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INTRODUCTION

A phenomenon important for the kinetic theory of
micellization in surfactant solutions is a sufficiently fast
establishment of quasi-equilibrium size distributions of
molecular aggregates of surfactants outside the regions
of the potential barriers of the minimum aggregate for-
mation work on the aggregation number axis. The data
of the distribution set the total numbers of aggregates
outside these regions and also determine the boundary
conditions for quasi-steady-state overcoming of poten-
tial work barriers by the aggregates; in this process, rel-
atively slow establishment of the final complete equi-
librium of the micellar solution takes place. The char-
acteristic times of the establishment of separate quasi-
equilibria among monomers, premicellar aggregates,
and spherical micelles were considered earlier in [1–3]
at surfactant concentrations above the first critical
micellization concentration (CMC

 

1

 

) but below the sec-
ond critical micellization concentration (CMC

 

2

 

). These
times, at which the total number of micelles per unit
volume of the solution remains virtually invariable,
were termed (Aniansson [1]) the times of fast relax-
ation in contrast to characteristic times of slow relax-
ation, at which the total number of micelles and other
parameters of the quasi-equilibrium distribution gradu-
ally attain their final equilibrium values.

At surfactant concentrations above CMC

 

2

 

, the major
share of the surfactant is distributed between spherical
and cylindrical micelles. At concentrations signifi-
cantly higher than CMC

 

2

 

, most of the surfactant in
solution is already contained in cylindrical micelles.
The kinetics describing the establishment of the final
equilibrium size distribution of coexisting spherical
and cylindrical micelles at surfactant concentrations
much higher than CMC

 

2

 

 was recently studied in [4–7].
In [6], the time required for the establishment of sepa-
rate quasi-equilibrium of cylindrical micelles was also

estimated on the basis of the diffusion approximation of
the kinetic micellization equation. The aim of this study
is to find the entire spectrum of characteristic times cor-
responding to relatively fast establishment of quasi-
equilibrium of cylindrical micelles throughout their
size range of practical importance. The calculation is
based on solving the linearized general kinetic equation
of micellization. At the same time, the times corre-
sponding to the establishment of quasi-equilibrium
concentration of surfactant monomers in the solution
will also be found.

1. MAIN RELATIONSHIPS DESCRIBING 
THE MICELLIZATION KINETICS 

AT SURFACTANT CONCENTRATIONS 
ABOVE CMC

 

2

 

Let us consider a solution of a nonionic surfactant in
a polar solvent, where monomers and molecular aggre-
gates of the surfactant (including cylindrical micelles)
coexist. Let us denote the aggregation number (the
number of surfactant molecules in a molecular aggre-
gate) by 

 

n

 

. The concentration of the molecular aggre-
gates (the number of aggregates per unit volume of the
solution) with aggregation number 

 

n

 

 will be denoted by 

 

c

 

n

 

.
Accordingly, 

 

c

 

1

 

 is the concentration of the monomers.
The overall concentration of the surfactant (the total
number of the surfactant molecules per unit volume of
the solution) will be denoted by 

 

c

 

, whereas the total
concentration of cylindrical micelles (the total number
of cylindrical micelles per unit volume) is denoted by 

 

g

 

.
Let us assume that 

 

c

 

 is notably (but no more than by two
orders of magnitude) higher than CMC

 

2

 

. Therefore, the
share of the surfactant contained in spherical micelles is
hereafter neglected in comparison with the share of the
surfactant in cylindrical micelles. The designation 

 

W

 

n

 

will be used for the minimum formation work (in 

 

kT
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units, where 

 

k

 

 is Boltzmann’s constant and 

 

T

 

 is the
absolute temperature) of a molecular aggregate with
aggregation number 

 

n

 

; for brevity, let us term it the
aggregation work. Further, 

 

W

 

0

 

 

 

≡

 

  

 

will denote

the work at aggregation number 

 

n

 

0

 

; this is the starting
number up from which the attachment of monomers to
a cylindrical micelle does not lead to the rearrangement
of the micelle ends but only increases its length. Hence,
the surface area, volume, and aggregation work of a
cylindrical micelle are linearly related with the aggre-
gation number at 

 

n

 

 

 

≥

 

 

 

n

 

0

 

. Therefore, let us write

 

(1.1)

 

where 

 

n

 

∗

 

 

 

is the average aggregation number of cylin-
drical micelles (

 

n

 

∗

 

 

 

depends on the overall concentra-

tion of the surfactant in solution as 

 

n

 

∗

 

 ~ 

 

) [4]. Let us

assume the estimates 

 

n

 

0

 

 ~ 3 

 

×

 

 10

 

2

 

 [8]

 

 and 

 

n

 

∗

 

 

 

≥

 

 10

 

3

 

.

In the quasi-equilibrium of cylindrical micelles in
the range of aggregation numbers 

 

n

 

 > 

 

n

 

0

 

, the concentra-
tions of cylindrical micelles are distributed according to
Boltzmann’s law as

where 

 

c

 

0

 

 

 

≡

 

 

 

. With allowance for Eq. (1.1), this

quasi-equilibrium distribution can be represented in the
form

 

(1.2)

 

Evidently, the (

 

n

 

∗

 

 – 

 

n

 

0

 

) value determines the width of
the distribution 

 

c

 

n

 

 over aggregation numbers at 

 

n

 

 > 

 

n

 

0

 

.
At 

 

n

 

∗

 

 

 

�

 

 

 

n

 

0

 

, this width is virtually equal to average
aggregation number 

 

n

 

∗

 

 

 

of cylindrical micelles.
To describe the changes in the concentrations of

cylindrical micelles with different aggregation numbers
at times corresponding to the establishment of quasi-
equilibrium distribution (1.2), let us use the general
Becker–Doering–Zel’dovich kinetic equation [9, 10] of
stepwise aggregation in the form

 

(1.3)

 

The “overarc” 

 

∩

 

 is used to mark the quantities in the
state of quasi-equilibrium, which, as is shown below, is
established in the 

 

n

 

 > 

 

n

 

0

 

 range after the completion of

fast relaxation of cylindrical micelles. Coefficient  is
determined as the number of surfactant monomers
absorbed from the solution by a micelle of 

 

n

 

 surfactant
molecules per unit time. The quantity under the deriva-
tive sign 

 

∂

 

/

 

∂

 

n

 

 in Eq. (1.3) is the flux of micelles in the
space of aggregation numbers. As is seen from
Eq. (1.3), the distribution of  is a time-independent
solution to Eq. (1.3), satisfying the equations of detailed

Wn n n0=

Wn W0 n n0–( )/ n* n0–( ) n n0≥( ),+=

c

cn c0 Wn W0–( )–[ ],exp=
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n n0>( ).=
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jn
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jn
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cn 1+
----------–
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⎜ ⎟
⎛ ⎞
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)) )

jn
+

cn

)

balance in the n > n0 range. The  value is proportional
to the concentration of surfactant monomers c1 and to
the micelle surface area. At n > n0, the surface area of a
cylindrical micelle, according to the above statements,
is proportional to aggregation number n. Therefore,

(1.4)

Let us denote the relative deviation of current concen-
tration cn from quasi-equilibrium concentration  by

. (1.5)

Assuming that the studied fast relaxation at solution
concentrations considered here (much higher than
CMC2) takes place via the release and absorption of
monomers by mostly cylindrical micelles at n > n0, let
us consider only such micelles and monomers with n = 1
in Eq. (1.5). Along with the aggregation number n, we
will also characterize cylindrical micelles in the n > n0
range by the variable

(1.6)

Variable s changes in the 0 < s < ∞ interval. Marking
the  cn, c0, and n∗ values in quasi-equilibrium distribu-
tion (1.2) with an arc symbol ∩, we arrive at the follow-
ing expression for total quasi-equilibrium concentra-
tion  of cylindrical micelles via the integration with
respect to s:

(1.7)

Quasi-equilibrium distribution (1.2) can be written with
allowance for formulas (1.6) and (1.7) as

(1.8)

Using Eq. (1.5), let us represent current concentra-
tions c1 and cn as

(1.9)

On approaching the quasi-equilibrium states estab-
lished after the completion of fast relaxation of cylin-
drical micelles, we arrive at |ξ1| � 1, |ξn | � 1. It is pre-
cisely in the range of small deviations |ξ1| � 1, |ξn | � 1
that the relaxation process has the lowest rate and the
characteristic time of exponential decay practically
coincides with the total time of fast relaxation. Therefore,
we neglect product ξ1ξn in comparison with ξ1 and ξn.
Then, by virtue of Eqs. (1.9) and (1.4), kinetic equa-
tion (1.3) at the stage of fast relaxation can be reduced
to a linear kinetic equation for ξn(t):

jn
+

jn
+ jn*

+ c1
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)

) )

)

cn

)

ξn cn cn–( )/cn= ))
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g)
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(1.10)

To determine the current monomer concentration,
one should use the equation of surfactant balance in a
unit volume of the solution: c1 = c – . Substi-
tuting Eqs. (1.9) into this equation and taking into
account that the overall concentration c in a materially
isolated solution remains virtually the same after the
completion of fast relaxation (we neglect volume
effects associated with the aggregation of surfactant
monomers), we arrive at

(1.11)

where the second of Eqs. (1.9) is extended to all n ≥ 2.

2. SOLUTION OF KINETIC EQUATION

The form of kinetic equation (1.10) with allowance
for Eq. (1.8) and for the 0 < s < ∞ range of variable s
enables us to search for the solution to Eq. (1.10) in the
form of an expansion

(2.1)

over the complete set of Laguerre polynomials Li(s),
where qi(t) are s-independent expansion modes, which
are the desired functions of time t. For Laguerre poly-
nomials, the following relationships are true:

(2.2)

The integrals with respect to s in Eqs. (2.2) are scalar
products of Laguerre polynomials.

Let us set q0 = 0 in Eq. (2.1). This choice will be
explained in the next section. Assuming that the major
contribution to the sum in the right-hand side of
Eq. (1.11) is due to cylindrical micelles at n > n0, sub-
stituting Eq. (2.1) at q0 = 0 into Eq. (1.11), and proceed-
ing in the right-hand side of Eq. (1.11) from the sum-
mation over n to the integration with respect to s with
allowance for Eq. (1.6), we arrive at the following for-
mulas by virtue of Eq. (1.8) and the second, third, and
fourth relationships in Eqs. (2.2):

cn
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0

∞

∫
0 k i≠( )
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⎧

=

(2.3)

Now let us substitute Eqs. (1.8), (2.1), and (2.3) into
kinetic equation (1.10) and consider Eq. (1.6) and q0 =
0. Then we obtain

(2.4)

Performing scalar multiplication of both sides of Eq. (2.4)
by Li (i = 1, 2, …) and using Eqs. (2.2), we find

(2.5)

(2.6)

In the derivation of Eqs. (2.5) and (2.6), in order to sep-
arate equations for qi with different subscripts i, we
neglected the contributions of relative order n0/  to
the scalar products in Eq. (2.4). Considering the mean-
ings of quantities n0 and , this is justified if the sur-
factant solutions in question have concentrations nota-
bly higher than CMC2 and estimates n0 ~ 3 × 102 and
n∗ ≥ 103 from section 1 are true.

Integrating Eqs. (2.5) and (2.6), we arrive at

(2.7)

where qi(0) are the values of modes qi(t) (i = 1, 2, …) at
the initial moment of fast relaxation t = 0. Relaxation
times τi of modes with different subscripts i are
described by the equalities

(2.8)

(2.9)

As a result, Eqs. (2.7) determine all modes qi(t) (i =
1, 2, …) in expansion (2.1) at q0 = 0, whereas Eqs. (2.8)
and (2.9) provide the complete spectrum of relaxation
times of different modes in the distribution of cylindri-
cal micelles upon the establishment of quasi-equilib-
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rium state. According to formulas (1.9), (2.3), and
(2.7), time τ1 also determines the relaxation of surfac-
tant monomer concentration to its quasi-equilibrium
value.

3. RELATIONSHIPS BETWEEN TIMES 
OF FAST RELAXATION

Let us compare the relaxation times (found in the
previous section) corresponding to different modes of
the distribution of cylindrical micelles upon the estab-
lishment of quasi-equilibrium state in the n > n0 range.
We will concentrate on the longest times as those char-
acterizing the duration of the attainment of quasi-equi-
librium for the entire distribution. As follows from
Eq. (2.9), the following inequalities are true:

(3.1)

For the ratio of times τ1 and τ2, formulas (2.8) and (2.9)
yield

(3.2)

At surfactant concentrations above CMC2, the follow-
ing strong inequality is necessarily true:

(3.3)

Indeed, even at CMC2, we obtain /  ~ 1/10 and

 ~ 103 by virtue of [4], and the fulfillment of inequal-
ity (3.3) is ensured. With allowance for (3.3), Eq. (3.2)
implies that

τ2 � τ1. (3.4)

Thus, as follows from formulas (3.1) and (3.4), the
longest among the times describing the relaxation of
the distribution of quasi-cylindrical micelles to the
quasi-equilibrium state is time τ2.

Let us denote τ2 by τ and write, by virtue of
Eqs. (2.9),

(3.5)

As follows from Eqs. (1.9), (2.1), and (2.7) with allow-
ance for formulas (3.1), (3.4), and (3.5) and provided
that q0 = 0, we have cn(t)|t � τ =  (n > n0). Thus, the
quasi-equilibrium distribution of cylindrical micelles,
independent of time t, is indeed established over the
course of time τ. Hence, τ is the characteristic time of
the fast relaxation of cylindrical micelles to their aggre-
gative quasi-equilibrium. At the same time, in view of
Eqs. (1.9), (2.1), and (2.7), the concentration of the sur-
factant monomers c1 approaches the corresponding
quasi-equilibrium value  within time τ1, which is
much shorter than time τ.

τ2 τi i 3 4 …, ,=( ).>
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--------------------------.=
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τ τ2≡ n*
2 /2 jn*

+ .= ) )
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cn

)
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)

According to the definition of total concentration g

of cylindrical micelles g = dn, with allowance for

Eqs. (1.6), (1.8), (1.9), and (2.1), and relations for
Laguerre polynomials (2.2), we obtain g(t) = (1 + q0).
Apparently, equality q0 = 0 entails equality g(t) = .
Thus, the assumption that q0 is equal to zero (used in
the previous section) implies that the total concentra-
tion of cylindrical micelles upon the establishment of
their quasi-equilibrium remains invariable. Actually,
equality q0 = 0 is ensured by the fact that the flux of
molecular aggregates between spherical and cylindrical
micelles over relatively short time τ does not notably
alter the total concentration of cylindrical micelles.
Since the total concentration of cylindrical micelles set
at the initial moment t = 0 and (if the solution is mate-
rially isolated) the overall concentration of surfactant
remain invariable upon the attainment of quasi-equilib-
rium of cylindrical micelles, we can use these values for
the unambiguous determination of , , and , as
well as quasi-equilibrium distribution (1.2) [or (1.8)]
itself. The conservation of the total concentration of
cylindrical micelles and of the overall surfactant con-
centration plays the role of boundary conditions in the
problem concerning fast relaxation of cylindrical
micelles.

The , , and  values attained after the comple-
tion of the fast relaxation of cylindrical micelles may
markedly differ from the values corresponding to the
complete equilibrium of micellar solution. Then, subse-
quently, at much longer times, the total concentration of
cylindrical micelles and their average size [as well as
quasi-equilibrium distribution (1.2)] will change rela-
tively slowly owing to direct and inverse fluxes of
molecular aggregates over the potential barriers of
aggregation work until total aggregative equilibrium is
established in the micellar solution.

Let us compare resultant analytical expression (3.5)
for time τ of the relaxation of cylindrical micelles to
their quasi-equilibrium state with the earlier diffusion
estimate [6, Eq. (3.10)]. In the notation used in that

paper, this estimate is written as τ � 0.28 / , where
n1 is the right boundary of the range at the aggregation
number axis after which the distribution of cylindrical
micelles over their aggregation numbers is virtually
nullified. The n1 value can be estimated as n1 ~ 4 .

Comparing Eq. (3.5) with formula τ � 0.28 /  and
considering Eq. (1.4), we see that the τ value found in
this communication is approximately two times lower
than the estimate of τ from [6]. Taking into account that
the estimate for time τ was obtained in [6] as an upper
estimate on the basis of the solution to the boundary
problem for the diffusion approximation of the kinetic
equation for cylindrical micelles, this agreement should
be regarded as quite satisfactory.
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