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Abstract —For the case of direct spherical micelles, two nanostructural models of molecular aggregates
have been discussed: the classical drop model implying flexibility of hydrocarbon chains of molecules and
their full immersion into the hydrocarbon core of an aggregate, and a quasi-drop model allowing partial
outcropping of the chains in the strainless state from the core. For the sake of simplicity, a solution is assumed
to contain only a single surfactant whose molecules possess only one, unbranched hydrocarbon radical. Within
the frames of the models, the behavior of the chemical potential of surfactant molecules in a primicellar and
micellar molecular aggregate has been analyzed, as well as the work of formation of the molecular aggregate
as a function of the aggregation number and the solution concentration.

INTRODUCTION carbon radical, the hydrocarbon chain having no
branches.
The rigorous theory of micellar systems, as well as
the theory of molecular aggregative systems at all, is 1. DROP MODEL
formulated on the basement of the mass action law. OF MOLECULAR AGGREGATE
The mass action law constant is known to include the
Gibbs energy of a single micelle, so that the calcula- 1.1. Parameters of Hydrocarbon Chain

tion of this quantity proves to be necessary in the
theoretical description of micelles. The general We will use for calculations the following formulas
theoretical formalism for the description of a singlefor the lengthl- and the volume/; of a hydrocarbon
micelle has been already developed [1, 2], but modelshain including n. carbon atoms [3]

are needed for particular estimations. The data on the

structure and properties of quite ready stable micelles lc = (1.5 + 1.2650) A, (1.1.2)
are accessible from experiment, but the knowledge of _ 23

the properties of primicellar (molecular or ionic) Ve = (274 + 26.90) A% (1.1.2)

aggregates is also needed for the creation of the ki- From here the length of a single segment in the

netic theory of micellization. What is especially middle of the hydrocarbon chain Is = 1.265A and
important for the kinetic theory is the behavior of its volume isv. = 26.9 A3 Then the cross-section area
critical (unstable) micelle embryos whose propertiei 1 y '

are practically unknown up to the present time. The u 1 the middle of the hydrocarbon chain is

of as-plausible-as-possible speculative models of a, = vfl, = 21.265 A2 (1.1.3)
embryos remains the only approach to carrying out .
necessary calculations. (if the cross-section is round, its diameter is 5.203

On the other side, the average cross-sectiea for
In this presentation, we will confine ourselvesthe whole chaina; is
with the case of direct spherical micelles. We will
consider two nanostructural models for primicellar ac = Vclle. (1.1.4)
and m|_cellar_ molecu_la}r_ aggregates: the class[cal drop Accounting for (1.1.1) and (1.1.2), it is easy to see
model implying flexibility of hydrocarbon chains of that alwaysa. < a, (for example, we haven. =
molecules and their full immersion into the hydro- ySac 1 p'e, B

]2 - - ]2 -
carbon core of an aggregate, and a quasi-drop modgP-638A~ atnc = 1 andac = 20.995A% atng = 12).
allowing partial outcropping of the chains in the 1his gives evidence for the existence of a coning at the

strainless state from the core. For the sake of sinfthain end.
plicity, a solution is assumed to contain only a single If one simulates the middle part of the chain with
surfactant whose molecules possess only one hydra- round cylinder, its end can be represented as a
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608 RUSANOQV et al.

truncate cone. Let us find its geometrical parameters.1.2. Packing of Chains into the Hydrocarbon Core
The radius of the lateral cylindrical surface of the
chain If chains are compactly (without cavities) packed
into a spherical core of radius the condition holds
ry = Vag/n = 2.602A (1.1.5)
_ _ _ 4nr3I3 = nyg, (1.2.1)
simultaneously is the radius of the Ia}rzger base of the
truncate cone with the areq = 21.265A°. According where n is the aggregation number. From (1.2.1)
to (1.1.1) and (1.1.2) (at- = 0), the cone height is
h=1.5A and its volume isV = 27.4 A%. Using now r = (Bnve/dn)l® = anl3 (1.2.2)
the geometrical relationship
where ) = (3v/4n)? is the radius of a sphere which
r? + r3 + ryr, = 3Vinh, (1.1.6) is equivalent, by volume, to a single hydrocarbon
chain [according to (1.1.2) = 4.37 A atn; = 12].
we obtain the radius of the smaller base of thelThe core surface area is given by the expression
truncate coner, = 2.2155 A. Correspondingly, the
smaller base area (the end face area of the hydro- A = 3nvelr = dur?, (1.2.3)

carbon chain) is _ o o
One more important characteristic of packing is the

a, = w3 = 15.42 A2, (1.17) core surface area per one chain
— - 2

which makes 72.5% of the cross-section area of the a = el = darin. (1.2.4)

uniform part of the chain. With known the radii of . .

both of the bases, the slope angle of the cone generraélgt?omngﬁi”ng (1.1.4) and (1.2.4), we arrive at the

tor is readily estimated at 75.5%the angle at the full b

cone vertex is about 2§ alac = 3, (1.2.5)
We now have the total set of the geometrical para;

meters of the chain model. It is also of interest tothat shows that the core surface area per one chain

. o decreases with increasing core radius an ins th
estimate specific surface free energyfor the same 9 d attains the

del at tact with water. For thi value 3 atr = |.. This value of the hydrocarbon
mode’ at_contact with water. For niS purpose, W&, radius is regarded as a maximum one for direct
use the Dupre rule

micelles. So we see that, even at a maximum size of a
o o spherical micelle, the hydrocarbon core surface area
w; = ajAc = ajo, (1.1.8)  per one chain still trebly exceeds the chain cross-

_ , section area. The ratio is lower for micelles of other
wherew, is the work of transfer of one chain segmentshapes.

from a hydrocarbon phase to water (constituent of the _ , _ ,
experimental total work of transfer of the hydrocarbon_ . The chains are assumed to be ideally flexible in
chainw), Ac is the change of at the transfer (it is this (drop) model. In reality, chain flexibility is

-0 restricted (it is well known that rotation around-C
;silﬁ;ncalgtg:zdls Su?fglcéhzgy: rg}cc: a;bgaglgazi)égzgt, bonds in hydrocarbon chains is hindered). Therefore,

the _model works th_e bettgr the longer are hydrocarbon
ay = 2ur)l, = 20.68 A2 (1.1.9) chains and the higher is the aggregation number.
1.3. Elements of the Gibbs Energy

According to available experimental date; = of Molecular Aggregate

1.3XKT at 25C [1] (k is Boltzmann’s constant andis

the absolute ter_nperature). Then, from (1.1.8) and |t is assumed in the drop model of a molecular
(1.1.9), we obtain aggregate that the mechanicg) &nd thermodynamic

(o) definitions of surface tension coincide, as it should

6 = wy/a; = 0.0672<10' kT = 27.64 mJ/r. (1.1.10) pe for fluids. The possibility for micelles to possess

solid-like properties was taken into account in [1] and,

This result predicts the free surface energy at theorrespondingly, the difference in the above quantities

strongly curved surface of a hydrocarbon chain to bevas taken into account (the theory was formulated in
approximately half that for a flat interface (50 m¥Jm terms ofo in [1]). A surfactant micelle has a multi-
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NANOSTRUCTURAL MODELS OF MICELLES AND PRIMICELLAR AGGREGATES 609

layer (onion-like) structure, so one may ascribe an 5

individual tensiony, to each layer. It is convenient cel -_(62) [ 1 .1 j
that the Gibbs energy of a molecular aggregajgeis Mo 8regs (F+Ar T+Ar+s

additive with respect to the contributions of individual (ez%5

layers and, therefore, the contribution of each layer = Breger + AN F AT 4 05)

may be calculated separately. This is seen from the _ ) _
equation [2] whereeznis the charge of the primary (internal) ca-

pacitor plate € is the elementary charge amrds the
Gy = SvAJ3 + pon, 1.3.1) Ccharge ratio)g, is the electric constant is the di-
M ky"Ak " ( ) electric permittivity, Ar is the distance between the

whereA, is the area of the surface of tension for the/M€mal capacitor plate and the hydrocarbon core
kth layer, u* is the chemical potential of a molecule surface  + Ar is the radius of the internal capacitor

in a micelle ¢ symbolizes the hydrocarbon phase 01:plate), ands is the distance between the capacitor

: : . : lates. We assume the parametérsand & to be
the micelle core). Two terms in the ng_ht-hapd side oiliOndependent of the core I?adius and the aggregation
Eq. (1.3.1) are related by the relationship number. Then substitution of (1.2.2) in (L.3.4)
“ b gives an explicit dependence G‘f,', on the aggrega-
ndu* = —Ed(YkAk/?’) (T, p*, 1 — const), (1.3.2) tion number:

(1.3.4)

wherep? is the pressure in the solution surrounding a el = (e2% n2

micelle @ is the symbol of this phase) and are the M T 2 13 173 " (1.3.5)
chemical potentials of the solvent components. In Broger” (M + k)M ko)

contrast withu®, the chemical potentigl® refers to a  For the sake of brevity, the notatiokg= Ar/A and
higher pressurg® > pP. However, ifp® is reduced to k, = (Ar + 8)/A have been introduced in Eq. (1.3.5),
its valuep(p®) = u*® for the pressurg®, Eq. (1.3.1) so thatk, — k; = /).

is simplified to the expression [2] Using the definition of chemical potential [2]

= a(B)
Gu = TuAc + 1n. (1.3.3) a:[ GGMJ

(1.3.6)
. . . an T, pB, Ly
In a direct micelle or a corresponding molecular

aggregate of a surfactant, two tensile surfaces can ©B&d Eq. (1.3.5), we also can calculate the electrostatic
distinguished: the boundary between the hydrocarbogontribution pg to the chemical potentialt™
core and a polar solvent, and the surface of tension e
a — M
Fel [ an jT’ F’B Ky

(€% 4n®3 + 5(ky + ko)n?3 + Bkikon

(of negative tension because of repulsion) for polar
groups. In the former case, neglecting the curvature
dependence of surface tension, we may set the surface
tension y, equal to its macroscopic valueyy( = = :
50 mH/m for the boundary between the hydrocarbon 24meen?  [n23+ (ky + kp)n3 + kiky]?
phase and water). Then the contribution of this surface

! . . To discuss the role of this contribution, let us
is explicitly present in Egs. (1.3.1) and (1.3.2). Theconsider the detailed expression for the chemical

contrlbutlgnthof d‘?o'?r grogps, IS m?re cc?[rr]nple>|<. Itaglalrpotential of a molecular aggregate as a function of the
groups, both dipole and ionic, form the electricalygoronation number.

double layer. So, strictly speaking, we deal with two

surfaces (plates of the double layer), but it is more 1.4. Chemical Potential of Surfactant

reasonable to consider them conjointly. Molecule in Molecular Aggregate
(Phase Approach)

(1.3.7)

Turning to spherical molecular aggregates of suf-

ficiently large dimensions, we may estimate the elec- The concentration of molecular aggregates is not
trostatic contribution with the aid of the Spherical taken into account in the phase approach: each mole-
capacitor model. The expression for its energy (theular aggregate is considered as if it would be alone
work of charging) is well known. The charging at aand would be a phase. It is known, however, that such
fixed state of the surrounding medium just yields thea “phasé& chemical potential coincides with the real

electrical c:ontributiont,'I to the Gibbs energy of a chemical potential in an aggregative system at the

molecular aggregate: extreme points in the curve of the distribution of
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aggregates in the aggregation numbers [4, 5]. Justibution of w, will become still smaller at increasing

these points are of the most interest for us. r). Using (1.2.2), Eq. (1.4.3) can be transformed to
the form
In any phasex, the molecular chemical potential 13 13 .23
u* is given by the standard expression of statistical w = btB b= (203 (14.4)
mechanics

In addition, we have to take into account that a sur-
factant molecule is not transferred into the depth of
the hydrocarbon phase as a whole, but remains in a
0 . _ _ _ position when it intersects the dividing surface (to
where p” is the chemical potential of an isolatedyhich surface tension refers) inside the aggregate.
molecule with resting center of mass in a vacuwtt, Therefore, the work of transfer also contains the
is the work of transfer of the molecule from a fixed g;rf5ce contribution-y,a,, where a, is the effective
position in a vacuum to a fixed position in phage areq occupied by a surfactant molecule ondivding
with the molecular concentratiasf’, L = h(2emkT)” surface (usually, this is the parkirgrea of a polar
is the mean de Broglie wavelengtih {s Planck’s group). We note at once that such an additive is

constant,m is the molecular mass). We will apply constant and, hence, does not influence the following
Eq. (1.4.1) to a surfactant molecule located inside @alculations.

molecular aggregate in a surface solution.

p® = p0 + w* + KTIn (c*A9), (1.4.1)

As for polar groups, they remain in the solvent

Regarding the solution surrounding an aggregatg€dium in the course of transfer of a surfactant
as phaseB (this is a real phase without any ifs), we molecule in a molecular aggregate but come close( to
can writt a similar expression for the surfactan@ch other and form an electrical double layer, which

chemical potential in phasg and subtract it from reduires (as estimated per one molecule) the wayk
Eq. (1.4.1) to obtain the expression (the subscript el indicates an electrical nature of the

work). Above, we have already estimated this contri-
bution to the chemical potential as;, in Eq. (1.3.7),

a — B a _ B af-PB
K perw W+ KTin (¢%ey,  (14.2) and we now write it in the form

wherec! is the concentration of surfactant monomers 558, 5 43, 3

in solution. Obviously, the difference® — wP is the L S L S

work of transfer of a surfactant molecule from the ol = el (23 + knt/3 + k)2

agueous phase to the aggregate. In such transfer, only ) (1.4.5)
the hydrophobic part of the surfactant molecule be| = (€376

changes its surrounding medium and passes from the Bregen?

solution into the hydrocarbon core of the molecular

aggregate. If the hydrocarbon core surface were flafqore

the work of transfer of a single hydrocarbon chain

from water into the depth of the hydrocarbon phase K=k +k = (245 + S

would be -w. (as already stated above, this 1o '

quantity is known from experiment). However, since K = kik, = Ar(ar + 8)02 (1.4.6)

the hydrocarbon core surface is curved and possesses _ _ ,
tensiony,, the work of transfer is complemented by It is easy to see tha, is a monotone increasing
the termw,_giving the work necessary for overcoming function of the aggregation number.

the Laplace pressure difference at the surface under Neglecting other interactions (in particular, we

consideration (we will account for the surface ofconsider the polar groups not to be in direct contact

polar groups separately). In the case of a spheric@nd interacting only electrostatically), we now can
surface of radiusr, this term (the contribution to write Eq. (1.4.2) in the form

molecular chemical potential) is

R = =W + W - vo8p + W + KTIn (c%/cy), (1.4.7)

W = Ve(2vg/r) (1.4.3)

where all the quantitiess are positive and the super-
and plays the role of a correction tev. (as estimated script 8 is omitted (at equilibriumyP is just the real
per a chain segment, this term contributegydr, chemical potentiaj in the whole aggregative system).
which, atv, = 26.9 A% andy, = 50 mH/m, makes By referring wc to the macroscopic phase, we imply
0.654T, i.e. 47% of the above quantity,; the con- the matter density in the macroscopic phase and inside
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NANOSTRUCTURAL MODELS OF MICELLES AND PRIMICELLAR AGGREGATES 611

the micelle hydrocarbon core to be the same. At a

constant density of hydrocarbon chains, one may also du _ dwL | dwer (1.4.8)
consider the molecular concentratiaff as approxi- dn dn dn

mately constant, not to speak that stands in the

logarithmic form in (1.4.6). The quantitigs and c; To avoid dealing with fractional exponents, it is

are also constants at a given state of solution, so thatore convenient to perform differentiation with
the whole dependence ofi* on the aggregation respect to the variabla® = x. Using (1.4.4) and
number n is realized viaw, and w,. Hence, (1.4.5), we obtain

du® _ dwi  dwg b, X8 + 3 + (2.5 + 3.5)x* + 6.5kx3 + 4.5¢%x?
- + -__=- + bel . (149)
dX dX dX X2 (XZ + kx + kv)3
The second differentiation yields
d?u* 2 (K2 = KX + (2.5 — kK)x* + (10k%k — 4k'2)x3 + 15kk2x2 + 9k'3x
= + Dy >0, (1.4.10)
S 02 + kx + k)

showing that the curve of the dependenceudfon x  Thus, a stationary point has been found as a unique
is concave in its whole length [there are differences ipoint, and the condition expressed in Eq. (1.4.10)

the numerator of (1.4.10), but all of them are positivegives evidence that this is a minimum.

as it is easy to see with using (1.4.6)]. Let us examine

the dependence with respect to the presence of. . : .
stationary points. By equating (1.4.9) to zero, We?rﬁmlmum evidently remains true also for the de-

; . : : endence ofu” on n. We designate the minimum
arrive at the algebraic equation of the eighth degregalue ofu* as ., and the aggregation numberat

the minimum point as),. As was already noted, the
condition

The conclusion on the existence of a unique

x8 + 3kx” + (2.5 + 3.5)x8 + 6.5Kkx> + 4.5?x*

— b(x? + kx + k)3 = 0, (1.4.11)
p=pu* (1.4.14)
where the notationb = b /b, is introduced for
the sake of convenience. In Eq. (1.4.11), the terms aforresponds to extremes in the curve of aggregate
orderx® andx’ are positive, and the terms of order distribution in size. Tha value is given by the con-
and lower are negative, whereas three middle termsentration of the surfactant solution. j§f < pg,;,, the
can be of any sign depending on the valueboWe existence of extremes and, therefore, micelle forma-
write these terms in the form tion (a maximum in the distribution curve corresponds
to micelles) is impossible. This is the primicellar
(ag — b)x® + 3k(ag — b)x® + 3(? + K)(a, — b)x# (1.4.12) concentration range. There are two extremes (a
minimum and a maximum) at > pri- If w = prin

where both the extremes merge and degenerate into an inflec-
tion point, the precursor of micellization, whose co-
ag = 2.5«% + 3.% > a5 = 13K/6 ordinaten, is an important parameter of the theory.
> a, = 1.5K2(K2 + K). (1.4.13) The positive root of Eq. (1.4.11) gives, and can

be expressed analytically only whéx® andkx? are
At the above proportion of positive quantitieg, small as compared with unity (whem, lies in the
a;, and a,, there is only one sign change in therange of values, wheng® >> (Ar + 8)/A). At kxt <<
sequence of coefficients of Eq. (1.4.11), irrespectivd andkx? << 1, we immediately obtain from (1.4.11)
of the b value. Then, in accordance with the Descartes
sign rule, Eq. (1.4.11) has a unique positive root. x ~ bY2, ny ~ (b /by)%? (1.4.15)
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If the internal capacitor plate is located close to thdrom the inner plate. If the degree of counterion
hydrocarbon corek{ 0, k # 0), the degree of the binding B is high enough in a molecular aggregate
algebraic equation (1.4.11) is reduced to five, butand the concentration of monomeric ions in solution is
nevertheless, Eq. (1.4.11) is only solved numericallystill low enough, the Debye length,, the principal
As an example withk = 0, we consider the packing, parameter of the theory of electrolyte solutions, plays
into a spherical micelle, of molecules of a nonionicthe role ofs,. Under ordinary conditions (at 293 K),
surfactant containing one polar (dipole) group andhe dependence of the Debye length on the monomer
dodecyl as a hydrocarbon radical. In accordance witboncentration ¢, (M) can be approximated by

published data, we setn. = 12, A = the formula
4.37A, Ve = 350A3, v =50 mH/m,z=1,¢ =40, and, .
for the beginning,k = 1 (i.e. 8 = A = 4.37 A). 8p ~ 3/(z\cy) A, (1.5.1)

Computation via Eqgs. (1.4.4) and (1.4.5) yielos=
9.111 and, correspondingly, Egs. (1.4.11) and (1.4.15)here z is the ion valency. The critical micelle con-
lead to the values,, ~ 27.5 andn, ~ 29.1. If we set centratlon of ionic surfactants typically ranges within
k=0.5@ = 2.185A), Egs. (1.4. 11) and (1.4.15) give 10°-102 M, so §, takes values 30A and more
close valuesn, ~ 78.5 andny ~ 77.8. If, however, atz = 1. For such long distances between plates, one
k=2 (6 = 8.74 A) is taken, Eq. (1.4.15) yields should already use the macroscopic valuef dielec-

no = 9.7, while the exact Eq. (1.4.11) yieldg~ 12.6 tric permittivity (80 for water). To complete the
(such discrepancy is of no wonder, since the conditiopicture, we should account for a small probability of
n’3 >> kis here not fulfilled any more). In accordancepenetration of counterions into inner capacitor plate.
with (1.1.1) and (1.1.2), the limiting value of the This lead to the change of its charge by B, times
aggregation number is 55.5 in the model under conf B, is the degree of counterion binding in the inner
sideration. We see that there is a certain range qflate.

d-values where the realization of a minimum of the
chemical potential of surfactant molecules in a micell
is secured by electrostatic repulsion forces in th
absence of more powerful short-range repulsion forces. el = (ezn? [(1_ B])z[

M 8neg

In such a model, the capacitor energy is given by
he expression {see [1], Eq. (33.1)}

11
€1 r+ Ar r+ Ar+9q

1.5. Transition to lonic Surfactants

Q-p*( 1 1

In the case of an ionic surfactant, the electrical t— [HAH 5, T+ Ar+0o,+0, H (1.5.2)
double layer of a molecular aggregate possesses a
more complex structure, on account of the spatial dis-
tribution of counterions. One can distinguish between Equation (1.5.2) changes to Eq. (1.3.4) (we now
the layer of bound counterions (Stern layer) adjacerdesignate this value a3y, ) atp; =0 andéS2 = 0. For
direct to the surface of the primary charge of thecomparison of these equations, it is convenient to
molecular aggregate (one cannot exclude partiakrite Eq. (1.5.2) as
penetration of counterions into the primary charge

layer) and the diffuse part of the double lay&till P G B)A(r + Ar)

\ , ; , . = (G)), | (1 - B1)? + .
operating with the image of a spherical capacitor, one B1e(r + Ar+ 81 + 3y)
can say the outer plate has become more distant from (1.5.3)

the inner one as compared with the case of a dipole

double layer, and, therefore, the capacitor energy has Water has,/e = 0.5, and the factog,(1 - B)%e in
become higher. Herewith, the coefficierli,, in Eqg. (1.5.3) amounts to 0.60.08 atp = 0.6-0.8. The
Eqg. (1.4.5) increases, the coefficidmtn Eq. (1.4.11) ratiod,/(r + Ar + 8, + 3,) is always smaller than unity,
decreases, and, as a consequence, the aggregatamd, therefore, a significant value of the second term
numbern, decreases. To be more exact, one can sap brackets in Eq. (1.5.3) might be only caused by a
the outer plate has segregated into to plates. The firsmall value of$;. However, in the case under con-
of them coincides in position with the surface ofsideration, the value obf; is not so small as for
bound counterions which bring, with themselvesdipoles, for we now speak about the contact of two
bound water of a reduced dielectric permittivéiyand hydrated ions (one has to add two diameters of water
are located, although not so close as in the dipole caseolecules to the own radii of the two ions).df is of

at a small distancé, from the inner plate. As for the order 10A, the ratio ( + Ar)/8, is of order 2, so that
second plate simulating the diffuse part of the doublé¢he value of the whole second term in brackets in Eq.
layer, it is located at a sufficiently long distanége (1.5.3) is smaller than 0.68.16 and plays the role of
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a small correction at not large, values (this correc- is fulfilled in practice long before the critical micelle
tion, however, stands in the exponent if speaklng:oncentratlon (for dodecyl, for instanogg/kT ~ 16.7
about the size distribution of aggregates). Thus wat 293 K, c* ~ 1A ~ 10* cm™3 ~ 5 M and, even
see that Eq. (1.3.4) proves to be a good approximatioat a; = O, extremely low surfactant concentrations
also for ionic surfactants in many cases. This allowgc; < 3x 107 M) are needed in solution to
us to apply also other results of the preceding sectiodisturb Eq. (1.6.5)). Further increase in the concentra -
(the existence of a uniqgue minimum of the chemication leads to a situation, whed becomes larger than
potential of molecules in a molecular aggregate as tne smallest of the quantities. Then two changes of
function of the aggregation number and the existenceign appear in the sequence of coefficients of
of two extremes in the curve of the size distributionEqg. (1.6.2). Such a situation is maintained at any still

of molecular aggregates) to ionic surfactants. larger values 0B, if a, proves to be the smallest aj
is intermediate betweea; andas. If, however,a, is
1.6. Condition of Phase Equilibrium larger thanag and as, four sign changes may arise at

further increase oB. In this case, the Descartes sign
At phase equilibrium,u* = p (using this, we rule is not so categorical as at a single sign change,
address to stationary points in the curve of the sizand predicts the number of positive roots either equal
distribution of aggregates), and Eq. (1.4.7) changes tto the number of sign changes or smaller than the
number of sign changes by an even. In the preceding
-We + W - vg89 + W + kTIn(c%cy) = 0. (1.6.1) section, however, we proved that,@t> c,q (if ¢ is
the concentration corresponding to a minimum value
Putting (1.4.4) and (1.4.5) in (1.6.1) and accountof the chemical potentiah®), Eq. (1.6.2) has two
ing for b = b /b,, we write (1.6.1) in the form roots evidently corresponding to a minimum and a
maximum in the curve of size distribution of

b nl/s + i— krf*/3 + % kn aggregates.
1/3 . -
n (PR + knt3 + )2 1.7. Work of Formation of Molecular
g e+ Yol KTIn (c*/cy) ( ) Aggregate as a Function of the Aggregation Number
= : 1.6.2
De|

If the process of formation of a molecular aggre-

As was already stated above, the concentratibn gate occurs at constant temperature, external pressure,
may be regarded as a constant in the model undand the state of solution, the work of the procééss
consideration. Then Eg. (1.6.2) allows us to calculatgiven by a change in the Gibbs energy of the mole-
the aggregation numbers for stationary points at aular aggregate cell. Using (1.3.3), we can write
given c;.

= — = aB) _
Again introducing the notation® = x, we rewrite W= Gy - un = Zrncdhc + (1 win. (1.7.1)

Eq. (1.6.2) as The expression of this form has already been

6 5 > , 3 analyzed in [1], but in terms of another model of
X0+ (@5 — BIX® + 2K(ay - B + (k% + 2K)(ag - B molecular aggregate, with resting center of mass. Such
+ 2kK(a, — B)x? + k%@, — B)x + bk? = 0, (1.6.3) a molecular aggregate never is in equilibrium with
solution, and, when differentiating between phages
where the set of positive quantities(i = 1, 2, 3, 4, 5) and B, the latter is understood as the region between
has been given: the hydrocarbon core surface and the outer boundary
of the molecular aggregate, where polar groups of
a; = 2bk/K > a, = b(k? + 2k)/2kk > a3 = 2bK/(k? + 2k),  surfactant molecules are located. For this reason, the
electrostatic repulsion of polar groups was not related
a, = (b + L.X)/2k a5 = 1.25% (1.6.4) to the surface and was ascribed to the chemical poten-
tial p“®. We now consider a mobile molecular
The quantityB increases with the surfactant con-aggregate that can be in equilibrium with a real solu-
centration in solution. If the concentration is very low,tion forming phasef. The electrostatic repusion of
B < 0, all the coefficients in Eq. (1.6.3) are positive,polar groups simulated with a spherical capacitor is
and, hence, Eq. (1.6.2) has no solution. However, thexpressed in Eq. (1.7.1) as an interface with a
condition negative surface tension and, in addltlon as a certain
contribution to the chemical potentig”®. It is no
B > 0, We + v0a0)/KT > In (c%/cy) (1.6.5) need to compute these quantities separately, because
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we already know their joint contributio@f,', given by naturally, of an (already nonstationary) inflection
Eq. (1.3.4). This means that, if we ad@ﬁ,', to point between them. The location of the inflection
Eqg. (1.7.1), we simultaneously exclude the electrostatipoint on the aggregation number axm, is found by
contribution both from the sum standing in Eq. (1.7.1)equating the second derivative of the functionij\{o
and from p*®: zero:

W = G + oA + (ud® — wn, (1.7.2) no = (by/2by)3? (1.7.10)

Instead of the sum, we now have the only termtaking into account Egs. (1.7.6) and (1.7.8), it is seen
related to the hydrocarbon core surface, and should libat Eq. (1.7.10) is equivalent to the second of Egs.
understood aag(ﬁ) after subtracting both the Laplace (1.4.15)]. Since, herewith, the coefficieby, the only
(we remind thau“(ﬁ) has been reduced to presspf  concentration-dependent coefficient, is absent, we
and electrostatic contributions. Turning to Eq. (1.4.7)come to the important conclusion that the location of
we can now write an explicit expression for thethe inflection point in the curve of the dependence of
chemical potential difference in Eq. (1.7.2): W on n and, therefore, in the curve of the equilibrium

size distribution of molecular aggregates, does not
pe® — o= -we - g3y + kTIn(c%c;), (1.7.3) depend on the concentration of solution. It is of note
that this result is of general character and is unneces-
which is practically independent of the aggregatiorsarily related to the approximation expressed in
number. The surfacé in Eq. (1.7.2) coincides with Eqg. (1.7.9).

:ge(gyg rso)ca;lrrl])g n(i:ozrez)arzas and is estimated, according The relation between the coefficients at the inflec-
o s tion point (established in [1])

— 2+2/3
A = 40.2n28, (1.7.4) b, = g (2byby)12 (1.7.11)
Neglecting all other effects and putting now (1.3.5)

and (1.7.4) in Eq. (1.7.2), we arrive at the expressiorﬁan be extended to any concentrationis,ifs replaced

y
W= bun? bon + bgn?/3 + b, = b, — kTIn (cy/ 1.7.12
T B nBrky) o - (1.7.5) p = by — KTIn (¢/cy). (1.7.12)
where Thus, the relationships are generally fulfilled
~ _ 4 4
(€% _ 3 by, = = (20,0912 b, > = (2bjby)t2  (1.7.13)
bj=—"— ="Dyg, 3 1 M2 3 1
1 Bregsn? 4 ’ e 1.8. Work of Deformation of Hydrocarbon
= _ yB) = o .O. | y
by = b= g™ * 1080 = We * Yoo * KTIN (6,/C7), (1.7.7)  cpgjn, Proceeding to the Model of Rigid Chains
- -3
by = dmi%yo = 7 o (1.7.8) The hydrophobic part of a surfactant molecule

undergoes a certain deformation at packing into the
spherical hydrocarbon core of a molecular aggregate.
So, on the average, the chain conformation will be
different from that in a hydrocarbon phase. The con-
formational difference produces a positive contribu-
tion w, to the chemical potentigh®. Nagarajan [6]

t gives the expression for the deformation work ob-

tained form Semenov’'s formula [7] by means of

integration over the whole aggregate volume (i.e. this
is the work per the whole aggregawy = nwy):

At a sufficiently large aggregation number, when
nt® >> k;, k,, Eq. (1.7.5) is approximated by the
expression

W = bn*® - bon + bgn?B + ., (1.7.9)

which (with slightly different coefficients) was jus
analyzed in [1].

To the results obtained in [1], it is useful to
add the following. Ifc,y is the monomer concentra- W, 2 2 5 2
S \ e . ; d _ 3w r< _ 34
tion in solution atp = p,;, [when there is a stationary T 80 2 " a0’
inflection point in the curve of the size dependence of Nsls Cts
aggregates and, therefore, also in the curve of thehereng is the number of rigid segments per chain,
function W(n)], the curve of the dependence\WWfonn L is the length of a rigid segment (44), andl. =
exhibits, atc; > ¢, the existence of two extremes and,n; is the chain length. Using (1.2.2), we can

(1.8.1)
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represent Eqg. (1.8.1) as hydrocarbon phase, although of a smaller size than in
0 the drop model. The first variant has already been

o _ oo SR o W2 (182 analyzed in [8]. The second one (we call it a quasi-

KT T TR0, ks drop model) is considered below. It is of note that a

: realistic feature of this model will be accounting for
For dodecylby ~ 0.092, and we obtaifV/kT ~ 1.34 : . .
even for tr)(e c|jfnaximum value 55.5 of tﬁe aggregatio he partial penetration of water into the hydrocarbon
number. Concerning the deformation work as a whol ore of a direct micelle, which is known from experi-
given by Egs. (1.8.1) and (1.8.2), one can say i ent and was regarded as probable in [9]
contributes to the total work with the same dimen-
sionality with respect tm as the surface energy of the OF ZM C?L%%SJL?A%OZG%%EELATE
hydrocarbon core. The improved value of the coef-

ficient by in Eq. (1.7.5) should be written as 2.1. Geometrical Parameters of Surfactant

kT Molecular Aggregate in the Quasi-Drop Model
bz = 4m)2y + by = 4miyg [1 +WJ .(1.8.3)
C-s10 Formation of micelles in a surfactant solution

The estimation for dodecyl & = 293 K andy, = involves initial formation of aggregates of two, three,
50 mH/m etc. molecules. Herewith, part of the volume of a
kT future mice_IIe_ is filled with water. As new surfactant

0l - 3.16x 1073 molecules join an aggregate, water is extruded from

Chsfo the interspaces between molecules. Nevertheless,

water can penetrate sufficiently deep into a molecular
clearly demonstrates that the correction under disaggregate at small aggregation numbers. The
cussion tobs is small (the uncertainty of the choice maximum possible penetration of water in a molecular
of y, yields a more significant error) and may beaggregate is assumed in the consideration given below.

neglected. In the quasi-drop model, the hydrophobic part of

each molecule in an aggregate is regarded to be
composed of two fragments. The first (reckoning from
he hydrophilic part) is still surrounded by water
olecules. The second fragment is located in the inner
region of the molecular aggregate, where water mole-
cules cannot penetrate. This region is similar to the
'hydrocarbon core in the drop model of a molecular
aggregate, which explains the terfquasi-drop model.
Due to the mutual repulsion of the hydrophilic parts,

Another model, where the work of deformation of
chains is strictly zero, is the model of rigid chains
(rods) which cluster round a certain element, a ga
molecule dissolved or an admixture. It is most
natural to take for such an element an end;CH
group of a hydrocarbon chain. According to (1.1.2)
the volume of the Chlgroup is 54.3A3% Then its
minimum surfacearea (corresponding to a spherical

. . o . 02
shape with radius 2.349\) is 69.345 A% In ac- the first fragments of the hydrophobic parts of sur-

cordance with Eqg. (1.1.7), thiarea can be easily ;
covered by the ends of four chains, one of which (td‘actant molecules forming the aggregate are located,

whom the CH group belongs) already exists. Four" the average, along the radii outspreading from the

rods make a seed tetrahedron whose interspaces %%gregate center and angularly uniformly distributed

. : . ; ; . The plane anglg between two such radii
filled with new chains. It this way, a hedgehog-like pace. | : . .
aggregate is formed. The rod en)c/is can bge Ioc%ted rresponding to neighboring aggregate molecules is

different levels, and filling in is completed when all termined by the aggregation numieand, for not

the interspaces between the chains up to polar grouf)%o small aggregates, is given by the simple formula

of the four first molecules has been filled. Such a o = (@4un)2 (n >> 1). 2.1.1)
model of a molecular aggregate feature a more com-

plex charge distribution _vvhich cannot already be |, particular, we understand asot too small
approan_a}ted' by a §pher|cal capacitor. If, howevz_ersuch values of as to justify the inequalityp/2 << 1,
the condition is required that the charges of each Si9{Yhich, for example, allows us to replace the function

are located at the same distance from the micellgjn/2) with its argument. In this sense, the value
center, one has either to allow existence of a cavity 8§ = 10 already acts asnot too small’

the center of a molecular aggregate (the cavity re- o _

gularly grows with the aggregate size), or to consider The possibility of accommodation of a water mo-
the chains to be partly (far from the polar groups)ecule with a typical diameterd, , between the
flexible and also capable to coiling into a internalhydrophobic parts of neighboring surfactant molecules
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with a typical cross-section diametet = 2r; is for deriving the chemical potential of a surfactant
determined by the radius, of the inner region at the molecule in a molecular aggregate. Because of
molecular aggregate center, free from water moleculdsg. (2.1.6), the aforesaid implies existence of a lower
and filled by the above second fragments of the hydroimit n;:
phobic parts of the aggregate molecules coming out of
the aqueous medium. Accounting for Eq. (2.1.1), we n>n, (2.1.8)
estimate the radius, as
for aggregation number values securing the validity
12 (2.1.2) of the results obtained with using the model under con-
sideration. From Egs. (2.1.6) and (2.1.7), we obtain
for the n; value
where the approximation sip(2) ~ ¢/2 has been N
used. As in the drop model, we assume the hydro- ”1/2 - 5.6) 6nt/%vy

d+dy,0

Mg =
27.[1/2

phobic part fragments filling the inner region of a (d+deo)3 ' (2.1.9)

molecular aggregate, to interact mutually so as if they o

formed a hydrocarbon phase. We will terrmole By contrast, the condition

cular aggregate carehe inner part of the molecular Ane < N (2.1.10)

aggregate defined as was said above. When carrying C c -

out numerical estimations, we shall use, in addition t -

the data from Section 1.1, the valde= 5.2 A follow- Tntroduces an upper limin,

ing from the above definition ofd, and also the n<n (2.1.11)
2y e

value dy o = 3.1A.

. for the aggregation numbens compatible with the
Let us find the number of hydrocarbon groufus. L :
of the hydrophobic part of each aggregate moleculghd'ty of the model. Accounting for Egs. (2.1.6) and

entered the aggregate core. This number is evident -1.10), then, value is determined from the relation-

equal the number of hydrocarbon groups in the secon 'P
fragments of the hydrophobic parts of the molecules. 6rl/2y,
The volumeAv,. of each such fragment is represented, n2=(c+1)—"— (2.1.12)
with the aid of Eq. (1.1.2), in the form (d+ dh,0)
Using typical values ofi, deo, andvg quantities,
AVe = vi(Ang + 1), (2.1.3) we obtain the estimate
where the unity in parentheses is the approximate 62y 1
value of the ratio 27.4/26.7 [see Eq. (1.1.2)]. Accord- d+duo)® 2 (2.1.13)

ing to the rule of packing, we have
We combine the inequalities (2.1.8) and (2.1.11).

gmg = nNAV.. (2.1.4) From (2.1.9) and (2.1.12) with account for the
estimate (2.1.13), it follows that, for the validity of
From (2.1.4) and (2.1.3) it follows the model, the aggregation numbers should lie within
the interval
Ane= b Te (2.1.5)
T3 v (5 - 624 <n < (N + 14 (2.1.14)

Using (2.1.2), we transform Eq. (2.1.5) to As determined by (2.1.14), the range of the aggrega-

(d + dyy.0)3n12 tion number n is already representative enough
Anc=————-1. (2.1.6) atnc>12. Itis of note that the restriction amfrom
6t below in (2.1.14) is compatible with the restriction

The determination ofAn. from Eq. (2.1.4) as a introduced in the comment to Eq. (2.1.1).
continuous variable implies that this number itself is

not smaller than three to four units: Of the first (surrounded by water molecules)
fragments of the hydrophobic parts of surfactant
Anc > 3 to 4. (2.1.7) molecules in the aggregate, each contains, evidently,

Nc — 4ne hydrocarbon groups and has the lengih £
The same restriction fosn: will be needed below Ang)l;. By adding this length to the radius, we
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obtain the radius of the sphere (with its center at the shall basically follow the reasoning in Section 1. As
center of the molecular aggregate) holding the wholg@ossible, we will also use the notation in Section 1
hydrophobic parts of surfactant molecules in thefor quantities of same meaning, additionally marking

aggregate: such quantities in the quasi-drop model with a bar.
For example, the chemical potential of surfactant

d+duo (d+ dH20)3I1 1o molecules in a molecular aggregate is designated as
r=ly(nc+1)+ oA T el L n* . Strictly speakinge should also be barred, since

! (2.1.15) the hydrocarbon core of a molecular aggregate as a

hypothetical condensed phasenow consists not of
where Egs. (2.1.2) and (2.1.6) have been taken intwhole hydrocarbon chains of surfactant molecules, but
account. In accordance with (2.1.10),— r, = 0.  of the second (as defined in Section 2.1) fragments of

Introducing the designation the chains. All phase characteristics change with the
length of the fragments.
d+0dH,0 (d+dy0)d; i
o= - 2 [1(nc + DI, By analogy with Eqg. (1.4.7), we have the expres-
2n2 6nl/av, sion for p*
(2.1.16)

Y _ o
we represent Eq. (2.1.15) in the form convenient for = H = We * W = Yol * Wey * Weono (2.2.1)

further use wherea, can now be understood as the cross-section

r = l(ne + 1)@ + an??). (2.1.17) area of a hydrocarbon chain (the quanttydefined
in (1.1.3)). The quantity-w. on the right-hand side
Putting numerical values for the quantities inof Eq. (2.2.1) is the work of transfer of the second

Eq. (2.1.16), we arrive at the estimate fragment of the hydrocarbon chain of a surfactant
0.15 molecule from solution to the hydrocarbon core of a
o (2.1.18) molecular aggregate under the assumption that the
nc+1 core surface is flat. Thig* quantity is related to its

With account for the restriction expressed inanalog-w. from Eq. (1.4.7) by the equation
(2.1.14), the estimate given in (2.1.18) shows that, in

the model under consideration, the teem™? in the o We [ ap 4 n_dAnc )
second parentheses on the right-hand side of ©“nc c dn (2.2.2)
Eq. (2.1.17) cannot exceed the value —
a- ( ) Due to Egs. (2.2.2) and (2.1.6), the quantiy (in
|an?2| < 0.08 (2.1.19) contrast withw) is a function of the aggregation

that is small as compared with unity. The numericaflumPern. It is of note that the second term in the
value of the parametpeaz given by (2y.1.18) and the Parentheses on the right-hand side of Eq. (2.2.2)
corresponding restriction expressed in (2.1.19) cafccounts for the change of the length of the second
change at using other numerical values of the quantEhain fragments as another surfactant molecule joins
ties in calculations. However, in any case, this parad!® 2dgregate. Using the notatiow introduced for
meter is expected to be small in its absolute value, §§€ atio W/nc in Section 1 and accounting for
well as the number on the right-hand side of (2.1.195d- (2.1.6), we represent Eq. (2.2.2) in the form

will be small as compared with unity. V_chianllz—W]_, (2.2.3)
Egs. (2.1.1), (2.1.2), and (2.1.17) determine the 2

geometrical parameters of a molecular aggregate in

the model under discussion. We assume that, at these (d+ dy0)3

parameters, a molecular aggregate is in mechanical a=W117,2- (2.2.4)

equilibrium. In any case, if mechanical equilibrium is 6/,

established ar, and r values different from those  The curvature of the hydrocarbon core surface in
given by Egs. (2.1.2) and (2.1.17), respectively, théhe quasi-drop model and the existence of surface
difference is assumed to be relatively small. tensiony, at this surface are taken into account, on the
right-hand side of Eq. (2.2.1), by the contributian

giving the work needed for overcoming the Laplace
pressure difference at adding a molecule to the

Searching for hermodynamic quantities to characaggregate. Writing forw, a relationship similar to
ter a molecular aggregate in the quasi-drop model, wEq. (2.2.2) and taking into account that the quantity

2.2. Chemical Potential of Surfactant Molecules
in Molecular Aggregate
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Ave (molecular fragment volume in phase) is
dependent om but practically independent of the 6r!/2
phase pressure, we have (2.2.11)
W zZ_YO Ave + n_d8ve | The dependence of the concentratioff on n
LTI, c dn (22.5) influences the contributionw,,,, related to the
concentratiorc® on the right-hand side of Eq. (2.2.1).
Using (2.2.5) with accounting for (2.1.2), (2.1.3), The analogous contribution in the drop model is given

and (2.1.6), we obtain by the last term on the right-hand side of Eq. (1.4.7).
This term is of the fornkTIn (c“/c;). Taking this into
W, = yo(d + deo)Z- (2.2.6) consideration and also accounting for Eq. (2.2.10),

B we write, for the contributionw,,,,, the relationship
As follows from Eq. (2.2.6), the contributiow,, similar to Egs. (2.2.2) and (2.2.5):
to the molecular chemical potentigl* does not
_depend on the aggregation number. _This circumstance Weone = KTIn (€%/c;) + ndin (€%/cy)/dn]
is a particular feature of the quasi-drop model. = KTl (8%c;) — 1/2]. (2.2.12)

The electrostatic contributiow,, on the right-hand
side of Eq. (2.2.1) is estimated using the spheric?é
capacitor model. We apply general equations (1.3. : o
and (1.3.6) and Eq. (g.q?/l?g) for theqradius o(f the oN numb_er QalsHexecuted viawg, We, and the
surface bounding the hydrocarbon parts of surfactar(ftonC("\ntrat'onC - Hence
molecules in the quasi-drop model of a molecular dp* _  dig . dWel . dWeone (2.2.13)
aggregate. Repeating the reasoning leading to dn __ dn ~an T an -
Eq. (1.4.5), we obtain

At a given state of solution (the quantitigsandc,
re constant), the dependencedf on the aggrega-

Not to deal with fractional exponents in the ana-
r T lysis of the dependence aqi“ on the aggregation
on(L +kp)(L + k) + 30n32|1 +—1(E1 + &)+ “ZHZJ numbern in the quasi-drop model, it is convenient to
2 proceed from derivatives with respect to the aggrega-

We| = - - 2 T T > > ' tion number to derivatives with respect to the variable
[(1+Kke)(L +ko) + on2(2 + Ky + kp) + o2n] y = n¥2. Accounting for Egs. (2.2.3), (2.2.7), (2.2.10),
(2.2.7)  and (2.2.12), we replace (2.2.13) with the equation
where d _ 3 kT
~ (2% dy 2 y
be| = 87|_2 . lc=l1i(nc + 1), (2.2.8) By 4m% + 9mpmay + 6mzloc2y2 + mloc3y3
e ° [y + 2myary + 02y?]® '

(2.2.14)
ky = Arlle, ky, = (Ar + )¢ (2.2.9)
where, for the sake of brevity, we introduced the
From Eq. (2.2.7) with accounting for (2.1.19), thenotations
contributionw,, is seen to be an increasing function of 1 - - _ _
the aggregation numberin the range of applicability m =1+ > (kq + ko), mp = (1 +k)(1 +ky). (2.2.15)
of the quasi-drop model [within the limits where the

inequality (2.1.19) holds]. After the second differentiation, we obtain
According to Eq. (2.1.3), the concentratiaff an du® _ KT 20| 2
analog of the molecular concentratiarf* of the oy _y_2+[mz + 2myy + 027 25+ mymaoy
hydrocarbon phase in the drop model, is derived from )
the relationshic® = [vy(An. + 1) and depends on — 10m3oc?y? — 16mympoc’y® — 8miaty? — myo®y].
the aggregation numbemn, as it follows from (2.2.16)
Eq. (2.1.6):
It follows from Egs. (2.2.16) and (2.2.15) that the

c* = gml? (2.2.10) curve for the dependence pf ony is concave within

where the range of applicability of the model under consi-
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deration [when (2.1.19) is fulfilled]. Let us investigate the largest of the above values of theparameter.
the existence of stationary points in the dependence dthus, the quantitiesn; and m, are somewhat larger
1* ony. Equating the right-hand side of Eq. (2.2.14)than unity. Thed parameter is about 0.01 in its ab-
to zero, we arrive at an algebraic equation of thesolute value ain. = 12. It is of note that both the
seventh degree coefficient b,; and the square of thex parameter
equally steeply decrease with increasing

7
2 gy =0 (2.2.17) , , .
i=0 Let us consider Egs. (2.2.18) with using the above
with the coefficientsg; including estimates. It is seen that the order of magnitude of the
right-hand side of each of Egs. (2.2.18) is determined
0o = 2kTng, g, = 3amg + 12KTomBmy, by the first terms (they also are the only terms dgr

o 2 andgy). The first terms forg; with i > 3 include the
0y = —8bgmB + 18amBm, + 6kTolmy(4m? + my), multipliers o'*1. Therefore, Ione can assert that the

03 = 9an’my(4m? + my) + 8kTolmy(2m2 + 3my,) terms withi > 3 on the left-hand side of Eq. (2.2.17)
steeply decrease with increasing their ordinal number

= 180gumy My, in the range|ay| < 0.08. The term withi = 3 is

qq = 12a03my(2me + 3m,) + 6kTo(4me + my) already small as compared with the term witk 2.
1%B.02R Hence, retaining only the first three terms on the left-
el™ 1 hand side of Eq. (2.2.17), we obtain the equation of
05 = 9an*(4mé + my) + 1KTo®m; — 2bg0my, the second degree as a good approximation of the

exact equation. A positive root of the equation is of
physical meaning. We retain the main terms in the
expressions for the coefficientg andd,. Designating

Generally, the coefficients; do not possess the . ;
property of predicting a uniqule solution of an algeb-the corresponding (to the above root) aggregation

raic equation, as it was with the coefficients of Eq_number asf, we obtain

(1.4.11). Nevertheless, a unique physically significant 5

root of Eq. (2.2.17) can exist in the range of applica- o ~ {36‘"‘2 + /[ 3a[“zj L KTy J

bility of the quasi-drop model. In terms of the variable 16bg 16D 8be| (2.2.21)

y, this range is restricted by the conditipny|< 0.08

according to (2.1.19). In accordance with the aforesaid, Using the numerical estimates of the coefficieats

the root of Eq. (2.2.17) corresponds to aandb,, as well as of the quantityn,, we affirm that

minimum of the chemical potential®. To prove this the second term in the square root on the right-hand

statement, we have, first of all, to estimate the coefside of Eq. (2.2.21) is numerically small as compared

ficients a and b, in Egs. (2.2.7) and (2.24), respec-with the first one and can be neglected. As a result,

tively. From Egs. (2.2.4) and (2.1.13) at the abovewe have for the aggregation numb®grcorresponding

work value w; = 1.3%KT, we obtain for the coeffi- to a minimum of the chemical potentigl* and

cient a approximately estimating the aggregation number of
micelles.

U = 18a0°my + 2kTab, ¢, = 3anb.  (2.2.18)

a~ 2.7&T. (2.2.19)

2
_ 3am
Putting the values of known constants in the defini- Mo [ 8Dg| j (2.2.22)

tion of the coefficienth,, Eq. (2.2.8) and takindy, = Accounting for Egs. (2.2.22), (2.2.19), (2.2.20).

1.265 A, we write and (2.2.15), the condition that the minimumdf is
_ & located in the range of applicability of the quasi-drop
be = 220 el1(ne + 1)2 KT. (2.2.20) model is

Using Eq. (2.2.20) withke = 40, nc = 12 and three |ang?| < 0.08 (2.2.23)
values of thed parameter 4.3A, 2.185A, and 8.74A
used as examples at the end of Section 1.4, we obtain, Equation (2.2.23) is a necessary condition imposed
for the coefficientb,, three corresponding values on the physical parameters of surfactant molecules to
0.084T, 0.04XT, and 0.168T as a representative set make possible the application of the quasi-drop model.
of values. Neglecting\r as compared witfi-(k, = 0), For the above numerical value for the coefficient
the quantitesm; and m, amount, according to the three above values for the coefficiép{ and three
(2.2.15) and (2.2.9)n, = 1.25 andm, ~ 1.5 even for corresponding values for the quantity,, the left-
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hand side of the inequality (2.2.23) is 0.121, 0.216Eq. (2.3.3). Ifn, satisfies the condition expressed in
and 0.093, respectively. Thus, with such parameter&q. (2.2.23), when already the inequality > i,

the necessary condition expressed in (2.2.23) ikolds, Eq. (2.3.3) will have two roots because of the
strictly fulfilled in no one of the examples given. In concave shape of the dependenceufon n. Here-
accordance with Eq. (2.2.22y, ~ 86 in the third with, the condition that the larger root of the equation
example which is the closest to satisfy (2.2.23). Thisatisfies the inequality (2.1.19), acts as the sufficient
Ny value is larger than the corresponding value obeondition for applicability of the quasi-drop model.
tained in Section 1 for the drop model. The cause ofn the general case, the roots of Eq. (2.3.33,a¢ c,,

the discrepancy is that, in the quasi-drop model, thare found numerically.

hydrophilic parts of surfactant molecules in a mole-

cular aggregate are more distant from the aggregate The basic principles of deriving the work of forma-
center. As a consequence, the effect mutual repulsiaion of a surfactant molecular aggregate, formulated in
of hydrophilic groups is reduced. Returning to theSection 1.7, also remain valid in tloase of the quasi-
initial equation (2.2.17), we note that an exact physidrop model under consideration. The analog of
cally significant numerical solution of Eq. (2.2.17) is Eq. (1.7.2) for the sought-for wolW&/ = Gy,— pn is
determined as a smallest positive root of the equation.

The n, value corresponding to this root, will be the W = G§l + yoA + g® - wn. (2.3.4)
closer to that found from (2.2.22), the smaller are the B
absolute value of parameter and the value oim,. The electrostatic contributioB ] on the right-hand

side of Eq. (2.3.4) is given by Eq. (1.3.4), where
2.3. Stationary Points in the Curve of Size Eg. (2.1.17) is now used for the radiusAccounting
Distribution of Molecular Aggregates. for Eq. (2.1.1), the surfacarea of the hydrocarbon
Work of Formation of Molecular Aggregate core A is estimated as
in the Quasi-Drop Model

o A= 4u2 = apn, (2.3.5)
We designate the minimum value pf asp ;. As
was already stated, the phase equilibrium conditiowhere
o= p* (2.3.1) a, = (d + dy o) (2.3.6)

corresponds to stationary points (extremes) in the The quantity ﬁg(ﬁ) on the right-hand side of
curve of the size distribution of aggregates. Putting th&q. (2.3.4) is understood as the chemical potential
expression for the chemical potentiaf, Eq. (2.2.1), (without the Laplace and electrical contributions and
in Eq. (2.3.1) changes Eg. (2.3.1) to an equation foreduced to the outer pressure) of a surfactant molecule

finding the coordinates of stationary points in the aggregate under the condition that hydrocarbon
chains only Partly enter the hydrocarbon core. The
We + W — Y8 + We + Weone = 0. (2.3.2) difference n@® — i is given by the relationship

Accounting for Egs. (2.2.3), (2.2.7), (2.2.10),p¢® — 1 = —weAnc/ne — y03p + KTIn (€%cy), (2.3.7)
(2.2.12), and (2.2.15), Eq. (2.3.2) becomes
32 . 22 that almost coincides with Eq. (1.7.3). However, this
3 2 K 2mpn + 3oumn™< + on difference now depends on the aggregation nunmber
2 2 * Iy + 2amynt2 + o2n?]2 as is seen from Egs. (2.1.6) and (2.2.10).

_ _ | 1| Summing up the aforesaid with taking into
=W1+WL—Yan+kTL'” (Q’Cﬁ—ij- 2.3.3) account (1.3.4), (2.1.17), (2.2-4p.2.10), (2.3.5),
(2.3.7), (2.1.6), and (2.2.4), we represent Eq. (2.3.4)
The value ofu is determined by the concentrationin the form
of a surfactant solution. Ifu < g, (primicellar

. . 2
concentration range), the existence of extremes and,

n

h h f micelles is impossibl W=ber— —— .

ence, the appearance of micelles is impossible. (1 +Ky + o1 + K, + ant’?)
Equation (2.3.3) has no solution in the primicellar

concentration range. At the solution concentration _an3/2_52n+%an|n n, (2.3.8)

securing the equalityn = up;, (we designate this
concentration as,y), ny is evident to be a root of where
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b, = w; + kTIn(¢,/g) — vo(@, — ap)- (2.3.9) REFERENCES
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