 
parameter b in (25) by b v, and then takaing into account (17), T.:e obtain (21). This makes 
formula (25) the major result of this work. 

Let us express in terms of the variable v and the charge q the conditions for applicabil
ity of the theory, which (as was shown in [2]) reduce to 

6,4:1, 6,<«If |65K6i • (30) 

Then the fact that 6X dominates the rest of the parameters 62, 6*», and 66 follows from the 
relationships 

62^6,, 64 — 6!, 66~65 (31) 

substantiated in [2] (the last relationship implies that the sign of 66 and 65 is the same). 
Substituting (9) into (30) and separating out the charge dependence, we obtain 

qv-V.^l, ̂ (ctajv-i^ 1, |z|(|cJ|/c1)v-
,/.sg 1 > (32) 

where z E q/q0> qo is the elementary charge (q0 > 0), c3° = c3/z
2, cs° = c5/z. From (10) it 

is evident that c3° and c5° are obtained from c3 and c5 by replacing q by q0« Consequently, 
they do not depend on q. If for any material we have 61 < 62, then the role of the dominant 
parameter is played by 62 and not by 5i. Then, in (32) and the subsequent discussion wemust re
place Ci by c2. 

As is clear from (16), the parameter A = (c3/c2)v~
1 = z2(c3°/c2)v"*

1 determines the rel
ative weight of the electrical contributions compared with the nonelectrical contributions in 
Eq. (17). In Eqs. (21) and (25), the analogous weight is equal to 8A and 2A. Obviously, the 
parameter A may be written as 

A = (c1/r2)2
2(^i)v-1 . (33) 

Conditions (32) impose on v a lower bound, and especially as |z| becomes greater. For 

Ci<[z>(cl/Cl)]
l/* (34) 

*We may obtain Eq. (29) by a purely thermodynamic route in analogy with the no-field case. 
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in order to satisfy the first two conditions in (32), it is sufficient to satisfy the second 
condition. If at the allowed lower limit for the values v ~ z2c3°/ci the third condition in 
(32) is satisfied, i.e., if 

\cl\/\zW(cy-^l , (35) 
then this limit will be the lower one for all three conditions in (32). Recalling that the 
left-hand side of the second inequality in (32) and hence the right-hand side of (33) in 
general take on maximum values equal, respectively, to 1 and Ci/c2, we conclude from (33) 
that at the same limit v takes on its own maximum value Amax and A. Obviously, Amax

 = Ci/c2. 
Since from (31) and (9) it follows that c2 5 Ci, Amax Is somewhat greater than unity (the 
electrical contributions are greater than the nonelectrical contributions).* Noting that at 
the lower limit for the values of v - z2c3°/ci the radius r of the droplet increases with an 
increase in |zl as |z|2'3. and assuming that, in this case, the radius rn of the nucleus in
creases as |z| '2 or [zl1/3 (the charge of the nucleus is distributed with constant density 
over its surface or volume) we conclude: r >> rn. This verifies the assumption that the 
field of the nucleus is spherical when the field is substantial. 

Obviously, satisfying the inequalities in (34) and (35) requires a sufficiently high 
value for |z|. Using known data for water (temperature about 0°C), we have from (10): cx * 
0.5 [4, 5], c2 - 0.36, c3° ~ 3, c5° = 2, where we take into account the fact that (^oAfyO«= 
— K&oJkT, x~l (x>0) ([2], formula (44)) and we bear in mind that 47rq0 &0JkT^—4,2 [6-9]. 
It is clear that when z = ±1 (singly charged ion in the droplet), the strong inequality in 
(34) and the inequality in (35) are satisfied in practice. For Amax we obtain the value 1.7. 
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*In this case, bv < 0, so that the droplet is found in stable equilibrium with the incomplete
ly saturated vapor, which corresponds to a single positive root to the equation b = bv for 
b < 0. 
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