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INTRODUCTION

The goal of this communication is to analytically
describe the regularities of the binary isothermic con-
densation of a mixture of vapors on a markedly super-
critical droplet when one of the condensing vapors is
supersaturated and present in a small amount and
another vapor is slightly undersaturated and present in
a large amount. It is this specific, though, prevailing in
nature, situation which we come across when consider-
ing the condensation of sulfuric acid and water vapors
under the conditions of the Earth atmosphere. In this
situation, the droplet growth regime may both either
diffusion or free-molecular.

Previously [1–8], when investigating various prob-
lems of binary condensation and nucleation, this prob-
lem was not considered. Nevertheless, the approach
that we propose is based on the results obtained in [2]
for determining the stationary solution concentration
that is established in a markedly supercritical droplet
that grows in the diffusion regime owing to the isother-
mic binary condensation.

In this paper, simple analytical relations will be
derived for the stationary concentration of a binary
solution in an isothermally growing droplet when one
of the condensing vapors is supersaturated and present
in a small amount and another vapor is slightly under-
saturated and present in a large amount. For this case, a
small parameter will be introduced, which will play an
important role throughout our study. In particular, this
parameter allows us to linearize and easily solve the
nonlinear equation for the stationary concentration of a
binary solution in a droplet. This method appears to be
much simpler than the passage from the general solu-
tion obtained in [2] for the quadratic equation of the sta-

tionary concentration of a binary solution in a droplet to
the situation that we consider. The method will be
applied to both the diffusion and free-molecular
regimes of the droplet growth.

Using this method and the results of the kinetic the-
ory developed in [9], we shall establish important regu-
larities for the binary isothermic vapor condensation,
which were not discussed in [1–9]. For example, the
times required for establishing the power dependence
of droplet radius on time will be analytically derived for
the diffusion and free-molecular regimes of droplet
growth. For these regimes, power relations will be also
obtained in an explicit form for rapid establishing the
stationary concentration of a solution inside a growing
droplet.

1. DETERMINATION OF THE STATIONARY 
CONCENTRATION OF A BINARY SOLUTION 

IN A DROPLET

The following denotations will be applied: 
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under which both components 1 and 2 are condensed in
the droplet. Further, 

 

c

 

1

 

 and 

 

c

 

2

 

 will refer to the stationary
concentrations that are inevitably established during
the growth of a supercritical droplet.

The value of the stationary concentrations is
revealed by an equation that relates them to one
another. In the diffusion regime of droplet growth,
where we begin our analysis, this equation has the fol-
lowing form:

 

(1.2)
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 are the diffusion coefficients of mole-
cules of components 1 and 2 of mixed vapors in a pas-
sive gas. The presence of passive gas in a considerable
amount is necessary to ensure the diffusion regime of
droplet growth and the isothermic mode of the conden-
sation. According to Eq. (1.2), the ratio between the dif-
fusion fluxes of components 1 and 2 of the mixed
vapors to a droplet is equal to the stationary concentra-
tion ratio of the components in the droplet. Hence, at
stationary concentrations 
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 and constant number
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, there is a balance between the num-
bers of molecules removed from the mixed vapors due
to diffusion and added to the growing droplets, which
remains preserved for an infinite time period. This cir-
cumstance reveals the meaning of stationary concentra-
tions 
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. Note that, at stationary concentrations,
if even one of the conditions in (1.1) is satisfied, then,
as follows from Eq. (1.2), the other condition will be
satisfied as well.

Let us take advantage of the following relations,
which are valid for ideal solutions:
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where  and  are the number densities of mole-
cules in saturated vapors of pure liquid components 1
and 2. Hereafter, without additional stipulations, we
employ dependences (1.3) and relations 0 < 
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Now we consider the situation that we are interested
in, i.e., when one of the condensing vapors is supersat-
urated and present in a small amount and another is
slightly undersaturated and present in a large amount.
Let
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thus ensuring the first of the inequalities (1.1) to be
valid at any concentration 
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. It is obvious that inequal-
ity (1.4) implies that component 1 of the mixed vapors
is supersaturated over its pure liquid phase.

Then, let
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ñ1∞,
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thus ensuring the validity of the second of conditions
(1.1) at
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The necessity of satisfying inequality (1.6) is clearly
seen from the following relation, which is easy to
derive:
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Inequality (1.5) is evident to imply a slight undersatu-
ration of component 2 of the mixed vapors over its pure
liquid phase. Together, inequalities (1.4) and (1.5) cor-
respond to the situation under consideration.

Suppose that, despite constraint (1.6), the following
inequality is valid:
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which implies that the droplet mainly consists of com-
ponent 2. Now, let us assume that inequality (1.8) is
really fulfilled, while the conditions of its fulfillment
will be clarified somewhat below.

Relations (1.4) and (1.8) yield the following with a
high accuracy:
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Using (1.7)−(1.9), we reduce Eq. (1.2) to the following
expression:

(1.10)

We shall solve Eq. (1.10) in the form of

(1.11)

Substituting relation (1.11) into Eq. (1.10) and ignoring
the term, which is quadratic with respect to the intro-
duced small parameter ε, we easily find the following
equation:

(1.12)

As can be seen from Eq. (1.12), for satisfying the ine-
quality 0 < ε �1, the following constraint is required:

(1.13)

When inequality (1.13) is satisfied, relations (1.11) and
(1.12) yield the equation
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tions of a low stationary concentration of component 1
in the droplet) are inequalities (1.5) and (1.13). The
solution of Eq. (1.14) ensures the fulfillment of con-
straint (1.6). The corrective role of the n1-containing
term in expression (1.14), enabled us to replace
(1 − c1)D1n1 by D1n1 in Eq. (1.10) at c1 � 1.

Combining inequalities (1.13) and (1.5), we
arrive at

(1.15)

The positivity of the  – n2 value (the undersaturation
of component 2 of the mixed vapors over its pure liquid
phase), which is required for inequality (1.5), is not
seen in inequalities (1.15), because inequality (1.5) is
present in them, but as a squared value. However, ine-
quality  – n2 > 0 must be satisfied for the existence
of the solution for Eq. (1.14). As can be seen from rela-
tion (1.4), two-sided inequality (1.15) may be consis-
tent only at

(1.16)

This inequality conditions the applicability of the the-
ory. If inequality (1.16) is satisfied with a great excess,
two-sided inequality (1.15) admits n1 values well above

 However, as, according to relation (1.5), n2 � 
two-sided inequality (1.15) still implies that D1n1 �
D2n2 (a small amount of the supersaturated vapor and a
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large amount of the slightly undersaturated one). As a
result, we may conclude that inequalities (1.4), (1.5),
and (1.13), as well as two-sided inequality (1.15),
which follows from them, precisely correspond to the
situation in question.

In the free-molecular regime of the droplet growth,
instead of relation (1.2), we have the following equa-
tion:

(1.17)

where α1 and α2 (α1 ≤ 1, α2 ≤ 1) are the condensation
coefficients of molecules of components 1 and 2 and ω1
and ω2 are their average thermal velocities, respec-
tively. It can be clearly seen that the above analysis may
be also used in this case when D1 and D2 are replaced
by α1ω1 and α2ω2, respectively. Thus, in place of rela-
tions (1.12) and (1.14), for the free-molecular regime of
the droplet growth, we have the following expressions:
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and
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while, instead of condition (1.16), we obtain

(1.20)

As the D1/D2 and α1ω1/α2ω2 are, on the order of magni-
tude, close to one another, conditions (1.16) and (1.20)
are nearly equivalent, while expressions (1.14) and
(1.19) for the stationary solution concentration, in
which these ratios are only present as the components
of the correlation terms, are equivalent even with a
higher accuracy.

The conditions of applicability of relations (1.16)
and (1.20) are fulfilled with a great excess when sulfu-
ric acid and water play the role of components 1 and 2
in the Earth atmosphere. The figure illustrates the tem-
perature dependence of the pressure ratio /
plotted based on [10, 11] for sulfuric acid and water sat-
urated vapors over their pure liquid phases within a
wide range of variations in temperature under the con-
ditions of the Earth’s atmosphere. Taking into account
the approximate equality /  ≈ /  and
the estimates D1/D2 ~ 1 and α1ω1/α2ω2 ~ 1, it is easy to
establish that the above-considered theory is applicable
for the description of the condensation of sulfuric acid
and water vapors on a droplet under the conditions of
the Earth atmosphere, while formulas (1.14) and (1.19)
make it possible to easily find the degree of pollution of
water droplets by sulfuric acid.
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Note that, at a small stationary concentration of sul-
furic acid in a droplet, which is ensured by inequality
(1.5), formulas (1.3) derived for ideal gases are
undoubtedly valid, despite the fact that they can be vio-
lated at noticeable concentrations of sulfuric acid in
droplets.

2. APPLICATIONS TO THE KINETICS 
OF THE BINARY CONDENSATION OF VAPORS

Let us apply the results obtained in section 1 to the
kinetic theory of the binary condensation [9] (note that
the situation in question, which is characteristic of sul-
furic acid and water vapors in the Earth atmosphere,
was not considered in [9]). Similar to [9], we count time
t from the moment of droplet nucleation in a vapor–gas
medium.

Initially, assume that the droplet grows in the diffu-
sion regime. In the presence of a relatively large
amount of a passive gas in a mixture of vapors, this cir-
cumstance will take place when the inequality R/λ � 1
is satisfied, where λ is the mean free path of vapor mol-
ecules in the passive gas.

Let t0 and R0 be the t and R values beginning from
which we may believe that a droplet grows for sure in
the diffusion regime, so that R0/λ ~ 10–20. Then, the
condition R/λ � 1, which ensures the diffusion growth
regime, will be fulfilled long before the t0 time moment
and, according to [9], with a high accuracy, we have

R = βt1/2 (t ≥ t0), (2.1)

β2 ≡ 2D1v1[n1 – n1∞(c1)] + 2D2v2[n2 – n2∞(c2)] (2.2)

([9], expression (10) and definition (9)), where v1 and
v2 are the partial volumes of molecules of components
1 and 2 in the liquid solution of the droplet. In relation
(2.2), c1 and c2 refer to the stationary concentrations
determined in section 1. The positivity of parameter β2,
which follows from relations (2.2) and (1.1), corre-
sponds to the droplet growth.

Taking advantage of expression (1.2), we identically
transform relation (2.2) into the following form:

(2.3)

With regard to relation (1.8), Eq. (2.3) yields

β2 = 2D2v2[n2 – n2∞(c2)]. (2.4)

Applying relations (1.7) and (1.11), from Eq. (2.4), we
arrive at

β2 = 2D2v2(  – n2)ε. (2.5)

Using equality (1.11) once more, with a high accuracy,
we determine the difference  – n2 at 0 < ε � 1. As a
result, Eq. (2.5) is reduced to the following form:

β2 = 2D2v2 c1ε. (2.6)
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From expression (2.1) at t = t0 and from equality
(2.6), we obtain

(2.7)

The t0 value characterizes the time period after which
the power law (2.1) of the droplet growth comes into
force.

Now, let us consider the regularities of establishing
the stationary concentration of a solution in a growing
droplet. Denote the deviation of the true concentration
of component 1 in the solution from its stationary value
c1 (determined by formula (1.14)) as ∆c1. According to
[9], we have

(2.8)

(2.9)

([9], relation (14) and definition (15)). Equations (2.9)
and (1.1) yield inequality η > 0. Formula (2.8)
describes the power law of establishing the stationary
concentration of a binary solution in a growing droplet
in the course of time. It can be seen that, when time t0 is
elapsed after the droplet is nucleated, both the power
law (2.1) of the droplet growth and the power law (2.8)
of establishing the stationary concentration of the solu-
tion in the droplet come into force. As η > 0, the expo-
nent at 1/t in Eq. (2.8) is by a factor of 3(1 + η) larger
than the exponent at t in Eq. (2.1). It is easy to derive the
relation ∆c1 = ( )(R0/R)3(1 + η), which indicates

that the stationary concentration is established in the
course of time even faster than the droplet radius grows.
Let us find out now how faster it is.

Let us express parameter η from Eq. (2.9). Taking
account of relations (1.8) and (1.9), equality (2.9) is
transformed into the form

(2.10)

From relations (1.4) and (1.8), we derive
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and, from equality (1.11) at 0 < ε � 1, with a high accu-
racy, we obtain the following:
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Taking advantage of relations (2.10), (2.11), and (2.13),
at 0 < ε � 1, we derive the equation

(2.14)

which is fulfilled with a high accuracy.
Let us again consider sulfuric acid and water in the

Earth’s atmosphere as components 1 and 2. Consider-
ing c1 and ε as small parameters, assume that

c1 ~ 10–2, ε ~ 2 × 10–1. (2.15)

At concentration c1 estimated in this way, the pollution
of a water droplet by sulfuric acid is already rather low
and, at the performed estimation of parameter ε, rela-
tions (2.6), (2.12), and (2.14) at 0 < ε � 1 are already
quite accurate.

At 0°C and a pressure of the vapor–gas mixture
(actually, the pressure of the passive gas) equal to
1 atm, we apply the following estimates:

(2.16)

Assuming that R0/λ ~ 10–20 (as was specified above)
and taking into account the values of the parameters
given in (2.15) and (2.16), through the formulas (2.7)
and (2.14), we obtain the following estimates: t0 ~ 50–
200 s and η ~ 5.

Let us discuss these values. We begin with the expla-
nation of the large time value t0. At a slight pollution of
a water droplet by sulfuric acid, the droplet radius
grows in the course of time almost entirely due to water
vapor condensation on the droplet. However, this con-
densation proceeds quite slowly because water vapor is
slightly undersaturated over the pure liquid water
phase. Further, at η ~ 5, we have 3(1 + η) ~ 18; thus, the
exponent at 1/t in Eq. (2.8) is nearly 18-fold larger than
the exponent at t in relation (2.1). Hence, during the
time period required to establish a stationary solution
concentration in the droplet, its radius does not increase
markedly. This result is of great importance. As can be
seen from Eq. (2.14), this change in the droplet radius
would be even smaller, provided that parameter ε was
taken to be smaller than in relation (2.15). As can be
seen from relation (1.12), this decrease in ε is possible
at a not-too-high supersaturation of sulfuric acid vapor
over its pure liquid phase, since inequality (1.16) is
very strong for sulfuric acid and water vapors.

Now, let us assume that the droplet grows in the
free-molecular regime. This situation takes place at
R/λ � 1. We suppose the droplet is noticeably super-
critical, i.e., R ≥ (3–4)Rc, where Rc is the critical droplet
radius satisfying the strong inequality Rc � λ. Accord-
ing to [9], with a high accuracy, we have that

R = γt (τ0 ≤ t ≤ 3τ0), (2.17)

(2.18)

η 1/ε,=

λ 3 10 5– cm× , D2 10 1– cm2s 1– ,∼∼

v 2 3 10 23– cm3, ñ2∞ 1.6 1017cm 3– .×∼×∼

γ 1
4
---α1ω1v 1 n1 n2∞ c1( )–[ ]≡

 + 
1
4
---α2ω2v 2 n2 n2∞ c2( )–[ ]

([9], relation (18) and definition (19)), where

τ0 = 30Rc/γ, (2.19)

and c1 and c2 are the stationary concentrations found in
section 1. Commonly, Rc ~ 10–7 cm and λ ~ 3 × 10–5 cm.
In this case, the law of the growth (2.17), which is linear
with respect to time, will be valid at τ0 ≤ t ≤ 3τ0. Indeed,
under these constraints, from expressions (2.17) and
(2.19), we find that 30Rc ≤ R ≤ 90Rc, and the droplet is
for sure supercritical within this time interval (inequal-
ity t ≥ τ0 limits t from below); however, its radius still
satisfies the condition R/λ � 1 of the free-molecular
growth regime (inequality t ≤ 3τ0 limits t from above).
Note that the positive values of parameter γ, which fol-
low from relations (2.18) and (1.1), correspond to the
particle growth.

Using inequality (1.17), relation (2.18) is trans-
formed into the following form:

(2.20)

In the same way as we passed from relation (2.3) to
expression (2.6), let us pass from Eq. (2.20) to the fol-
lowing formula:

(2.21)

in which parameter ε is specified by formula (1.18).

For the deviation ∆c1 of the true concentration of
component 1 in the droplet from its stationary value c1
(which is specified by formula (1.19)), we have the fol-
lowing equation:

(2.22)

([9], relation (20)), where parameter χ is determined by
equality (2.9), in which D1 and D2 are replaced by α1ω1
and α2ω2, respectively; i.e.,

(2.23)

As follows from relations (2.23) and (1.1), χ > 0. It can
be seen that the power law for the droplet radius growth
(2.17) and the power law for establishing the stationary
solution concentration in the droplet are valid within
the same period τ0 ≤ t ≤ 3τ0 of time t. As χ > 0, the expo-
nent at 1/t in Eq. (2.22) is 3(1 + χ) times larger that the
exponent at t in Eq.(2.17). It is easy to show that

∆c1 =  where 

Thus, the stationary solution concentration in the drop-
let is established in the course of time faster than the
droplet radius grows. Let us determine now how faster
it is.
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In the same way in which we passed from equality
(2.9) to relation (2.14), we pass from Eq. (2.23) to the
following expression:

χ = 1/ε (2.24)

(ε is specified by formula (1.18)). Assuming that Rc
~ 10–7 cm, ω2 ~ 5 × 104 cm s–1, and α2 = 1 and involving
estimates (2.15) and (2.16), from formulas (2.19),
(2.21), and (2.24), we obtain the following values of the
parameters: τ0 ~ 2.5 × 10–2 s and χ ~ 5.

Let us compare these values with the estimates t0 ~
50–200 s and η ~ 5 obtained for the diffusion regime of
the droplet growth. Although the time τ0 required for
establishing power laws (2.17) and (2.22) in the free-
molecular regime of the droplet growth is much shorter
than time t0, it is, nevertheless, rather long. As before,
the reason for this is that water vapor is slightly under-
saturated over the pure liquid phase. Further, at χ ~ 5,
we have 3(1 + η) ~ 18; hence, exponent at 1/t in relation
(2.22) is approximately 18-fold larger than the expo-
nent at t in Eq. (2.17). Thus, the stationary solution con-
centration in the droplet is established over a time dur-
ing which the droplet radius changes insignificantly.
Again, as can seen from Eq. (2.24), this change in the
droplet radius would be even smaller if parameter ε is
taken to be smaller than that in (2.15). As can be seen
from Eq. (1.18), this reduction in ε is possible at a not-
too-high supersaturation of sulfuric acid vapor over its
pure liquid phase because inequality (1.20) is very
strong for sulfuric acid and water vapors.

Note that, as the droplet size increases, the droplet
growth may consecutively pass from the free-molecular
to the diffusion regime. As was mentioned above,
expressions (1.14) and (1.19) derived for the stationary
solution concentrations in the diffusion and free-molec-
ular regimes of the droplet growth, respectively, are
nearly equivalent to each other. When the D1/D2 and
α1ω1/α2ω2 ratios are close to one another as usual, laws
(2.8) and (2.22) for establishing the stationary concen-
trations in the diffusion and free-molecular growth
regimes, according to Eqs. (2.9) and (2.23), are nearly
equivalent.

CONCLUSIONS

In the above study, a key role was played by the ine-
quality /  � 1, which is fulfilled for sulfuric acid
and water vapors with a great excess. This inequality, in
combination with inequalities (1.4) and (1.5), deter-
mines the situation under consideration in which one
component of condensing mixed vapors is supersatu-
rated and another one is slightly undersaturated, which
ensures the condition for the applicability of the entire
above-described theory.

Inequality /  � 1 enabled us to introduce
parameter ε determined by formulas (1.12) and (1.18),

with this parameter being small despite the existence of
constraint (1.5). In turn, the smallness of parameter ε
made it possible to easily derive simple expressions
(1.14) and (1.19) for the stationary solution concentra-
tion in a growing droplet.

In addition, inequality /  � 1 led us to draw
the following important conclusion: the stationary solu-
tion concentration is established in a droplet over a time
during which its radius increases insignificantly. The
stronger the inequality /  � 1 and, accordingly,
the inequality ε � 1, the slower, according to relations
(2.6) and (2.21) and dependences (2.1) and (2.17), a
rise in the droplet radius, however, according to formu-
las (2.14) and (2.24) and dependences (2.8) and (2.22),
the faster the establishment of the stationary solution
concentration in the droplet. Thus, in both diffusion and
free-molecular regimes, most of time, a droplet grows
under the conditions of stationary solution concentra-
tion when simple dependences (2.1) and (2.17) are
valid for the droplet radius growth in the course of time.
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ñ1∞ ñ2∞
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