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INTRODUCTION

In the first communication of this series [1], we
derived expressions for the work of the formation of
bare (without counterions) and dressed (covered with
bound counterions) ionic aggregates of surfactants in
micellar systems. Now, we intend to establish statisti-
cal-thermodynamic relations between the work of
aggregation and the state parameters of solution. Here,
we will deal with the description procedures, particu-
larly with the use of grand canonical ensemble of statis-
tical mechanics in the problems of aggregation in
micellar ionic systems. As is known, in the grand
canonical ensemble, independent variables are chemi-
cal potentials. When passing to ionic systems, electro-
chemical potentials are substituted for these potentials;
however, the problematic character of their indepen-
dence arises in precisely this case. Previous studies [2–
5] of aggregation in micellar solutions of ionic surfac-
tants are worth mentioning. These studies made it pos-
sible to clarify the mechanism of the independent vari-
ations of electrochemical potentials in the presence of
background electrolyte. It was shown [2] that the single
variation of the electrochemical potential of one of the
ions is ensured by the possible variation in the phase
electric potential of solution. At the same time, a num-
ber of problems remained intact. Moreover, it can be
said that not all of derived relations are correct; thus,
this field of the thermodynamic theory of micellization
deserves careful inspection. This problem is the focus
of this communication.

1. ELECTROCHEMICAL POTENTIALS 
IN GRAND CANONICAL ENSEMBLE

In thermodynamics, electrochemical potential  is
defined by the same relations as the chemical potential;
hence, it is undistinguishable from the latter. A separate
term for electrochemical potential was only needed
because of its commonly used conventional division
into two terms as follows:

 

(1.1)

 

where 

 

μ

 

i

 

 is the chemical potential of charged particle
(ion, ionic aggregate, or colloidal particle) of the 

 

i

 

th
type in the absence of charge, 

 

e

 

 is the elementary posi-
tive charge, 

 

z

 

i

 

 is the charge number of particle, and 

 

ϕ

 

 is
the electric potential in the point of its localization. For
equilibrium homogeneous electrolyte solutions, 

 

ϕ

 

 pre-
sents internal phase potential (the Galvani potential).
Using the expression for chemical potential employed
in statistical mechanics, we can write Eq. (1.1) in the
form
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where  is the Gibbs energy of a single particle of 
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th
type with the quiescent center of mass in a vacuum; 
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the Boltzmann’s constant; 
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 is the temperature; 
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average de Broglie wavelength of a particle; 
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particle concentration; and  and 
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 are activity coeffi-
cients, i.e., the zero and concentration coefficients,
respectively, the product of which forms the total activ-
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for an uncharged particle, 

 

kT

 

ln

 

 

 

 yields the work of
transfer of a particle from a vacuum to a pure solvent

and 

 

kT

 

ln

 

 

 

f

 

i

 

) yields the work of transfer of a particle
from a vacuum to a real solution. The last term in
Eq. (1.2) is added for a charged particle; this is the work
of transferring the particle through the boundary
between the considered phase and vacuum, where the
jamp of electric potential 

 

ϕ

 

 exists. The transfer is
divided into two stages, i.e., crossing the interface and
the rearrangement of the phase structure under the
action of a transferred particle; the 

 

ez

 

i

 

ϕ

 

 term character-
izes the work completed at the first stage, while

 

kT

 

ln

 

 

 

f

 

i

 

) depicts the work completed at the second
stage, which, in the theory of electrolyte solutions, is
called the work of the chemical solvation of ion.

Since the transferred charged particle only causes
the structural rearrangement of the solution in its vicin-
ity and does not involve remote regions, it can be
assumed that the whole process takes place at constant
values of chemical and electrochemical potentials of
solution components. Then, the work of process should
be presented as changes in the grand thermodynamic
potential 

 

Ω

 

, which can be imagined as excess grand
thermodynamic potential  around the 

 

i

 

 

 

th particle.
Unlike the theory of surface and linear phenomena, in
this case, we deal with the point excess. Then, for the
work of chemical solvation, we can write [6] the fol-
lowing expression:

 

(1.3)

 

Adding the electric term to this expression, by analogy
with electrochemical potential, we determine the elec-
trochemical work of solvation as follows:

 

(1.4)

 

With allowance for Eq. (1.4), we can now represent
the expression for electrochemical potential (1.2) as
follows (see also formulas (47.5) and (47.6) in [7]):

 

(1.5)

 

The  value in Eq. (1.5) plays the role of a constant
and is often omitted in the notation of Eq. (1.5).

The grand thermodynamic potential suggests the
consideration of systems with charged particles in a
grand canonical ensemble in which electrochemical
potentials should play the role of independent vari-
ables. However, the concentrations (and, correspond-
ingly, chemical potentials) of charged particles must be
related by the electroneutrality condition
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Hence, the question arises as to whether chemical
potentials can be independent of one another under
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these conditions. In order to answer this question, it is
sufficient to check whether at least one degree of free-

dom for a certain chosen electrochemical potential 
remains when the electrochemical potentials of the rest
of charged particles are fixed and condition (1.6) is still
valid. There is a more general problem in which an
answer is obtained for the posed question, i.e., the con-
struction of thermodynamic formalism in terms of elec-
trochemical potentials with allowance for electroneu-
trality condition (1.6). The traditional approach to elec-
trolyte solutions consists of introducing hypothetical
neutral substances and their average activities in view
of impossible measurements of activity coefficients for
single ions. It should be more realistic to address to ions
(particularly, for strong electrolytes) that exist in solu-
tion. Moreover, if we could (at least for dilute solutions)
calculate activity coefficients for single ions, this
approach in the theory is entitled to exist.

As an illustration, let us formulate fundamental
equations for the Gibbs energy. Let there be one neutral
substance (solvent, index 0) and charged particles of
arbitrary number of types (index 

 

i

 

) in a system. In the
absence of electroneutrality, each type of ions can be
considered to be a single component and the fundamen-
tal differential equation for the Gibbs energy 

 

G

 

 of the
system under consideration is written as

 

(1.7)

 

where 

 

S

 

 is the entropy, 

 

p

 

 is the pressure, and 

 

N

 

 is the
number of particles. Now, we introduce electroneutral-
ity condition (1.6), multiplying preliminarily this con-
dition by volume 

 

V

 

 as follows:

 

(1.8)

 

Excluding 

 

dN

 

j

 

, where 

 

j

 

 is the number of any speci-
fied type of charged particles, with using Eq. (1.8), we
can write Eq. (1.7) in the following form:

 

(1.9)

 

where
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In comparison with Eq. (1.7), the number of indepen-
dent variables in the right-hand side of Eq. (1.9) is
diminished by unity. It can be seen that electrostatic
components of electrochemical potentials in the right-
hand side of Eq. (1.10) are mutually eliminated (see Eq.
(1.1)), and only the difference of common chemical
potentials remains. The 

 

μ

 

i
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 can be called the relative
chemical potential of the particles of 

 

i

 

 

 

th type (counted
with the reference to 

 

μ

 

j

 

).
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The integration of Eq. (1.9) at a preset physical state
yields the fundamental equation for the Gibbs energy

(1.11)

and, comparing Eqs. (1.9) and (1.11), we arrive at the
Gibbs–Duhem equation

(1.12)

which is reduced per unit volume to the equation

(1.13)

where sv is the entropy density. In accordance with Eq.
(1.10), if the temperature and all electrochemical

potentials except for  are fixed, we obtain

(1.14)

and

(1.15)

where condition (1.6) is used again. It is interesting to
note that the right-hand side of Eq. (1.15) has the same
form as in the case of the mutual independence of all
electrochemical potentials. Now, if the chemical poten-
tial of solvent, μ0, is fixed, based on Eq. (1.15), we
obtain the relation

(1.16)

which fully corresponds to the grand canonical ensem-
ble. Of course, the pressure can be fixed in Eq. (1.15);
in this case, one degree of freedom, which is necessary

to vary electrochemical potential , is retained. This
case was considered in [2]. However, escape from the
grand canonical ensemble is implied in this case, which
we obviate not only based on the purity of the method,
but also on the necessity to correspond to other rela-
tions, which will be derived later. We discuss the gen-
eral case when the pressure can be varied.

Referring subscript i in condition (1.6) to any
charged kinetic unit of a solution (ion, molecule–ion
aggregate, or colloidal particle) and varying the chemi-
cal potential (Eq. (1.2)) as a function of the pressure
and composition, for all of these kinetic units, except
for particles of the chosen jth type, we can write the
condition of the fixation of electrochemical potential as
follows:

(1.17)
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where vi is the partial volume of the ith particle. Here,
we used the relation

which stems from Eq. (1.7). In view of the low com-
pressibility of the condensed phase (solution), we
ignore variations in volume, which means that both the
number of particles and their concentrations (and, at the
same time, activity coefficients) in the first derivative
are constant. Thus, when varying Eq. (1.2), the differ-
entials of concentrations and activity coefficient are
written separately, as is shown in Eq. (1.17).

Similarly, for particles of the j th type, we obtain

(1.18)

Combining Eqs. (1.6) and (1.17), expression (1.18) is
transformed into the following form:

(1.19)

where the summation is performed over all types of
charged particles, including jth particles, and I denotes
the ionic strength of solution according to the definition

(1.20)

It follows from Eq. (1.19) that it is necessary to take
into account that variables fi and ϕ in this equation are
the functions of solution composition. Particular
emphasis should be placed on potential ϕ. Theoreti-
cally, the effect on the interfacial electric potential can
be demonstrated by placing insoluble substances on the
solution surface. Then, the ϕ value can change with the
conservation of solution composition and, hence, it
ceases to be the state parameter. Although this case is of
great practical importance, we exclude it from consid-
eration due to fundamental reasons. The point is that its
practical aspect is related primarily to deviations from
the equilibrium because of the smallness and slowness
of the dissolution of insoluble monolayers. Considering
strictly equilibrium systems, we should assume that all
substances are soluble (let them be as low as possible)
and, based on their concentration in the solution bulk,
determine the state of surface layer. In other words, it
can be assumed that the surface layer in a really equi-
librium system is formed by adsorption. Then, the
problem of the independent behavior of the electric
potential ϕ vanishes and this potential, as well as activ-
ity coefficients in Eq. (1.19), becomes an unambiguous
function of solution composition or, equivalently, of the
set of its chemical and electrochemical potentials.
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Dividing both sides of Eq. (1.19) by d  we arrive
at the relation

(1.21)

Derivatives in Eq. (1.21) are not yet fully determined,
since, according to Eq. (1.15), there are two degrees of
freedom in a system. Eliminating one of these degrees
by fixing μ0 and taking advantage of relation (1.16),
from Eq. (1.21), we obtain the following relation:

(1.22)

Equation (1.22) is the rigorous relation of the theory
of nonideal micellar solutions, which can be substan-
tially simplified for ideal solutions. If aggregation takes
place at fairly low concentrations of solutes (as in the
case of micellization) and the degree of counterion
binding is rather high (as in the case of dressed
micelles), the effect of activity coefficients in Eq. (1.22)
can be ignored and this expression rewritten in the form

(1.23)

It can be easily proven that the sum in the right-hand
side of Eq. (1.23) is the small correction to zj. It is suf-
ficient to remember the thermodynamic relation for
partial volumes

(1.24)

whose physical meaning consists of the fact that the
sum of volume fractions of all types of particles is equal
to unity. As we consider the dilute solution, it is evident
that condition vi � 1 is fulfilled. The sum in Eq.
(1.23) is even smaller, since its terms have different
signs (in accordance with signs of zi) and, at a consider-
able imbalance between the opposite charges in a
dressed ionic aggregate, the role of charge numbers
cannot be decisive. In view of the fact that |zj| ≥ 1, we
can now conclude that, in the considered approxima-
tion of ideal solution, the sum in Eq. (1.23) can be
neglected and we can write

(1.25)

Formula (1.25) is analogous to the result obtained in [2]
at constant pressure and variable chemical potential of
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a solvent. However, in contrast to this result, our for-
mula strictly corresponds to the grand canonical
ensemble.

Let us turn now to the general expression for elec-
trochemical potential in the left-hand side of condition

(1.17) and divide it by d  at the fixation of all other
chemical and electrochemical potentials (including
chemical potential of a solvent). In view of condition

(1.17), the d /d  ratio is equal to zero at i ≠ j and
evidently equal to unity at i = j; i.e., it will be set by Kro-
necker symbol δij. Additionally taking into account
relation (1.16), we obtain

(1.26)

The substitution of Eq. (1.22) into (1.26) with allow-
ance for Eq. (1.20) yields

(1.27)

In the approximation of ideal solution, we can
ignore terms with activity coefficients and rewrite Eq.
(1.27) as follows:

(1.28)

The last term in the right-hand side of Eq. (1.28) is
small compared to the second term in view of inequal-
ity vi � zizj / 2I due to the smallness of the ionic strength
of dilute solution. Neglecting the last term, we arrive at
the relation

(1.29)

Since relation (1.29) complies with the approxima-
tion of ideal mixture of particles of different types (e.g.,
the mixture of monomers and the population of ionic
aggregates with different sizes), it is interesting to com-
pare this relation with the exact expression for the same
derivative in the grand canonical ensemble, which can
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be derived from formula (1.5). Differentiating Eq. (1.5)
at constant temperature and assuming fi � 1, we have

(1.30)

At constant temperature, the fundamental equation for
the grand thermodynamic potential of the system con-
sidered is written as follows:

(1.31)

where different types of charged particles are assumed
to be independent components of a system. With allow-
ance for electroneutrality condition (1.8), the number
of independent variables diminishes and Eq. (1.31)
takes the form (see Eq. (1.10))

(1.32)

Passing now to point excesses on one particle of the ith
type in Eqs. (1.31) and (1.32), we find

(1.33)

(1.34)

where the bar over the symbol denotes the excess and
additional subscript i indicates the type of particle to
which the excess is referred. The excess of solvent,

, reflects the solvation of ith particle and excess

 reflects the distribution of other particles around
the first one. Like numbers of particles, their excesses
satisfy the electroneutrality condition. This follows
from condition (1.8), provided that, in this condition,
we pass to the point excesses

(1.35)

Substituting Eq. (1.34) into Eq. (1.30), we arrive at
the expression

(1.36)

Combining Eqs. (1.36) and (1.35) (see also definition
(1.10)), we obtain
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All of these equations can be written in the compact
form of one expression as follows:

(1.40)

where k is the number of any type of particles (charged
or neutral) and δik is the Kronecker symbol. Formula
(1.40) is rigorous relation of statistical mechanics (in
grand canonical ensemble), which is true at any set of
particles, including the simultaneous presence of
molecular and ionic aggregates of different sizes and
any group of neutral substances that form mixed sol-
vent. Note that analogous formulas in [2] only conform
to ours at k = i.

Relation (1.40) is more general than Eq. (1.29)
because it suggests the possibility of differentiation
with respect to the chemical potential of a solvent.
However, if we only focus on charged particles and
assume that k = j, comparing Eqs. (1.29) and (1.40), we
arrive at the following expression for the excess number
of jth charged particles type on a particle of ith type:

(1.41)

As can be seen from expression (1.41), the positive
excess of counterions and negative excess of co-ions
are formed on the particle of ith type; moreover, at pre-
set ionic strength of solution, this excess is proportional
to the charge number of ions or the concentration and
squared charge number, if we deal with the excess of
the ith type of ions on one of the ith particles. Multiply-
ing both sides of Eq. (1.41) by zj and summing over all
j, it can easily be proven that formula (1.41) satisfies
electroneutrality condition (1.35). Taking into account
the definition of ionic strength (1.20), we can also state
that the absolute value of point excess  is always
smaller than unity. Note that formula (1.41) refers to the
dilute solution and, hence, can be derived directly in
terms of the Debye–Hückel theory of electrolyte solu-
tions [8]. Moreover, if we deal with ionic aggregates, it
is natural that we mean dressed aggregates whose
charges are not large enough to prevent the application
of the Debye–Hückel theory. Finally, it should be noted
that the excess number of counterions and the number
of bound counterions are notions that belong to differ-
ent categories. The second number cannot by judged by
the first one and, correspondingly, formula (1.41) does
not determine the degree of counterion binding in the
ionic aggregate or micelle.

2. OSMOTIC PRESSURE OF AGGREGATION 
SYSTEM

As is known, the notion of osmotic pressure appears
when considering the membrane equilibrium. Let us
imagine that the solution in which aggregation pro-
cesses take place is placed on one side of a membrane
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that is only permeable for solvent molecules, while, on
the other side, we have pure solvent. The chemical
potential of the solvent is a function of only the temper-
ature and pressure and, if they are fixed in solvent (T =
const and p0 = const), the chemical potential of the sol-
vent is also constant. Then, to maintain the membrane
equilibrium at variations in the composition of solution,
it is necessary to change its pressure p. The difference
in pressures p and p0 determines osmotic pressure Π as
follows:

Π ≡ p – p0. (2.1)

The use of osmotic pressure to describe the system of
monomeric ions and monodisperse ionic micelles has
already been considered in [5]. However, the result
obtained calls for refinement, which precisely is what
we are going to do.

According to (2.1), at preset p0, we have dΠ = dp.
Taking into account the constancy of temperature and
relevant constancy of the chemical potential of the sol-
vent, we write the Gibbs–Duhem equation (1.13) as fol-
lows:

dΠ = (2.2)

Equation (2.2) is written in terms of relative chemical
potentials. Using definition (1.10) and electroneutrality
condition (1.6), we can reduce Eq. (2.2) to the tradi-
tional form

dΠ = (2.3)

where the electroneutrality condition is not manifested
in any way. However, this makes it possible to replace
all chemical potentials in Eqs. (2.2) and (2.3) with elec-
trochemical potentials when it is necessary to differen-
tiate the osmotic pressure with respect to the electro-
chemical potential (in this presentation, this is not nec-
essary).

Partial expressions for chemical potentials, which
stem from Eqs. (1.17) and (1.18), can also be written,
like the Gibbs–Duhem equation, in terms of osmotic
pressure at dè = dp as follows:

(2.4)

where vi is the partial volume of one charged ith parti-
cle. After substitution of Eq. (2.4) into (2.3), we arrive
at the equation

(2.5)

The sum in coefficient at dΠ is the volume fraction of
all charged particles in solution taken together. Denot-
ing this sum as φ, we can write equation (2.5) for
osmotic pressure as

(2.6)

cidμi j( ).
i j≠
∑

cidμi,
i

∑

dμi vidΠ kTd ciln kTd f iln ,+ +=

1 civi
i

∑–⎝ ⎠
⎛ ⎞ dΠ kT dci cid f iln+( ).

i
∑=

dΠ kT
1 φ–
------------ dci cid f iln+( ).

i
∑=

Equation (2.6) is the general thermodynamic rela-
tion, which is true for any set of charged particles in
solution including ionic aggregates. This equation is
also valid for any treatment of aggregates (bare or
dressed); the difference will be only in the values of
activity coefficients. For dressed aggregates, activity
coefficients are closer to unity and the application of the
model of ideal solution as approximation is more sub-
stantiated. In this model, rejecting the terms with activ-
ity coefficients and classifying particles into mono-
meric ions (additional subscript 1) and ionic aggregates
with sets of aggregation numbers {n} ≡ n1, n2, …, we
can write Eq. (2.6) in the following form:

(2.6a)

where the summation is performed over all monomeric
forms of free ions and all types of dressed aggregates,
including micelles. The integration of Eq. (2.6) with
neglect of φ and substitution of the sum of aggregate
concentrations over aggregation numbers {n} for the
concentration of micelles at average aggregation num-
ber yields the formula for the osmotic pressure of infi-
nitely dilute micellar solution, which was used by
Maeda [5] without generalization to the case of the
mixture of aggregates with different sizes, which was
done in this work. Note, however, that surfactant mole-
cules are ten times larger than water molecules and, at
small molar fraction of surfactant, its volume fraction
can be noticeable. This is taken into account in formula
(2.6).

3. RELATIONS FOR THE WORK 
OF AGGREGATION

In previous communication [1], we defined the
dimensionless standard work of aggregation (for brev-
ity, called simply the work of aggregation) by the
expression

(3.1)

where  is the standard chemical potential of molec-
ular ionic aggregate as a whole, ni is the aggregation

number of ith ions, and  is the standard chemical
potential of monomeric particles of ith type; the sum-
mation is performed over all types of particles partici-
pating in the aggregation. In correspondence with the
postulates of the nucleation theory, for ionic aggregate,

the standard activity , which enters  in Eq.
(3.1), is chosen as equal to activity a1 of surface-active
monomers (denoted by subscript 1) and the standard
chemical potentials of monomers are identified with
real chemical potentials (see Eq. (1.2) [1]). Strictly
speaking, for charged particles, electrochemical poten-

dΠ kT
1 φ–
------------d ci1

i
∑ c n{ }

n{ }
∑+⎝ ⎠

⎛ ⎞ ,=

W n{ }

μ n{ }
s niμi

s

i
∑–

kT
---------------------------------,≡

μ n{ }
s

μi
s

a n{ }
s μ n{ }

s
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tials containing additional (to chemical potentials)
terms of type ezkϕ should appear in expression (3.1).
However, these terms are eliminated due to the fact that
charges for both terms in the right-hand side of Eq.
(3.1) are equal as shown below:

(3.2)

This circumstance allowed equality (3.1) to be written
in terms of ordinary chemical potentials for both
uncharged and charged particles.

In accordance with what has been said above, stan-

dard chemical potentials  and  are given by the
expressions

(3.3)

(3.4)

where  is the Gibbs energy of a single aggregate
with a quiescent center of mass in pure solvent (in the
absence of other aggregates) and a is the activity; sub-
scripts {n} and i denote aggregates and all types of par-
ticles in solution, respectively.

Combining Eqs. (3.1), (3.3), and (3.4), we derive the
following equation:

(3.5)

where the sum and product are taken over all types of
particles, including type 1. The following important
relation is derived from Eq. (3.5):

(3.6)

which can be considered to be the thermodynamic def-
inition of aggregation numbers in polydisperse micellar
systems. It is natural that the differentiation in Eq. (3.6)
is performed at fixed temperatures and chemical poten-
tials of remaining components with respect to activities
only of the types of particles that participate in the
aggregation process. Moreover, if we deal with a
charged particle, its activity depends on the charge and
ionic strength of the solution in spite of the absence of
phase potential ϕ in expression (3.5). At the same time,
it reasonable to put the question of the analogous rela-
tion when using electrochemical potentials of charged
particles in the grand canonical ensemble as variables.
Let us attempt to consider this possibility.

We return to expression (3.1) and substitute electro-
chemical potentials in this equation for chemical poten-
tials. After this, we differentiate the whole expression

z n{ } nizi.
i

∑=

μ n{ }
s μi

s

μ n{ }
s G n{ }

0 kT Λ n{ }
3ln kT a1,ln+ +=

μi
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0
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0 nigi

0

i
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kT
---------------------------------

⎝ ⎠
⎜ ⎟
⎜ ⎟
⎛ ⎞

d
Λ n{ }

3

Λi
3ni

i
∏
------------------ln+=

+ d a1ln nid ai,ln
i

∑–

∂W n{ }

∂ ailn
-------------- δi1 ni,–=

with respect to the electrochemical potential of one of

the types of charged particles,  which participates in
the aggregation, at constant temperature and other elec-
trochemical potentials as follows:

(3.7)

where Eq. (3.3) was used. From Eq. (3.4), we obtain

(3.8)

Substituting Eq. (3.8) into (3.7) and taking into account

evident equality d /d  = δk1, we arrive at the general
relation

(3.9)

For the last derivative in Eq. (3.9), we have expres-
sion (1.25); however, it refers to an ideal solution. So
that, starting from this moment, our arguments lose
their generality. Now we can say that, in view of expres-
sion (1.25) for an ideal solution, Eq. (3.9) takes the
form

(3.10)

Note that the contribution to ionic strength I is made by
all charged particles of a system, but not only by parti-
cles directly involved in the aggregation. Therefore, in
the presence of background electrolytes in solution, the
denominator in the right-hand side of Eq. (3.10) can be
much greater than the numerator. Then, the whole frac-
tion can be ignored and we can rewrite Eq. (3.10) in the
shorter form

(3.11)

As an example, we dwell on the simplest case when
aggregates are formed by only two types of ions (we
denote their concentrations of monomeric forms as
additional subscript 1), i.e., surface-active ions that ini-
tiate the aggregation (first subscript 1) and counterions
(first subscript 2). Then, for the population of formed
ionic aggregates, we have condition {n} = n1, n2, where
aggregation numbers n1 and n2 can take any possible
value. In addition, it is assumed that there are co-ions in
the solution (subscript 3) due to the presence of back-
ground electrolyte, the second ion of which coincides

μk
E,

kT
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with the counterion. In this case, it follows from Eq.
(3.10) that

(3.12)

(3.13)

where

(3.14)

The summation is performed over all types of aggre-
gates. An increase in the concentration of background
electrolyte leads to an increase in c21 and c3; moreover,
the degree of counterion binding rises and z{n} dimin-
ishes. Both factors make the last term in Eq. (3.12)
small compared to preceding terms and results in the
truncated relation

(3.15)

which defines the aggregation number. The situation
becomes more complicated with relation (3.13) where
high c21 concentration is also present in the numerator.
In this case, the disregard for the fraction may be justi-
fied only by the smallness of the charge number z{n} of
aggregate (at large n2). However, if the charge of aggre-
gate is small, this implies that the degree of binding of
counterions is close to unity and, hence, the problem of
finding their aggregation numbers is solved by itself.
Note that this circumstance casts no doubt on relation
(3.11), where the presence of foreign background elec-
trolyte, whose ions do not participate in aggregation,
was suggested.

4. CONTRIBUTIONS TO THE WORK 
OF IONIC AGGREGATE FORMATION

According to [9–11], let us present the formation
work W{n} of the aggregate of normal micelle type (with
hydrocarbon core) as the sum of four contributions

(4.1)

Here,  is the hydrophobic contribution responsible
for the transfer work of hydrocarbon tail of surface-
active ions from the solution to the aggregate core at a

pressure be equal to the pressure of solution;  is
the surface contribution that accounts for the surface
tension γ0 of the aggregate core and the fact that the part
of core is covered by head ionic groups and adsorbed

counterions;  is the concentration contribution
due to the difference in concentrations of hydrocarbon
tails in the aggregate core and in the surrounding solu-

kT
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2I
-----------------------------------,+=
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2I c11z1
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W n{ } W n{ }
h W n{ }

surf W n{ }
conc Wq

el
.+ + +=

W n{ }
h

W n{ }
surf

W n{ }
conc

tion; and  is the electric contribution responsible
for the work of aggregate charging at preset aggrega-
tion numbers and chemical potentials of surface-active
ions, counterions, and co-ions.

In the droplet model of a spherical single-compo-
nent ionic aggregate ({n} = n), we have the following
expressions for the first three terms in Eq. (4.1) [9–11]:

(4.2)

(4.3)

(4.4)

where B is the positive dimensionless quantity be equal
to approximately 1.4 at 20°C, nC is the number of car-
bon atoms in the hydrocarbon chain of surfactant mol-
ecule, γ0 is the surface tension of the hydrocarbon core
of aggregate, v is the characteristic volume of methyl-
ene group, c1 is the volume concentration of surfactant

monomers in solution, and cα ≈  is the con-

centration of hydrocarbon tails in the aggregate core.
Note that the ratio between radius r of the aggregate
core and aggregation number n has the following form:

(4.5)

Under assumption that n1 � n2, formulas (4.2)–(4.5)
are directly expanded to spherical ionic aggregate, pro-
vided that n is substituted for n1 and at the understand-
ing that the c1 value is assumed to be the volume con-
centration of monomeric surface-active ions in solu-
tion. This substantially simplifies the finding of the
formation work for spherical ionic aggregate in the
droplet model.

Basic difference in the formation work for molecu-
lar and ionic aggregates consists of electric contribution

 In the case of ionic surfactant, the electric contri-
bution was calculated as the energy of the spherical
capacitor formed by the electric dipoles of the hydro-
philic moieties of surfactant molecule [9–11]. In the
case of ionic aggregate, the electric contribution can be
calculated by the Derjaguin formula [2, 5, 12–14] as
follows:

(4.6)

where ϕs(q') is the electric potential on the surface of
bare ionic aggregate carrying charge q' (the whole work
W{n} in Eq. (4.1) refers to the bare ionic aggregate). A

Wq
el
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few analytical expressions of the ϕs(q') dependence was
proposed in the published literature; they are based on
the approximate solution of the nonlinear Poisson–
Boltzmann equation for a charged sphere and allow the

 contribution to be calculated as a function of
aggregation numbers n1 and volume concentrations of
surface-active ions, counterions, and co-ions in solution
[2, 4, 15, 16].
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