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INTRODUCTION

Earlier [1], we developed the theory of nonionic sur-
factant solutions containing spherical and cylindrical
micelles above the second critical micellization con-
centration (CMC2) in the experimentally significant
region of overall surfactant concentrations where the
overwhelming part of the total amount of surfactant in
solution was accumulated in cylindrical micelles.
Although the equilibrium states of surfactant solution
were mainly considered in [1], we performed the lin-
earization of the balance equation of the surfactant
amount in the vicinity of the final equilibrium state of
materially isolated solution where the state of solution
is not at equilibrium. Further, in [2], we derived the
closed system of two linearized relaxation equations
determining in the materially isolated surfactant solu-
tion the variations (with time) of the total concentra-
tions of spherical and cylindrical micelles in the vicin-
ity of the final equilibrium state of solution in a com-
plex situation, where the first and second potential
barriers of aggregation work are present. The kinetic
description of the relaxation of nonionic surfactant
solution containing spherical and cylindrical micelles

on the basis of these equations is the main aim of this
communication. Data on such a description are not
available in the published literature.

In this paper, we present the kinetic substantiation of
the monotonically decaying character of the relaxation
of the materially isolated nonionic surfactant solution
containing spherical and cylindrical micelles at the
arbitrary heights of the first and second potential barri-
ers of aggregation work at the values of overall solution
concentration above the CMC2 but below the values of
overall concentration at which crosslinked micellar
structures begin to be formed [3] or the transition to liq-
uid-crystal state takes place [4]. We will study the real-
istic situation [5–7] when the height of second potential
barrier is lower than that of the first potential barrier. In
fact, for this study it is sufficient for the height of the
second potential barrier to be at least relatively slightly
lower than the height of the first potential barrier. We
will derive analytical expressions for two relaxation
times of the materially isolated surfactant solution. The
shortest of these times corresponds to a relatively fast
establishment (beginning with comparatively small
cylindrical micelles) of the mutual quasi-equilibrium of
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Abstract

 

—Monotonically decaying relaxation of a materially isolated nonionic surfactant solution containing
spherical and cylindrical micelles at the arbitrary heights of the first and second potential barriers of aggregation
work is kinetically substantiated. The realistic situation, where the height of second potential barrier is at least
slightly higher (by the relative value) than that of the first barrier, is studied. Analytical expressions for two
relaxation times of materially isolated surfactant solution are calculated. The shortest of these times corre-
sponds to the relatively fast establishment of the mutual quasi-equilibrium of spherical and cylindrical micelles,
beginning with relatively small cylindrical micelles. The longest of relaxation times corresponds to the rela-
tively slow establishment of the total equilibrium of surfactant solution. It is shown that this time (the only sig-
nificant for the establishment of the final equilibrium of materially isolated surfactant solution) is determined
by the height of the first potential barrier of aggregation work and is by no means dependent on the height of
the second potential barrier about which not much is known. Variations (with time) of the total concentrations
of spherical and cylindrical micelles, surfactant monomer concentration, and the total amount of the substance
in cylindrical micelles in the approach of solution to the final equilibrium state are described analytically. It is
shown that theoretically admitted small relative deviations of the concentrations of spherical and cylindrical
micelles from their values in the final equilibrium state are fully measurable in experiment. Calculated relax-
ation time of surfactant solution can also be measured experimentally together with the aforementioned values.
It is elucidated that this time is approximately proportional to the overall solution concentration, if the second
critical micellization concentration (CMC2) by the order of magnitude exceeds the first critical micellization
concentration (CMC1), and is virtually independent of the overall solution concentration, if the CMC2 exceeds
the CMC1 by two orders of magnitude. The characteristic time of the establishment of quasi-equilibrium dis-
tribution of cylindrical micelles throughout the region of their sizes is estimated, thus allowing us to establish
the lower limit of the height of the first barrier of aggregation work.



 

42

 

COLLOID JOURNAL

 

      

 

Vol. 67

 

     

 

No. 1

 

      

 

2005

 

KUNI

 

 

 

et al

 

.

 

spherical and cylindrical micelles at the absence of
their equilibrium with subcritical molecular aggregates
located on the aggregation number axis to the left of the
first potential barrier of aggregation work. The longest
of these times corresponds to a relatively slow estab-
lishment of the total equilibrium of surfactant solution.
It will be demonstrated that this time (the only signifi-
cant time for the establishment of the final equilibrium
of the materially isolated surfactant solution) is deter-
mined by the height of the first potential barrier of
aggregation work and is by no means dependent on a
scarcely known height of the second potential barrier.
We will analytically describe the variations (with time)
of the total concentrations of spherical and cylindrical
micelles, surfactant monomer concentration, and total
amount of substance in cylindrical micelles when the
materially isolated surfactant solution approaches its
final equilibrium state. It will be shown that, at the
small relative deviations of the total concentrations of
spherical and cylindrical micelles from their values in
the final equilibrium state admitted by the proposed
relaxation theory, these deviations can actually be mea-
sured in the experiment. The relaxation time of surfac-
tant solution found in this communication can also be
measured experimentally. It will be disclosed that this
time is approximately proportional to the overall solu-
tion concentration, if the CMC2 exceeds (by the order
of magnitude) the first critical micellization concentra-
tion (CMC1) equal to the overall solution concentration
at which the amount of surfactant in spherical micelles
becomes already noticeable and is actually independent
of the overall solution concentration, if the CMC2
exceeds the CMC1 by two orders of magnitude. Char-
acteristic time needed to establish the quasi-equilib-
rium distribution of cylindrical micelles throughout the
region of their sizes will be estimated. Based on this
time, we determine the lower limit of the height of the
first potential barrier of aggregation work.

1. MONOTONICALLY DECAYING CHARACTER 
OF THE RELAXATION OF SURFACTANT 

SOLUTION AT THE ARBITRARY HEIGHTS 
OF THE FIRST AND SECOND BARRIERS 

OF AGGREGATION WORK

We will use the same system of notations as in [1, 2].
The aggregation number (the number of surfactant mol-
ecules in an aggregate) is denoted by 

 

n

 

. The concentra-
tion of molecular aggregates (the number of aggregates
per solution unit volume) with aggregation number 

 

n

 

 is
denoted by 

 

c

 

n

 

. At 

 

n

 

 = 1, aggregates represent surfactant
monomers. Correspondingly, 

 

c

 

1

 

 gives the monomer
concentration. Overall surfactant concentration (the
total number of surfactant molecules per solution unit
volume) is denoted by 

 

c

 

; the total concentration of
spherical and cylindrical micelles, by 

 

c

 

M

 

 and 

 

g

 

, respec-
tively. The formation work of molecular aggregate with
aggregation number 

 

n

 

 is expressed in thermal units 

 

kT

 

(

 

k

 

 is Boltzmann’s constant and 

 

T

 

 is the absolute temper-

ature) and denoted by 

 

W

 

n

 

. Following to [1, 2], we
obtain

 

(1.1)

 

The value of 

 

 

 

of aggregation work in point 

 

n

 

 = 

 

of its first maximum on the aggregation number axis
determines the height of activation barrier for the for-
mation of spherical micelles. Therefore, aggregates in

the 

 

1 

 

≤

 

 

 

n

 

 

 

<

 

  – 

 

∆

 

 

 

region on the aggregation num-

ber axis, where 

 

∆

 

 

 

is the half-width of the first poten-
tial barrier of aggregation work, are considered as sub-

critical aggregates. The value of aggregation work 

in point 

 

n

 

 =  

 

of its first minimum characterizes the
depth of potential well where spherical micelles are

accumulated. The value of aggregation work 

 

 

 

in

point 

 

n

 

 =  

 

of its second maximum determines the
height of activation barrier for the formation of cylin-
drical micelles. The value of aggregation work 

 

W

 

0 

 

is
taken in point 

 

n

 

 = 

 

n

 

0

 

 corresponding to the left boundary
of the region of aggregation numbers where the depen-
dence of 

 

W

 

n

 

 on 

 

n

 

 is already linear. The right-hand
boundary of this region is set by the 

 

n

 

 = 

 

n

 

1

 

 point; as one
approaches this point, the equilibrium concentration of
cylindrical micelles (proportional to 

 

exp(–

 

W

 

n

 

)

 

) rapidly
decays. Thus, the region of aggregation numbers 

 

n

 

 > 

 

n

 

1

 

is no longer of interest. The dependence of work 

 

W

 

n

 

 on
aggregation number 

 

n

 

 at the simultaneous existence of
spherical and cylindrical micelles and at the overall sur-
factant concentration in solution above the CMC2 that
generalizes known experimental and theoretical data
[5–7] was demonstrated in the figure reported in [1].

Evidently, 

 

 < 

 

 and 

 

 <  < 

 

n

 

0

 

. As in

[1, 2], we assume for values 

 

, 

 

n

 

0

 

, and 

 

n

 

1

 

 the follow-
ing estimates:

 

(1.2)

 

that are typical of many surfactants. Note that, accord-

ing to [1, 2], 

 

 ~ 4

 

, 

 

W

 

0

 

 ~ 14

 

 and, according to [8],

 

 ~

 

 (16–18) are valid.

We denote the half-width of the first potential well
of aggregation work and the half-width of the second
potential barrier of aggregation work on the 

 

n

 

 axis by

 

∆

 

 and 

 

∆

 

, respectively. We assume that 

 

∆

 

,

 

∆

 

, and 
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satisfy constraints (1.3)–(1.5) in [2].
These constraints imply that the potential well and
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potential barriers of aggregation work are noticeably
manifested on the dependence of work Wn on n.

The state of total aggregation equilibrium in a mate-
rially isolated micellar surfactant solution is attained
due to relaxation. The parameter values in this final
equilibrium state we mark by the tilde over symbols.
Resultant formulas derived in [2] include direct fluxes

 and  of molecular aggregates over the first
and second potential barriers of aggregation work
referred only to the final equilibrium state of a solution.
Denoting (for brevity) these fluxes by J1 and J2, we
have (provided that aforementioned constraints (1.3)–
(1.5) in [2] are satisfied) the following analytical
expressions:

(1.3)

(1.4)

(1.5)

([2], expressions (1.17)–(1.19)). Here,  is the num-

ber of surfactant monomers absorbed (  > 0) per
unit time from solution by the spherical molecular

aggregate composed of  molecules;  is the

number of surfactant monomers absorbed (  > 0)
per unit time from solution by the aspherical molecular

aggregate composed of  molecules. The equiva-
lency of expressions (1.3) and (1.4) is seen from rela-

tion  = π1/2 ∆ exp(– ) derived in [2].

As is [1, 2], we are interested in the experimentally
important range of the values of overall surfactant con-
centration  where the overwhelming contribution to
the total amount of surfactant in solution is made by
cylindrical micelles. As is [2], we assume the following
estimates:

(1.6)

(1.7)

Estimate (1.6) agrees with the existence of a certain
upper boundary of the range of overall concentrations
of micellar states admitted at a given temperature by the
phase diagram of a specific nonionic surfactant solu-
tion. Estimate (1.7) corresponds to /  ~ 0.1, if the
CMC2 exceeds the CMC1 by the order of magnitude,
and to /  ~ 1, if the CMC2 exceeds the CMC1 by
two orders of magnitude.

Denoting the values of deviations from their values
in final equilibrium state to the left of these values by
symbol δ, we arrive at (provided that Eqs. (1.2), (1.6),
and (1.7) are fulfilled) the closed set of two linearized
relaxation equations determining the evolution (with
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time t) of deviations δcM and δg of the total concentra-
tions of spherical and cylindrical micelles in a materi-
ally isolated solution

(1.8)

(1.9)

where

(1.10)

(Eqs. (2.10) and (2.11) and expressions (3.11) and
(3.15)–(3.17) in [2]). The condition of linearization of
the system of equations (1.8) and (1.9) is the inequality

(1.11)

(condition (2.9) in [2]).
Let us introduce parameters

(1.12)

related to the experimentally measurable characteris-
tics of equilibrium surfactant solution. In view of
Eqs. (1.2), (1.6), and (1.7), these parameters satisfy the
estimates

(1.13)

Definitions (1.12) make it possible to more shortly
express relation (1.10) as

(1.14)

Common solution to the system of two equations (1.8)
and (1.9) is given by equalities

(1.15)

(1.16)

Here, A1 and A2 are two arbitrary constants of integra-
tion. Constants B1 and B2 are interrelated with A1 and A2
by equalities
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Further, values θ1 and θ2 are defined by equalities
which can be written as a single formula
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u ñs
1( ) c̃1

c̃
----, v

n1

2 10ln
--------------

c̃1

c̃
----, w

c̃1

c̃M

------,≡ ≡ ≡

u 10 2– , v 10, w 1–10( ).∼ ∼ ∼

α11
w
c̃1
---- J1 J2+( ), α12

1
c̃1
---- uJ1 v J2–( ),= =

α21
w
c̃1
----J2, α22–

v
c̃1
----J2.= =

δcM A1e
θ1t–

A2e
θ2t–

,+=

δg B1e
θ1t–

B2e
θ2t–

.+=

B1

A1
------

1
α12
------- θ1 α11–( ),

B2

A2
------ 1

α12
------- θ2 α11–( ).= =

θ1 2,
α11 α22+

2
---------------------

α11 α22–
2

--------------------- 
 

2

α12α21+
1/2

±=



44

COLLOID JOURNAL      Vol. 67     No. 1      2005

KUNI et al.

(the plus sign before the square bracket corresponds to
value θ1; the minus sign, to θ2). It is evident that con-
stants of integration A1 and A2 are interrelated with ini-
tial deviations δcM |t = 0 and δg |t = 0.

Let us demonstrate that, whatever positive values J1

and J2 may be; i.e., whatever heights  and  of
the first and second potential barriers of aggregation
may be according to Eqs. (1.3)–(1.5), formulas (1.14)
and (1.18) ensure the real and positive values θ1 and θ2.
Let us, using Eq. (1.14), rewrite Eq. (1.18) in the fol-
lowing form:

(1.19)

where

(1.20)

Let us first prove the inequality

D > 0, (1.21)

i.e., that θ1 and θ2 values, according to Eq. (1.19), are
real quantities. Using Eq. (1.20), we make certain that,
at any real J1 and J2 values (that do not vanish simulta-
neously), inequality (1.21) is reduced to condition

(1.22)

which (as can be easily assured) is strongly equivalent
to condition

(1.23)

It is evident from inequality (1.23) that proof of ine-
quality (1.21) is valid at

w > u, (1.24)

in view of estimates (1.13), this inequality is satisfied
with large excess.

Let us now demonstrate that

(1.25)

Evidently, it is sufficient to prove only inequality θ2 > 0.
As is seen from Eq. (1.19), this inequality requires

(1.26)

Using expression (1.20), we obtain the identity

(1.27)

and see that inequality (1.26) is valid irrespective of
positive J1 and J2 values. According to Eq. (1.19), ine-
quality θ2 > 0 (what is more, inequality θ1 > 0) is also
fulfilled.

Inequalities (1.25), together with solutions (1.15)
and (1.16), give the kinetic substantiation of monotoni-
cally (with no oscillations) decaying approach of mate-
rially isolated solution containing spherical and cylin-
drical micelles to the state of final equilibrium.
Although the fact of this approach is natural, its kinetic

W̃c
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substantiation acts as an important argument in favor of
the validity of the proposed theory.

Inequalities (1.25) demonstrate that θ1 and θ2 values
in solutions (1.15) and (1.16) have the meaning of
relaxation rates. In this case, values tr1 and tr2 that are
determined according to

(1.28)

will have the meaning of relaxation times.
Multiplying θ1 and θ2 values given by formula

(1.19) and accounting for identity (1.27), we arrive at
the inequality

(1.29)

2. KINETICS OF THE RELAXATION 
OF A MATERIALLY ISOLATED SURFACTANT 
SOLUTION AT THE HEIGHT OF THE SECOND 

POTENTIAL BARRIER OF AGGREGATION 
WORK BELOW THE HEIGHT OF ITS FIRST 

POTENTIAL BARRIER

The procedure for finding the height of the first
potential barrier of aggregation work in the droplet and
quasi-droplet models of spherical molecular surfactant

aggregate [9, 10] from the experimental data on 

and ∆  was proposed in [8]. Using this procedure, at

 � 102 (consistent with Eq. (1.2)) and ∆  � 10,
in [8] we obtain

(2.1)

Reliable data on the height of the second potential
barrier of aggregation work are not available at present.
It is only known [7] that this height is slightly lower
than that of the first potential barrier. Then it is accept-
able, for example
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As is seen from (2.1), to fulfill constraint (2.2), it is suf-
ficient just to have the relative height of the second
potential barrier of aggregation work at least slightly
lower than that of the first potential barrier of aggrega-
tion work.

From Eqs. (1.4) and (1.5), we have
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It is seen that, with the fulfillment of expression (2.2),
the third multiplier in the right-hand side of Eq. (2.3) is
already large: its value exceeds 20. Then, the first mul-
tiplier in the right-hand side of Eq. (2.3) is proportional
to the ratio between surface areas of the aggregates
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of magnitude, this ratio is equal to ( / )2/3.

Assuming, in accordance with [8],  ~ 30 and  ~
3 × 102 (according to estimates (1.2) and evident ine-

quality  <  < n0), we can see that the first multi-
plier in the right-hand side of Eq. (2.3) is also large: its
value exceeds 4.6 (it will be even still slightly larger
with the account of the deviation of the shape of aggre-

gate composed of  from the spherical form).
Assuming with excess that the second multiplier in the
right-hand side of Eq. (2.3) is at least not as small as
unity (provided that constraints (1.3)–(1.5) in [2] are
fulfilled), we conclude from Eq. (2.3) that, with the ful-
fillment of constraint (2.2), we have

(2.4)

Realistic situation, where constraint (2.2) is valid and,
hence, strong inequality (2.4) is also valid, will be stud-
ied thereafter.

Using in identity (1.20) the expansion in powers of
small (in view of (2.4)) J1/J2 value and ignoring various
corrections to this value, we obtain

(2.5)

It follows from Eqs. (1.19) and (2.5)

(2.6)

(2.7)

that agrees with common equality (1.29). Equalities
(2.6) and (2.7) give

(2.8)

and, in view of expressions (1.13) and (2.4), indicate
that

θ2/θ1 � 1. (2.9)

From Eqs. (1.14), (1.17), (2.6), and (2.7) with
account of Eqs. (1.13) and (2.4), we obtain

(2.10)

Because of a relatively large, according to (2.4),
value of flux J2, the direct and reverse fluxes of molec-
ular aggregates over the second potential barrier of
aggregation work start to balance each other at rela-
tively short (in view of (2.9)) times t � 1/θ1 determined,
according to Eq. (2.6), by flux J2. Then, mutual quasi-
equilibrium is established between spherical and cylin-
drical micelles (beginning with relatively small cylin-
drical micelles); however, this time is not sufficient to
establish their equilibrium with subcritical molecular
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1( )

ñc
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surfactant aggregates. Total equilibrium in surfactant
solution is attained at relatively much longer (in view
of (2.9)) times

t � 1/θ2, (2.11)

that are determined, according to (2.7), by flux J1. At
such times, first terms in the right-hand sides of
Eqs. (1.15) and (1.16), in view of strong inequality
(2.9), are negligible compared to the second terms.
Then, under condition (2.11), according to Eqs. (1.15),
(1.16), and the second of equalities (2.10), we have

(2.12)

(2.13)

and, hence

(2.14)

For the validity of relation (2.14), it is now required that
the mutual quasi-equilibrium between spherical and
cylindrical micelles be established, without their equi-
librium with subcritical surfactant molecular aggre-
gates, throughout the region of cylindrical micelle
sizes. The time of establishment of such quasi-equilib-
rium will be found in Section 3.

According to relations (1.28), relaxation rate θ1 (the
largest (in view of (2.9)) of θ2 and θ2 values) corre-
sponds to the shortest (of tr1 and tr2) relaxation time tr1
describing a relatively fast establishment (beginning
with relatively small cylindrical micelles) of mutual
quasi-equilibrium between spherical and cylindrical
micelles without their equilibrium with subcritical sur-
factant molecular aggregates. The smallest (of θ1 and
θ2, in view of (2.9)) relaxation rate θ2 corresponds,
according to (1.28), the longest (of tr1 and tr2) relaxation
time tr2 describing a relatively slow establishment of the
total equilibrium of surfactant solution. This time
(which is the most significant in the establishment of
the final equilibrium of materially isolated surfactant
solution) will be of interest to us hereafter. For this
time, according to Eqs. (2.7) and (1.28), we have the
analytical expression

(2.15)

Assuming that important formulas (2.7) and (2.12)–
(2.15) do not contain at all the J2 flux, which cannot be
found using expression (1.5) because of scarce data on

the  height of the second potential barrier of aggre-
gation work. Flux J1 entering into these formulas can be
determined using expression (1.3), because, as was

already mentioned, the  height of the first potential
barrier of aggregation work is accessible for determina-
tion.
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Let us use

(2.16)

(2.17)

(2.18)

(relations (2.7), (3.6) and (3.7) in [2]), where b – 
presents the coefficient of the linear dependence of

work  on n in the n0 < n < n1 region. Let us open
relation (2.16), using Eqs. (2.17) and (2.18), and make
allowance for determination (1.12) and equality (2.14).
Then we obtain

(2.19)

or (that is equivalent)

(2.20)

We take into account relation

(2.21)

(relation (8.12) in [1]), which is valid for materially iso-
lated surfactant solution; in this relation, N is the total
number of surfactant molecules (the total amount of
substance) in cylindrical micelles per solution unit vol-
ume. Using inequality (2.14), we can also rewrite rela-
tion (2.21) as

(2.22)

Formulas (2.7), (2.12)–(2.15), and (2.19)–(2.22) give
the total analytical description of the relaxation of
materially isolated surfactant solution containing
spherical and cylindrical micelles. Flux J1 is given by
expression (1.3). Parameters u, v, and w are expressed
by definitions (1.12) via the characteristics of equilib-
rium surfactant solution that are accessible for experi-
mental measurement. The n0 value, which, due to its
meaning, can be determined only on some assumption,
falls out of an answer.

Let us clarify the sign of the constant of integration
A2 in formulas (2.12) and (2.13). Let us consider the sit-
uation when total concentrations cM and g of spherical
and cylindrical micelles increase with time at the stage
of relaxation so that deviations δcM and δg also increase
approaching zero from the side of negative values.
Then

(2.23)

The mutual consistency of inequalities (2.23) is
ensured by equality (2.14); i.e., by the fact that spheri-

δc1 eW̃
0

ñs
1( ) b ã–( )3δcM– eW̃

0

b ã–( )2δg,–=

eW̃
0

b ã–( )2 c̃1

c̃
----,=

eW̃
0

b ã–( )3 c̃1

c̃
----4 10ln

n1
--------------=

ã

W̃n

δc1

c̃1

c̃
----w 2u+

v
----------------δcM–=

δc1

c̃1

c̃
----w 2u+

w
----------------δg.–=

δN ñs
1( )δcM–=

δN ñs
1( )v

w
----δg.–=

d δcM( )/dt 0, d δg( )/dt 0.> >

cal and cylindrical micelles are in mutual quasi-equilib-
rium. Relations (2.12), (2.13), and (2.23) yield

(2.24)

According to Eqs. (2.19)–(2.22) and inequalities (2.23),
inequalities

(2.25)

are also valid. The first of inequalities (2.25) is evident,
while the second one should be clarified. As was
already mentioned in Section 1, we are interested in
experimentally important region of the values of overall
concentration  of surfactant solution, where the over-
whelming contribution to the total amount of surfactant
in solution is made by cylindrical micelles. In this
region, approximate equality

N � c (2.26)

is fulfilled with a high accuracy near the final equilib-
rium state of solution.

Because, by definition, the overall surfactant con-
centration in a materially isolated solution retains with
time and, hence, strictly coincides with its value  in
the final state of solution equilibrium, the N value will
still vary with time, being close to its final equilibrium

value  even at a high accuracy of approximate equal-
ity (2.26). The second of inequalities (2.25) shows that
the tendency of deviation δN to zero with time takes
place at the stage of relaxation from the side of positive
values of deviation δN : δN > 0. The tendency of devi-
ation δc1 to zero with time takes place according to the
first of inequalities (2.25) also at the stage of relaxation
from the side of positive values of this deviation. On the
contrary, the tendency of deviations δcM and δg to zero
with time occurs, according to inequalities (2.23), at the
stage of relaxation from the side of negative values of
these deviations.

In the situation opposite to that considered above
when total concentrations cM and g of spherical and
cylindrical micelles decrease, inequalities (2.23)–(2.25)
would also be opposite. Such a situation could be
observed experimentally during the relaxation of a
materially isolated surfactant solution to the new equi-
librium state after the external distortion of previous
equilibrium state of a solution by the instantaneous
changes of its pressure or temperature.

Note now that ratio N/g determines the average
value  of the aggregation number of cylindrical
micelles. Taking this into account, from Eqs. (1.12),
(2.22), (2.26) and relation

(2.27)

(relation (4.15) in [2]), we obtain δ /  = –(1 +
2u/w)δg/ . This equality demonstrates the opposite
signs of deviations δ  and δg. Using estimates (1.13),

A2 0.<

d δc1( )/dt 0, d δN( )/dt 0< <

c̃

c̃

Ñ

n

g̃
c̃1
---- 4

c̃
c̃1
---- 10ln

n1
-----------=

n ñ
g̃

n
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we can rewrite this equality with a high accuracy as

δ /  = –δg/ . Note that, from  = N/g with account
of relations (2.26) and (2.27) and estimate n1 ~ 106 in

(1.2), follows  ~ 105. The ability of cylindrical
micelles to be distributed in accordance with strong ine-
quality n1 � n0 over rather wide range of aggregation

numbers is responsible for the fact that n1 �  � n0. Such
an ability is not inherent to spherical micelles, which,

due to strong inequality ∆ /  � 1, are accumu-
lated within a rather narrow range of aggregation num-
bers so that their average size with a high accuracy

coincides with , i.e., with the position of the bottom
of the first potential well of aggregation work.

Let us elucidate what constraints on the values of
relative deviations |δcM/ |, |δg/ |, and |δN/ | follow
from condition (1.11) determining the accessible for
relaxation theory degree of closeness of the state of
materially isolated solution to its final equilibrium.
From Eqs. (1.11) and (2.19) with account of defini-
tions (1.12) and estimates (1.13), we obtain

(2.28)

Further, from Eqs. (1.11), (2.20), and (2.27) with
account of estimates (1.13), we find

(2.29)

(note that inequality (2.29) coincides with similar ine-
quality (4.16) in [2]). Finally, from Eqs. (1.11), (2.19),
(2.21), and (2.26) with account of estimates (1.2) and
(1.13), we obtain

(2.30)

Constraints (2.28) and (2.29), which are much
weaker than extremely strong (in view of estimate
n1 ~ 106 in (1.2)) constraint (1.11), admit noticeable
(not too small compared to unity) relative deviations
|δcM/ | and |δg/ | of the total concentrations of spher-
ical and cylindrical micelles. Hence, predicted by the
relaxation theory deviations of the total concentrations
of spherical and cylindrical micelles from their values
in the final equilibrium state of materially isolated sur-
factant solution can actually be measured in experi-
ment. In this case, the relaxation time of a solution (set
by equality (2.15)) can also be measured in experi-
ment and the validity of relation (2.14) can also be
verified.

Although constraint (2.30) is much weaker than
extremely strong constraint (1.11), it is still strong
enough. This is explained by the fact that, in a materi-
ally isolated solution with the overall concentration
above the CMC2, the total amount of substance in
cylindrical micelles per solution unit volume, in prac-
tice, coincides with a given overall surfactant concen-

n ñ g̃ n

ñ

ñ

ns
1( ) ns

1( )

ns
1( )

c̃M g̃ Ñ

δcM/c̃M  � 4/3.

δg/g̃  � 2/3

δN /Ñ  � 10 2– –10 3–( ).

c̃M g̃

tration near the equilibrium, and, hence, as was men-
tioned above, slightly changes at the stage of relax-
ation. The deviation of the total amount of substance in
cylindrical micelles from its value in the final equilib-
rium state of materially isolated solution is thus rather
difficult to be measured in experiment.

Let us compare relaxation times  and  in sur-
factant solutions with different overall concentrations

 and  falling within the limits of estimate (1.6).
As shown in [1], in spite of possible significant differ-

ence between overall concentrations  and , cor-

responding monomer concentrations  and  will
coincide with extremely high accuracy, provided that
estimate (1.6) is fulfilled. In this case, according to for-

mula (1.3), fluxes  and  and corresponding

overall concentrations  and  will also coincide
even with a rather high accuracy (in contrast to Section
1, superscripts at flux J1 refer to different overall con-
centrations). Taking what have been said above into
account, from Eq. (2.15), we have

(2.31)

where, in view of estimates (1.13), correction term u
is neglected compared to v and, according to defini-
tions (1.12), it is assumed that

(2.32)

in addition, it is taken into account that w is indepen-
dent of overall concentration .

Formulas (2.31) and (2.32) allow us to compare the
times of solution relaxation to its final equilibrium state
with different overall concentrations in this state. If the
CMC2 exceeds the CMC1 by the order of magnitude,
then in accordance with Eqs. (1.7) and (1.12), w ~ 10.
According to estimates (1.13), it is quite real that ine-
qualities v(1) � w and v(2) � w are fulfilled (let it be not
quite strong). In this case, it follows from Eqs. (2.31)

and (2.32) that /  � / , so that time tr2 of
the solution relaxation to final equilibrium state
increases with the overall surfactant concentration in
solution approximately in proportion to the overall con-
centration.

However, if the CMC2 exceeds the CMC1 by two
orders of magnitude, then, in accordance with Eqs. (1.7)
and (1.12), w ~ 1. Then, according to estimates (1.13),
the fulfillment of inequalities v(1) � w and v(2) � w is
typical. In this case, it is evident from Eqs. (2.31) and
(2.32) that time tr2 of solution relaxation to final equi-
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c̃ 1( ) c̃ 2( )
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J1
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w v
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librium state is practically independent of the overall
concentration in this state.

Similarly, we can disclose the dependence of short-
est (out of tr1 and tr2) relaxation time tr1 on overall con-
centration c given, according to Eqs. (2.6) and (1.28),
by the following analytical expression

(2.33)

Let us again take into account that, upon the variations
of overall concentration  within the limits admitted by
estimate (1.6), monomer concentration  is indepen-

dent of concentration  with extremely high accuracy,

as was shown in [1]. In this case, values  and 
in formula (1.5) and, hence, value J2 will also be inde-
pendent of concentration c (no specific expression for

 is required). Using the same considerations for
finding w + v, it is evident from Eq. (2.33) that relax-
ation time tr1 is almost independent of the overall solu-
tion concentration (provided that the CMC2 exceeds
the CMC1 by the order of magnitude) and is approxi-
mately proportional to the overall solution concentra-
tion if the CMC2 exceeds the CMC1 by two orders of
magnitude.

Conclusions drawn above are different than those
made in [11] that the relaxation time of surfactant solu-
tion at the overall surfactant concentration below the
CMC2 (when practically there are no cylindrical
micelles in solution) decreases with an increase in the
total concentration of spherical micelles, that is, with an
increase in the overall concentration in the final equilib-
rium state of materially isolated solution. This is
explained by the fact that, at the overall surfactant con-
centration below the CMC2, the direct flux of molecu-
lar aggregates over the potential barrier of aggregation
work depends, according to [11], on the overall concen-
tration, namely, increases with the overall concentra-

tion in proportion to .

The established in this section behavior of the relax-
ation times of molecular solution at the overall surfac-
tant concentration above the CMC2 but below the val-
ues of overall concentration, at which crosslinked
micellar structures begin to be formed or the transition
to liquid-crystal state is observed, well agrees with
experimental results discussed in [12, 13]. It was
revealed in these works that, at the overall surfactant
concentration above the CMC2, new relaxation mode
have been arisen with the characteristic relaxation time
differing from the relaxation time below the CMC2. For
some surfactants, this time increases linearly with the
overall solution concentration, while for others,
remains almost constant.

tr1 c̃1
1

w v+
-------------- 1

J2
-----.=

c̃
c̃1

c̃

W̃s
1( )

W̃c
2( )

W̃c
2( )

c̃
ñc

1( )/ñs
1( )

3. THE LOWER LIMIT OF THE HEIGHT
OF THE FIRST POTENTIAL BARRIER 

OF AGGREGATION WORK 
IN THE RELAXATION KINETICS 

OF SOLUTIONS CONTAINING SPHERICAL 
AND CYLINDRICAL MICELLES

Let us estimate characteristic time τ needed to estab-
lish the quasi-equilibrium distribution of cylindrical
micelle concentration cn over the entire region of aggre-
gation numbers n0 < n < n1 where, according to [1],
cylindrical micelles are mainly accumulated.

As was mentioned in [2], relation b –  = (4/n1)ln10
(relation (3.1) in [2]) is valid for coefficient b –  of the

linear dependence of aggregation work  on n in the
n0 < n < n1 region. In view of the last of estimates
in (1.2), we then have b –  � 1. Therefore, to vary
concentration cn with time, in estimating consider-
ations, we can use the diffusion equation

(3.1)

which accounts for a purely fluctuation evolution of the
ensemble of molecular aggregates with diffusion coef-

ficient  of molecular aggregates in the space of
aggregation numbers defined as the number of surfac-

tant monomers absorbed (  > 0) from solution with
monomer concentration  per unit time by the aggre-
gate composed of n molecules. In Eq. (3.1), we used rela-

tion  = , which is valid, in view of Eq. (1.11), with
high relative accuracy of ~(8/3n1)ln10. If we had taken

into account that b –  ≡ ∂ /∂n = (4/n1)ln10, then

term (∂ /∂n)cn accounting for the regular evolution
of the ensemble of molecular aggregates would be
added in Eq. (3.1) to derivative ∂cn/∂n. This would
diminish the role of molecular aggregates near the
upper limit of the n0 < n < n1 region and, as a result,
would slightly diminish the desired time τ and weaken
the desired lower limit of the height of the first potential
barrier of aggregation work.

We set the following boundary conditions to Eq. (3.1):

(3.2)

suggesting the conservation of the total concentration
of cylindrical micelles in the n0 < n < n1 region. These
conditions will be proved somewhat later.

The  value is proportional to the surface area of a
cylindrical micelle, which, in turn, is proportional to
aggregation number n. Therefore, we have

(3.3)

ã
ã

W̃n

ã
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where α is a positive constant. We assume

(3.4)

Using Eqs. (3.3) and (3.4), we reduce Eq. (3.1) to

(3.5)

and, using (3.4), we reduce boundary conditions (3.2) to

(3.6)

(3.7)

Strong inequality n0 � n1 resulted from estimates (1.2)
allows us, in view of Eq. (3.4), to consider that r0 = 0.
In this case, boundary condition (3.6) can be replaced
by the condition of boundedness

(3.8)

Solving Eq. (3.5) at boundary conditions (3.7) and
(3.8), for characteristic time τ needed to establish
quasi-equilibrium distribution of the concentrations of
cylindrical micelles, we have (e.g., see [14])

(3.9)

where µ1 � 3.8 is the least of positive roots of transcen-
dental equation J1(µ) = 0 where J1(µ) is the Bessel func-
tion of the first kind (with subscript equal to unity).
Returning in Eq. (3.9) to the initial designations with

the use of equalities α = /n1 and R2 = 4n1 followed
from Eqs. (3.3) and (3.4) and taking into account that,
in this case, µ1 � 3.8, we obtain

(3.10)

Seemingly, the condition of the maintenance of the
quasi-equilibrium distribution of the concentrations of
cylindrical micelles over the entire region of their sizes
at the slow establishment of the total equilibrium of
materially isolated surfactant solution is

(3.11)

Indeed, according to Eqs. (2.13) and (1.28), deviation
δg of the total concentration of cylindrical micelles
from its final equilibrium state has no time to be
changed by the relative value during time ∆t � τ, given
that condition (3.11) is fulfilled. This explains condi-
tion (3.11) and, at the same time, justifies boundary
conditions (3.2).

According to the meaning of time τ and the meaning
of time tr1 disclosed in Section 2, the largest of τ and tr1
value is responsible for the time of the establishment of
mutual quasi-equilibrium of spherical and cylindrical
micelles without their equilibrium with subcritical sur-
factant molecular aggregates over the entire region of
the sizes of cylindrical micelles. Only after the elapse
of this time (the largest of τ and tr1), relation (2.14) will

n r2/4, n0 r0
2/4, n1 R2/4, cn t( ) ϕ r t,( ).≡ ≡ ≡≡

∂ϕ
∂t
------ α ∂2ϕ

∂r2
---------

1
r
---∂ϕ

∂r
------+ 

  r0 r R< <( )=

∂ϕ/∂r( ) r r0= 0,=

∂ϕ/∂r( ) r R= 0.=

ϕ r 0= ∞.≠

τ R2/αµ1
2,=

j̃n1

+

τ � 0.28n1
2/ j̃n1

+
.

tr2/τ � 1.

be valid. In view of Eq. (3.11) and tr1 � tr2, this time is
much shorter than time tr2.

Substitution of Eq. (1.3) into Eq. (2.15) yields

(3.12)

where, in view of Eq. (1.13), term u is neglected com-
pared to v. Using Eqs. (3.10) and (3.12), we obtain

(3.13)

Ratio /  is set equal to ratio A(c)/A(s), where
A(c) is the surface area of cylindrical micelle composed
of n1 molecules and A(s) is the surface area of spherical

molecular aggregate composed of  molecules. Let
us find the surface area A(c) using formulas (46.1) in [4]
and surface area A(s), using formula (1.1) in [9]; we used

also aforementioned estimate  ~ 30 obtained in [8].
Then, we have

(3.14)

For ∆ , we assume estimate ∆  ~ 10 calculated in
[8]; for n1, estimate n1 ~ 106 in Eq. (1.2). On this basis,
and accounting for Eq. (3.14), from Eq. (3.13) we
obtain

(3.15)

where, according to Eq. (1.13), we can use

(3.16)

On the basis of Eqs. (3.15) and (3.16), we reduce
condition (3.11) to

(3.17)

Condition (3.17) imposes the desired lower limit on the
height of the first potential barrier of aggregation work
in the kinetic theory of the relaxation of surfactant solu-
tions containing spherical and cylindrical micelles. If
the CMC2 exceeds the CMC1 by the order of magni-

tude, constraint (3.17) is fulfilled at  > 15.5. How-
ever, if the CMC2 exceeds the CMC1 by two orders of
magnitude, constraint (3.17) is fulfilled already at

 > 13.9.

Note that constraint (3.17) derived on the basis of
the kinetic theory is consistent with estimate (2.1),
which was obtained in [8] from the analysis of solution
equilibrium.
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