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Using the chemical potential of a solid in a dissolved state or the corresponding component of the
chemical potential tensor at equilibrium with the solution, a new concept of grand thermodynamic
potential for solids has been suggested. This allows generalizing the definition of Gibbs’ quantity �
�surface work often called the solid-fluid interfacial free energy� at a planar surface as an excess
grand thermodynamic potential per unit surface area that �1� does not depend on the dividing surface
location and �2� is common for fluids and solids. © 2009 American Institute of Physics.
�doi:10.1063/1.3254324�

In its development �see, e.g., surveys1,2�, the surface
thermodynamics of solids seems to become more and more
complicated as compared with the thermodynamics of fluids.
Concerning solid surfaces, Gibbs �p. 315 in Ref. 3� intro-
duced his famous quantity � as the work of formation of a
new surface per unit area and was first to distinguish between
� and the mechanical surface tension as an excess surface
stress. Gibbs used � in all his formulas as referring to the
equimolecular dividing surface that practically coincides
with the boundary surface of a solid. Gibbs himself did not
consider the dependence of � on the dividing surface loca-
tion. Only recently this question was touched upon by
Schimmele et al.4 in a paper devoted to line tension. As for
mechanical surface tension, it generally is a tensorial quan-

tity, �̂, and, only in the isotropic case �when �̂=�1̂, 1̂ being
the unit tensor�, is reduced to a scalar quantity � that can be
compared with �. As is well known, �=� for planar fluid
surfaces in the absence of an external field,5,6 but � and � are
different from each other for solids. As was first explained by
one of us,7 the cause of a difference between � and the
mechanical surface tension lies in the presence of a nonuni-
formity of the chemical potential of matter in the surface
layer of a solid. To be more exact, one has to speak about the
immobile component of a solid that forms a solid lattice. An
immobile component is incapable of diffusion, so that the
main mechanism of leveling chemical potentials does not
work for immobile components in solids. Gibbs’ quantity �

is often called surface free energy in the literature, but this
definition is strict only for a specific dividing surface coin-
ciding with the equimolecular surface in a single-component
system1 �pure substance�. Below, we generalize the definition
on the basis of grand thermodynamic potential.

For a fluid system, grand thermodynamic potential � is
defined as

� � F − �
i

�iNi, �1�

where F is the free energy of the system and �i and Ni are
the chemical potential and the number of molecules of the ith
species, respectively. Correspondingly, � �coinciding this
time with surface tension� is defined as

� = �̄/A , �2�

where the bar denotes a surface excess value and A is the
dividing surface area. For fluids, surface tension is known to
be independent of the dividing surface location in the case of
a planar interface, so that, naturally, Eq. �2� is valid at an
arbitrary choice of the dividing surface. Since the chemical
potential of an immobile component of a solid �which is a
tensor� ceases to be a variable in the grand canonical en-
semble, grand thermodynamic potential seems to be inappli-
cable to solids. Nevertheless, it is a common practice to use
grand thermodynamic potential when considering open com-
plex systems including both fluid and solid phases �e.g., wet-

ting systems�. To validate this practice, a hybrid potential �̃
was introduced7 as defined again according to Eq. �1� but
with subscript i referring to mobile components only. Such

definition implies that �̃ behaves as free energy with respect
to immobile components �in solids� and as grand thermody-
namic potential with respect to mobile components �both in
solids and fluids�.

Assuming the presence of only a single immobile com-
ponent j �the restriction being of no principal significance�,
fundamental equations in terms of �̃ for a uniform solid
phase are1,2

d�̃ = − SdT + Ê:dV̂ + �̂ j:dN̂j − �
i

Nid�i, �3�

�̃ = ExxV + � j�xx�Nj , �4�

where S is entropy; T is temperature; Ê is the stress tensor; V̂
is the volume displacement tensor;2 colon denotes a biscalar

product �the convolution� of tensors; �̂ j and N̂j are thea�Electronic mail: dtat@mail.ru.
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chemical potential and the mass displacement tensors,2 re-
spectively, for the immobile component; Exx and � j�xx� are

respective diagonal components of Ê and �̂ j for an arbitrary
direction x in which the solid phase is uniform; V is the
phase volume, and Nj is the number of molecules forming
the crystalline lattice. The volume displacement tensor trivi-
ally differs from the strain tensor by showing not linear but
volume changes at strain, and, similarly, the mass displace-
ment tensor shows mass changes when the crystal grows �or
dissolves/evaporates� in various directions.2 Equation �4� is a
result of integration of Eq. �3� along a selected direction x at
fixed physical state. Using the hybrid potential, � is defined

as an excess quantity of �̃ per unit surface area for the par-
ticular location of a dividing surface where the adsorption of
the immobile component is zero,1 which exactly corresponds
to Gibbs’ approach.

The goal of this communication is formulating an alter-
native approach on the basis of grand thermodynamic poten-
tial specified for solids with participation of all species. This
will lead to more general consideration including a shift in a
dividing surface and a universal definition of Gibbs’ quantity
� valid for an arbitrary location of the dividing surface.

Every solid contains at least one immobile component
by necessity. In addition, a solid can also contain mobile
components that freely move inside the solid lattice. Gibbs
called them “fluid components” �fluids absorbed by solids�
and showed them to behave as in pure fluid systems includ-
ing the definition and uniformity of chemical potentials at
equilibrium �p. 216 in Ref. 3�. Although the presence of mo-
bile components in a solid is quite unnecessary �and is not
typical for practice�, we, for the sake of generality and fol-
lowing Gibbs, will address the case when both the types of
components occur in a solid. Analyzing the solubility, we are
naturally interested, first of all, in studying the behavior of an
immobile component that can be soluble or insoluble in an
adjacent fluid.

We first consider the case when a solid �phase �� is in a
real equilibrium with a fluid phase � where the solid is partly
soluble. The solid is assumed to be macroscopic, which al-
lows us to consider the solid/fluid interface as flat. Let us
introduce Cartesian coordinates x, y, and z with the z-axis
normal to the interface and directed from phase � to phase �.
For the sake of simplicity, we assume no shear stresses in the
solid, so that the coordinate axes simultaneously are the prin-
cipal directions for the stress tensor in the solid. This is just
the case that was analyzed by Gibbs �p. 194 in Ref. 3� who
derived the equilibrium condition �Gibbs’ Eq. �661��

� f� − Ez
� − �

i

�i
�ci

��/cj
� = � j

�, �5�

where f is the free energy density, Ez is the principal value of

the stress tensor Ê corresponding to direction z as a normal
to the interface, c is the concentration �the number of mol-
ecules per unit volume�, subscripts i and j refer to mobile
and immobile components, respectively. Rigorously defining
the chemical potential tensor �̂ j

� for a solid,1,2 the left-hand
side of Eq. �5� can be identified with the principal value � j�z�

�

of tensor �̂ j
� to yield the phase equilibrium condition

� j�z�
� = � j

�. �6�

Naturally, the mechanical equilibrium condition should be
fulfilled in addition

Ez
� = − p�, �7�

where p� is the hydrostatic pressure in fluid phase �.
In the situation we consider, soluble species j simulta-

neously plays the role of an immobile component �in phase
�� and a mobile component �in phase ��. Therefore, we now
may regard the chemical potential � j

� as a variable of the
grand canonical ensemble �e.g., by allowing the system to be
in contact with a large reservoir of phase ��. Let us define
the grand thermodynamic potential of the two-phase system
under consideration as

� � F − �
i

�iNi − � j
�Nj = �̃ − � j

�Nj . �8�

Applying this definition to the homogeneous bulk phases and
taking into account Eq. �4� yield

�� = Ek
�V� + �� j�k�

� − � j
��Nj

�, k = x,y,z , �9�

�� = − p�V�, �10�

or, passing to the density of grand thermodynamic potential
��� /V,

�� = Ek
� + �� j�k�

� − � j
��cj

�, k = x,y,z , �11�

�� = − p�. �12�

For the density of hybrid potential �̃��̃ /V, we have the
following expressions:

�̃� = Ek
� + � j�k�

� cj
�, k = x,y,z , �13�

�̃� = − p� + � j
�cj

�. �14�

Since energetic quantities �� and �̃� cannot depend on a
direction in the bulk phase, the right-hand sides of Eqs. �11�
and �13� should be invariant with respect to a principal di-
rection. This implies the equalities

Ex
� + � j�x�

� cj
� = Ey

� + � j�y�
� cj

� = Ez
� + � j�z�

� cj
�. �15�

The above expressions refer to a bulk phase. Passing now to
an interface and introducing the interfacial local concentra-
tion cj�z�, the interfacial local densities of grand thermody-
namic potential ��z� and hybrid potential �̃�z�, we write, by
analogy with Eqs. �11� and �13�,

��z� = Ek�z� + �� j�k��z� − � j
��cj�z�, k = x,y , �16�

�̃�z� = Ek�z� + � j�k��z�cj�z�, k = x,y . �17�

The case k=z is automatically excluded in Eqs. �16� and �17�
since thermodynamic integral expressions can be written
only for directions in which a system is uniform �e.g., when
passing from Eq. �3� to Eq. �4��. In our case of a two-phase
system, the system is uniform in directions x and y at any
fixed value of z, but is inhomogeneous in direction z at the

interface. To derive excess quantities �̄��̄ /A for grand
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thermodynamic potential and �̄̃� �̄̃ /A for hybrid potential,
we introduce a dividing surface with coordinate z0 and write

�̄ = 	
−�

z0

���z� − ���dz + 	
z0

�

���z� − ���dz , �18�

�̄̃ = 	
−�

z0

��̃�z� − �̃��dz + 	
z0

�

��̃�z� − �̃��dz , �19�

or, putting here Eqs. �11�–�17�,

�̄ = �k + 	
−�

z0

��� j�k��z� − � j
��cj�z� − �� j�k�

� − � j
��cj

��dz

+ 	
z0

�

�� j�k��z� − � j
��cj�z�dz, k = x,y , �20�

�̄̃ = �k + 	
−�

z0

�� j�k��z�cj�z� − � j�k�
� cj

��dz

+ 	
z0

�

�� j�k��z�cj�z� − � j
�cj

��dz, k = x,y , �21�

where

�k = 	
−�

z0

�Ek − Ek
��dz + 	

z0

�

�Ek + p��dz, k = x,y �22�

are the principal values of the two-dimensional tensor of me-
chanical surface tension. Adding and subtracting � j�k�

� cj�z� in
the integrand of the first integrals in Eqs. �20� and �21�, add-
ing and subtracting � j

�cj�z� in the integrand of the second
integral in Eq. �21�, we rearrange Eqs. �20� and �21� to the
form

�̄ = �k + ḡj�k� + �� j�k�
� − � j

��	 j
�, k = x,y , �23�

�̄̃ = �k + ḡj�k� + � j�k�
� 	 j

� + � j
�	 j

�, k = x,y , �24�

where

ḡj�k� = 	
−�

z0

�� j�k��z� − � j�k�
� �cj�z�dz

+ 	
z0

�

�� j�k��z� − � j
��cj�z�dz, k = x,y , �25�

and the quantities

	 j
� � 	

−�

z0

�cj�z� − cj
��dz, 	 j

� � 	
z0

�

�cj�z� − cj
��dz �26�

are the adsorptions of the immobile component on the sides
of phase � and phase �, respectively.

Let us now show that excess quantity �̄ does not depend
at all on the dividing surface location. To do this, we differ-
entiate Eq. �18� with respect to z0 at a fixed physical state.
This yields

�d�̄/dz0� = − �� + ��, �27�

where brackets indicate the derivative to be of no physical
sense and only to correspond to an imaginary shift of a di-
viding surface. Putting Eqs. �11� and �12� in Eq. �27� results
in

�d�̄/dz0� = − Ek
� − �� j�k�

� − � j
��cj

� − p�, k = x,y . �28�

Since the right-hand side of Eq. �28� contains only quantities
referring to the bulk phases, we may use the condition ex-
pressed in Eq. �15� to obtain

�d�̄/dz0� = − Ez
� − �� j�z�

� − � j
��cj

� − p�. �29�

Applying now the equilibrium conditions expressed in Eqs.
�6� and �7�, we arrive at the conditions

�d�̄/dz0� = − �� + �� = 0. �30�

Thus, we obtained the same equilibrium conditions as for
two fluid phases in equilibrium, but with our newly intro-
duced grand thermodynamic potential of solids. The condi-
tion ��=�� can be of significance in the theory of wetting.4

Let us now consider the case of an arbitrary location of
the dividing surface. Gibbs himself defined the quantity �
only for the dividing surface equimolecular with respect to
the immobile component of solid. However, he also consid-
ered a physical interpretation of � as the work of formation
of unit new surface, e.g., in cutting up the body �see p. 315 in
Ref. 3�. Let us accept this as the basic definition to be ap-
plied to an arbitrary dividing surface. We will follow the
scheme used in Ref. 1 �see p. 192 therein� but employing the
grand potential instead of the hybrid one.

Considering the process of formation of a new surface of
a solid at a given temperature, total volume of the system
and chemical potentials 
�i

�� and � j
� in the adjacent fluid

phase, we may calculate the work of the process as the dif-
ference between the final and the initial values of the grand
potential � defined by Eq. �8�. Let a rectangular-prism-
shaped piece of the solid �phase �� of volume V� be in the
fluid medium �phase �� in thermodynamic equilibrium with
it; the whole system is considered in a certain fixed volume.
Cutting up the solid into two pieces �both remaining in our
fixed volume� requires a work


� = ��� − ���
V� + �̄
A �31�

with 
V� the change in the volume of the solid �possible due
to choice of the dividing surfaces� and 
A the change in the
area of the solid surface. Implying the solid to be cut by the
plane parallel to one of its faces, we see that 
A does not
depend on choice of the dividing surfaces at the cut. Using
the condition �30�, we then obtain 
�= �̄
A. By Gibbs’
definition of � this work equals �
A. Therefore, �= �̄ for an
arbitrary solid–fluid dividing surface.

Comparing this equality with Eq. �23� we obtain the re-
lation �cf. Eq. �5.31� in Ref. 1�

� = �k + ḡj�k� + �� j�k�
� − � j

��	 j
�, k = x,y . �32�

As follows from scalar sense of the quantity �, the right-
hand side of Eq. �32� is an invariant with respect to the
choice of direction along the surface. As one can see from
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Eq. �32�, the difference between the mechanical surface ten-
sion and Gibbs’ quantity � for solids is caused by the two
terms. The term ḡj�k� characterizes nonuniformity of the
chemical potential of the immobile component. The other
term, �� j�k�

� −� j
��	 j

�, is nonzero at both nonzero adsorption
	 j

� and an anisotropy of the chemical potential of the solid
bulk. Indeed, applying the condition �6� of chemical equilib-
rium to an isotropic state of the solid bulk, we obtain � j�x�

�

=� j�y�
� =� j�z�

� =� j
�. Thus, in this case the term �� j�k�

� −� j
��	 j

� is
zero at arbitrary choice of the dividing surface.

We now can say that if we return to the definition �2� of
� as specific excess grand thermodynamic potential �̄ and
apply this definition not only to fluids, but also to solids,
such definition will be valid for an arbitrary position of the
dividing surface provided the grand thermodynamic potential
is defined according to Eq. �8�. As for the hybrid potential,
its excess surface density, Eq. �24�, does depend on the di-
viding surface location and can be related to � only at a
special choice of a dividing surface.1 Since Eqs. �23� and
�24� imply �̄= �̄̃−� j

��	 j
�+	 j

�� and, as we have shown, al-
ways �̄=�, we obtain that, for a nonzero � j

�, this dividing
surface is necessarily equimolecular with respect to the im-
mobile component j �	 j

�+	 j
�=0�. So, generalizing the defi-

nition of Gibbs’ quantity � with the aid of the newly intro-
duced grand thermodynamic potential of solids, we obtain a
more convenient scientific tool, not to speak of the common-
ality of such definition for fluids and solids.

The discussion above referred to the case when a soluble
solid is in equilibrium with a real fluid. For the case when a
solid is insoluble in a given fluid or an adjacent fluid is
absent at all, a more general approach can be elaborated
using a hypothetical equilibrium of the solid in an arbitrary
state with an imaginary fluid where the chemical potential of
the component j is just equal to � j�k�

� . Implying the equilib-

rium condition expressed in Eq. �6�, we can define the grand
thermodynamic potential of a solid as

� � F − �
i

�iNi − � j�z�
� Nj , �33�

which is replacing � j
� by � j�k�

� in Eq. �8�. Equation �33� has
no reference to a coexisting fluid phase, and the whole theory
is formulated in a general form. With the replacement of � j

�

by � j�k�
� , all the above relationships are maintained, as well as

a universal definition of Gibbs’ quantity �.
Two concluding remarks can be given. First, our theory

was formulated for uniform bulk phases. Passing to nonuni-
form phases, especially often met for solids in practice, all
the above equations should be considered as local relation-
ships. Second, we confined our analysis with only flat sur-
faces. The case of a curved solid surface is complicated not
only by a stress jump, but also by nonequality of chemical
potentials in adjacent phases. This case remains to be a chal-
lenge for the theory of surfaces, although first steps in its
analysis has already been done.8
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