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THEORY OF NUCLEATION ON CHARGED NUCLEI. 

3. EXPANSION IN THE CURVATURE PARAMETER OF A DROP IN A STRONG FIELD 

OF A CHARGED NUCLEUS 

F. II. Kuni, A. K. Shchekin, UDC 541.18:536.423.3.001 
and A. I. Rusanov 

An iteration method with respect to the curvature parameter of a drop in a strong 
field of a charged nucleus has been developed. It has been shown that among the 
nonlinear electrical effects already described by the second iteration, there are 
some which are odd relative to the sign of the charge of the nucleus. 

Expansion in the curvature parameter of a drop (the ratio of the thickness of its surface 
layer to its radius) is one of the most effective methods in the thermodynamics of homogeneous 
nucleation. The generalization of this method to nucleation in the presence of charged nuclei 
is the subject of the present work. The main purpose was to include strong electric fields, 
whose contributions can noticeably compete with the usual nonelectrical contributions and 
thereby significantly influence both the state of the drop and the entire nucleation process, 
in the description. 

For the surface tension y of a drop (on its boundary with a vapor), we shall use the 
generalized adsorption equation (LI], Eq. (27)}: 

di=—rdii+Dd& (1) 

and the equation of mechanical equilibrium {[1], Eq. (15)}: 

PB(')-P&e) = 2v/r. (2) 

The temperature T is assumed to be fixed (accordingly, we shall not indicate the dependence 
on it), and the substance surrounding the insoluble nucleus will be considered a one-component 
substance. In the case under consideration of an equilibrium drop, it has a unique chemical 
potential u. The notation is the same as in [1]: r is the radius of tension surface, T and 9 
are the specific adsorption and excess polarization (relative to the tension surface), D = 
q/r2 is the induction,* q is the charge of the nucleus, PN(r) is the normal component of the 
pressure tensor, and the superscripts a and 3 correspond to the bulk properties of the liquid 
(composing the drop) and the vapor. 

As the two independent variables corresponding to the two degrees of freedom of the sys
tem at a fixed temperature, we take \i and D. Introducing a = y—D^5 (the thermodynamic surface 
tension), we rewrite (1) asT 

do=—rdii—&>dD. (3) 

Integrating this with respect to D at a constant y, we have 

D 

o(\i,D)=c0(li)-^(lL1D')dD' (4) 

*We shall consider the positive directions emerging from the center of the drop. 
"""The influence of an electric field on the surface tension was considered for the first time 
in [2J.  
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where the subscript 0 corresponds to the value at the same chemical potential in the absence 
0f a field. Then differentiating (4) with respect to u at constant D and comparing the re
sult with (3), we obtain - - . 

T (n, D) = T0 (n) + 5 jJT^dD'. (5) 
0 

Returning to y = o + D ^ in (4) and taking into account that Yo(p) E o 0 ( p ) , we find 

D 

V fo. O) = To fo) + D& Oi, D) - j S> fo, D') dD'. (6) 

The electrical contributions to the left-hand side of Eq. (2) are easily isolated {[3], 
Eq. (11)1. After this, Eq. (2) can be written as 

Ap?W-A/7j(fx)+W(u)Z)
2 = 27(^^)/r, (7) 

where Ap0
a'^ is the deviation of the pressure in the presence of a field from its value when 

r = °°, 

WEEE( l /e p - l /e a ) /8 j i (8) 

and e a i ,° is the dielectric constant. For polar liquids, in which we are interested, c^ -
1 << e a, so that u * 1/8TT. 

Assuming that yo (p) > #*('M> D ) » A P o a (p)» a n d U ( P ) are assigned functions, we can find 
the function Y ( U , D) from (6). Then treating (7) as an algebraic equation with respect to 
p, we find u = p(r, D) and consequently Y(r» D) E Ylp(r> D), Dj. 

This procedure is especially simpler in the case under consideration here of a small 
curvature parameter 

6,eUr, (9) 

where A^ is the difference between the radii of an equimolecular surface and the tension sur
face (XQO > 0)> anc* the subscript °° (here and in the following) indicates that the quantity 
refers to the case of a flat layer in the absence of a field. In fact, when 6i << 1, the 
value of Y o n t n e right-hand side of (7) can be approximated in order of magnitude with re
spect to 6i by its value Yoo when 6a = 0. Identifying the number of the approximation with the 
order of the relative error with respect to the parameter 6i, we shall call Y<» t n e first ap
proximation for Y* Solving Eq. (7) at Y = Y°° a110" setting p^ = 0 (computing p relative to 
Poo), for p we find the first approximation p(x)(r, D). Then substituting p'J'(r, D) into 
the function Y(P> D) defined by equality (6), for Y we find the second approximation Y (r» 
D) = YIP' (r> D)> D]. The further performance of the iterations is already obvious. Of 
course, the transition to each successive approximation requires increasingly more accurate 
knowledge of the functions Yo(p),5Z)(p, D), Ap0

a'^(p), and u(p), which play the role of the 
assigned equations of state. 

An additional facilitating circumstance when 6a << 1 is the clear fulfillment of the in
equality Apo /Apoa << 1, which permits the neglect of the second term on the left-hand side 
of (7) in comparison to the first. The fulfillment of the inequality p^/pa « 1, where p is 
the density of the number of molecules, is scarcely.weaker. The latter permits the neglect 
of p^ in comparison to pa. These two simplifications will be made in the following without 
any additional stipulations. 

The corrections with respect to 6i may be of the same order of magnitude as the correc
tions for the compressibility of the liquid.* As the tabulated data show, in the range of 
pressures of interest to us the compressibility of the liquid x may be assumed constant: 
X = Xoo. F° r the density of the liquid we then have 

P? = P£(l+P^CoH) ( 1 0 ) 

*The combined determination of these corrections in the absence of a field was carried out 
in [A]. 
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(the chemical potential is determined relative to the value of uOT). Then integrating the 
thermodynamic relation dApoa/du = p 0

a with respect to u, we obtain 

Ap? = P>(l+yP;X-|i). (ID 

Assuming for a time that the equalities Apoa = p^u and u = u^ are valid in a first ap
proximation, from (7) we obtain in the same approximation 

lisjiw =2yJplr-uJDVpl. (12) 

Taking into account (12), we have 

p£Xa.|i = V - a 3
 ( 1 3 ) 

where 

62=2xooT Jr, b^%mtimD*. (14) 

The dimensionless parameter 62 also plays the role of a curvature parameter. Since the quanti
ty 2x^00 is on the order of fractions of an angstrom under ordinary conditions, we may expect 
2XcoYoo •£ ̂-oo and thus 62 £ <$ 1. Assuming in addition that 63 s 61 (this places an upward re-, 
striction on |q|), the neglect of the term p^x^ii/2 in (11) during the determination of u 
is justified. If it is found for some substance that 2XOOYOQ £ ^ and thus 5i ^ 6 2 , the major 
parameter in all subsequent evaluations will be 62, which should then be small (62 « 1), 
rather than 5i. Accordingly, instead of 63 ^ 6 1 , it should then be required that 63 < 62. 

Next, after obtaining the equality 

I du 1 dza • 1 de* 

UoQ dfJL (e a) ' 41 (e*)* 41 
(15) 

(where it has been taken into account that u^ - 1/8TT) from (8), for the evaluation of the 
first term on its right-hand side we use the relation 

1 dea ^ 1 * f ftflY t ,N 

e a 41 ^ P? d|i r°° V 1 ° ; 

and for the evaluation of the second term we use the equality 

ee ~ 1 + 3Pe/p« (17) 

(which follows from the Langevin—Debye equation) and the equation of an ideal gas dp0 du -
po /kT (k is Boltzmannfs constant). As a result, we obtain 

1 du .̂PooXoo 3P0 

TTlT^T^—^tt"- (13) 

The second term on the right-hand side of (18) almost never exceeds the first term. Thus, 

—-T^PSX-o/**- < 1 9 ) 

Along with (13) this allows us to write 

1 du 

"00 * 

;!$2-63|/e
a^&i/*a. (20) 

According to (20), the relative change in the value of u does not exceed 6i/ea. In view of 
the fact that l/ea « 1, this justifies the relation u = u^ not only in the first, but also 
in the second approximation. In addition, this also justifies the linearity of the equation 
of the electrostatics of the a and 3 phases used in isolating the electrical contributions 
to the left-hand side of (7). 

Unlike the a and $ phases, the surface layer of a drop displays nonlinearity in its elec
trical properties. As the simplest approximation taking into account this nonlinearity we 
can use 
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<?(ц,Д)=^0(ц)+^е, ?e=KD+kiD\ (21) 

where^,o(p) and^e are the spontaneous and excess induced polarizations, and the coefficients 
kx and k2 in the principal approximation are assumed constant. Equations (5) and (6) then 
give ' 

T(VL,D)=T0(\x)+Dd&Jd[i (22) 

У (|i, D) = Vo (И) + { K& + f V • (23) 

Setting 

r«i[p-(r)-p»(r)]tope(r)A. . "" (24) 

we relate Л to the radius R of an equimolecular surface {[3], Eq. (25)} 

[the inequality p0^ << Po and definition (8) have been taken into account]. As is clear 
from (19), (14), and (9), the last term on the right-hand side of (25) does not exceed a value 
of ~Аг2<5к5з/е:а> which (in view of the fact that 63 s 6i and l/ea « 1) is smaller by more than 
two orders of magnitude with respect to 6X than the second term on the right-hand side of 
(25). Relation (25) then gives the equation 

R=r([+l/r). (26) 
in which the quantities which are small by two orders of magnitude with respect to 5i were 
neglected. 

For the density pa(r) we may write {[3], Eq. (19)}: 

P"W-P?W+-i!n?™£- (27) 

According to (16) and (14), the second term on the right-hand side of (27) has a smallness 
factor 63/E in comparison to Рт

а. Recalling (10) and (13) and again taking into account 
that 1/e « 1, we conclude 

Ра = Роа = Р^(1+б2-б3). (28) 

where the second-order quantities have been neglected. 
Using (28), we write (24), respectively, in the presence and absence of a field as 

Г = Р^, r e - p j V (29) 

Substituting this into (22), we obtain 

Х = Х0 + Д Л A ^ s ^ - i f * . . (30) 

We can now explain the appearance of the nonlinearity in expression (21) for^ e. From 
the result previously obtained {[5], Eq. (51)}, it follows that in the principal approxima
tion with respect to the curvature parameter 

^».=.2M.TIZ) . (31) 

where n is the difference between the surface relative to which the excess polarization^ 
is equal to zero and the tension surface. Since the dielectric constant is determined main
ly by the density of the substance, it is reasonable to assume that n — Л. In view of (30) 
we then have 

9>.~2u^+^^D*. (32) 
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Tnis lormuia is characterized by the same structure as expression {21) lor;/ with the -p-inde

pendent coefficients 

2"oo / d&0 

4* 
(33) 

where we have replaced X0, p 0
a , and d^0/dp by their first approximations Aw, p^, and (d^0/dp) 

since & will appear in all the final expressions (for y, V, and the work of formation of a 
drop) as first-order corrections with respect to 61• 

Since ̂ 0 —^om will also play the role of a first-order correction with respect to <5i , 

we can write^o — ̂ o ^ = (d^50/dp)ooy after replacing u here by the first approximation p^
1 . 

Taking into account (12), we then have 

^„=^+^(^-^)(^. (34) 

We now introduce three dimensionless parameters 

* ' " * £ • ' " " i t r ( •*• ) . • *-*&•' ( 5 ) 

According to (33), 6U " 61 (6A > 0 ) , and 5 6 - 65 [the signs of the parameters 65 and fi6, 

which are identical, depend on the sign of q and the sign of the derivative (d^0/dp) ]. From 

(21), (34), and (23) with consideration of definitions (35) we have 

q$> = ?S»o. + 2 Y » ^ S + 2u°°r*D* \bK - 1 6 6 + 66) ( 3 6 > 

Y = Yo(rt + tt-'08(&4+ £*.)• ( 3 7 ) 

Then, calculating the correction term to (26) with the aid of Eqs. (30), in which we can re
place Ao, po a, and d^o/du by their first approximations A , p a, and (d^o/du)^, with consid
eration of (9) and the second of the definitions in (35) we obtain 

/? = r(l + 61 + 6,). (38) 

Below we shall assume that \&s\ ~ |6e| £ &i (this places an upward restriction on |q| in addi

tion to 63 s 6x). The quantities discarded in (36) and (38) will then be second-order with 

respect to 61, i.e., the parameter which is the upward major of the remaining parameters 5 2, 

.., 66 of the theory. 

In order to find y0(|j), we integrate Eq. (1) in the absence of a field with respect to 

p. Since y0 (p) ~ Yoo plays the role of a correction to y^, in determining To, with the aid 

of the second of the equalities in (29) we can replace the quantities p 0
a and \ 0 in it by 

their first approximations p and X . As a result we obtain 

?„M = 7» - P ^ » H . (39) 

which provides an accuracy sufficient for constructing a second approximation to y(r, D) and 

u(r, D). 

We shall now proceed to its construction. Again taking into account the correction na

ture of the second term on the right-hand side of (39), we disclose it with the aid of the 

equation of the first approximation (12). Then substituting (39) into (37), with considera

tion of (9), we obtain 

1f«Tf
c,) = 1f-(l-26l)+i/.rZ)*(6l + 64+j6i). (40) 

Next, substituting (40) into the right-hand side of (7) and noting that the equation of the 

first approximation (13) is adequate for determining the correction term in (11), as well as 

recalling that the relation u = um along with the linearity of the electrostatics in the a 

and 3 phases remain valid in the second approximation, we find 
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Fig. 1. Dielectric saturation curves 
in the surface layer: a) case of ̂ 0 > 
0; b) case of £> 0 < 0. 

H u„D* 
^ ^ — ^ [ 1 - 2 6 , - 1 ( 4 , - ^ 1 ^ ^ [ l ~ 2 ( 6 1 + 64 + l66)^l(62^63)], (41) 

where the terms with products of the small parameters are neglected with the accuracy required 
for the second approximation. After obtaining the identity , 

u„D* 

par 3 p a 2 

r oo r oo 

(42) 

directly from (14), we can reduce (41) to 

<-^-gr('-*-7«i)-^-l'H!ft+y-«k+^-f».] (43) 

It is significant that while only one expansion parameter (the curvature parameter 61) 
is present, in (40) and (43) there are two independent variables: r and q (the dependence on 
q appears by means of D = q/r ). It may be stated that expansions (40) and (43) are uniform 
with respect to all q satisfying the conditions 63 s 61 and |65| ~ | &| s 61# As is clear 
from (9), (14), and (35), the upward restrictions placed by these conditions on |q| are weak
er the greater is r (the smaller is 6i). Just this allows us to assume that 53/62 is not a 
small quantity when 6± << 1. From (42) and from (40) and (43) it is seen that 63/62 again 
determines the relative weight of the electrical contributions and the nonelectrical contribu
tions to the values of y — y and u. Without requiring that 63/62 is small in the theory, 
we maintain its applicability to strong electric fields, i.e., fields which have a signifi
cant effect on the drop. The correction terms in the second terms on the right-hand sides of 
(40) and (43) are also of interest in strong fields. Of course, in reality q takes on as
signed values (whole numbers of the elementary charge q 0). Accordingly, the conditions 63 < 
61 and |63| "" |66| s 61 place a lower restriction on r, which is stronger the larger is |qj. 

The equation of the second approximation (43) for u already contains a nonlinear elec
trical contribution, which is proportional to D*4, in the correction term with the parameter 
63. It is due to electrostriction and is present even if k2 = 0, i.e., f?e has a form which 
is linear with respect to the field. The next approximations y ^ ( r , D) , p^3'(r, D) , ... 
also have the ability to generate nonlinear terms that are increasingly higher with respect 
to D. When k2 = 0 (66 = 0), only terms which are even with respect to D appear, and when 
k2 ^ 0 (66^ 0), odd terms also appear. The lowest of the odd terms are already represented 
by corrections with the parameter 66 in the equations of the second approximation (40) and 
(43). Of course, the subsequent iterations require the refinement of Yo(p) and^0(y) [con
sideration of the derivative (dA0/du) , consideration of the variation of the induction in 
the layer, etc.]. 

The presence of terms which are odd with respect to q in (40) and (43) makes the dis
closure of the sign of the coefficient k2 appearing in them (by means of 66) important. The 
deviation of ̂ O ( M ) from zero is clearly caused by the difference between the properties of 
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the liquid and the vapor. Increasing u at a constant temperature increases the supersatura-
tion of the vapor and makes its properties more similar to the properties of the liquid, i.e., 
brings the state of the vapor and the liquid closer to the common critical state for thera. 
We may, therefore, expect (d| ̂ o|/du)oo < 0 [a similar inequality is observed for the surface 
tension Yo(u)], so that the sign of the derivative (d^0/du) and, according to (33), the sign 
of k2 are opposite to the sign of &Q. In order to evaluate the absolute value of the deriva
tive, it must be taken into account that the scale of variation characteristic of u is kT. 
The foregoing allows us to write 

{d0Jd)>.)m=—K&oJkT, x~l (x>0). (44) 

The same prediction of the sign can be attained on the basis of the data in Fig. 1, 
which presents plots of the dielectric saturation of^(u, D) due to the strong increase or 
decrease in D with constancy of u in the cases of &0 > 0 and <?0 < 0 [Eq. (21) describes only 
the part of the curves in the vicinity of the point D = 0]. In fact, Fig. 1 shows that the 
second derivative 3 2^(y, D)/}D2 at the point D = 0 is negative at the point^o > 0 and posi
tive in the case of ̂ 0 < 0. According to (21), this derivative is again equal (with accuracy 
to a factor of 2) to the coefficient k2. 
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DYNAMIC SURFACE ELASTICITY OF SURFACTANT SOLUTIONS AND THE STABILITY 

OF CAPILLARY WAVES 

B. A. Noskov UDC 532.635.661.185 

On the basis of the thermodynamics of nonequilibrium processes, a general equation 
has been derived for the complex dynamic surface elasticity of surfactant solutions 
in the case of mass transfer across a phase interface or chemical reaction in a 
surface layer. The limits of applicability of the expression derived are examined. 

According to a thermodynamic systemdeparting from equilibrium, for example when the chem
ical affinity increases, a transition of the system from the thermodynamic branch is possible, 
i.e., a spontaneous formation of a spatial or space-time dissipative structure [1, 2]. In the 
physical chemistry of surface phenomena such structures, associated with the terms "sponta
neous surfaceconvection" and "surface turbulence," have been investigated many times in con
nection with problems of the acceleration of mass transfer across an interphase boundary and 
spontaneous emulsification [3-8], 

Linear analysis of the stability of an interphase boundary reduces to an analysis of the 
dispersion relation (the relation between the frequency and the complex wave number) for su
perficial, usually capillary, waves, and the conditions for stability thus ensue from the 
boundary problem for the equations of the hydrodynamics of a viscous liquid. An analytical 
solution of the stability problem can be obtained only in some particular conditions [3-8]. 
The formal writing-down of the conditions of stability is simplified substantially if the 
concept of dynamic surface elasticity is introduced [4, 6-8]. The use of an independent gen
eral method for determining surface elasticity, therefore, offers a possibility of simplifying 
the problem and finding more general conditions for stability. 
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