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Abstract-For the case of direct spherical micelles, two nanostructural models of molecular aggregates
have been discussed: the classical drop model implying flexibility of hydrocarbon chains of molecules and
their full immersion into the hydrocarbon core of an aggregate, and a quasi-drop model allowing partial
outcropping of the chains in the strainless state from the core. For the sake of simplicity, a solution is assumed
to contain only a single surfactant whose molecules possess only one, unbranched hydrocarbon radical. Within
the frames of the models, the behavior of the chemical potential of surfactant molecules in a primicellar and
micellar molecular aggregate has been analyzed, as well as the work of formation of the molecular aggregate
as a function of the aggregation number and the solution concentration.

INTRODUCTION

The rigorous theory of micellar systems, as well as
the theory of molecular aggregative systems at all, is
formulated on the basement of the mass action law.
The mass action law constant is known to include the
Gibbs energy of a single micelle, so that the calcula-
tion of this quantity proves to be necessary in the
theoretical description of micelles. The general
theoretical formalism for the description of a single
micelle has been already developed [1, 2], but models
are needed for particular estimations. The data on the
structure and properties of quite ready stable micelles
are accessible from experiment, but the knowledge of
the properties of primicellar (molecular or ionic)
aggregates is also needed for the creation of the ki-
netic theory of micellization. What is especially
important for the kinetic theory is the behavior of
critical (unstable) micelle embryos whose properties
are practically unknown up to the present time. The use
of as-plausible-as-possible speculative models of
embryos remains the only approach to carrying out
necessary calculations.

In this presentation, we will confine ourselves
with the case of direct spherical micelles. We will
consider two nanostructural models for primicellar
and micellar molecular aggregates: the classical drop
model implying flexibility of hydrocarbon chains of
molecules and their full immersion into the hydro-
carbon core of an aggregate, and a quasi-drop model
allowing partial outcropping of the chains in the
strainless state from the core. For the sake of sim-
plicity, a solution is assumed to contain only a single
surfactant whose molecules possess only one hydro-

carbon radical, the hydrocarbon chain having no
branches.

1. DROP MODEL
OF MOLECULAR AGGREGATE

1.1. Parameters of Hydrocarbon Chain

We will use for calculations the following formulas
for the lengthlC and the volumevC of a hydrocarbon
chain including nC carbon atoms [3]

lC = (1.5 + 1.265nC) A, (1.1.1)

vC = (27.4 + 26.9nC) A
3. (1.1.2)

From here the length of a single segment in the
middle of the hydrocarbon chain isl1 = 1.265A and
its volume isv1 = 26.9A3. Then the cross-section area
in the middle of the hydrocarbon chain is

a1 = v1/l1 = 21.265 A
2 (1.1.3)

(if the cross-section is round, its diameter is 5.203A).
On the other side, the average cross-sectionarea for
the whole chainaC is

aC = vC/lC. (1.1.4)

Accounting for (1.1.1) and (1.1.2), it is easy to see
that always aC < a1 (for example, we haveaC =
19.638A2 at nC = 1 andaC = 20.995A2 at nC = 12).
This gives evidence for the existence of a coning at the
chain end.

If one simulates the middle part of the chain with
a round cylinder, its end can be represented as a
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truncate cone. Let us find its geometrical parameters.
The radius of the lateral cylindrical surface of the
chain

r1 = Ha1/p = 2.602A
77 (1.1.5)

simultaneously is the radius of the larger base of the
truncate cone with the areaa1 = 21.265A2. According
to (1.1.1) and (1.1.2) (atnC = 0), the cone height is
h = 1.5A and its volume isV = 27.4A3. Using now
the geometrical relationship

r1
2 + r2

2 + r1r2 = 3V/ph, (1.1.6)

we obtain the radius of the smaller base of the
truncate coner2 = 2.2155A. Correspondingly, the
smaller base area (the end face area of the hydro-
carbon chain) is

a2 = pr 2
2 = 15.42 A

2, (1.1.7)

which makes 72.5% of the cross-section area of the
uniform part of the chain. With known the radii of
both of the bases, the slope angle of the cone genera-
tor is readily estimated at 75.55o (the angle at the full
cone vertex is about 29o).

We now have the total set of the geometrical para-
meters of the chain model. It is also of interest to
estimate specific surface free energys for the same
model at contact with water. For this purpose, we
use the Dupre rule

w1 = a `1Ds = a `1s, (1.1.8)

wherew1 is the work of transfer of one chain segment
from a hydrocarbon phase to water (constituent of the
experimental total work of transfer of the hydrocarbon
chain wC), Ds is the change ofs at the transfer (it is
assumed thats = 0 in the hydrocarbon phase), anda 1̀
is the lateral surface area of a single segment:

a `1 = 2pr1l1 = 20.68 A
2. (1.1.9)

According to available experimental data,w1 =
1.39kT at 25oC [1] (k is Boltzmann’s constant andT is
the absolute temperature). Then, from (1.1.8) and
(1.1.9), we obtain

s = w1/a `1 = 0.067201016 kT = 27.64 mJ/m2. (1.1.10)

This result predicts the free surface energy at the
strongly curved surface of a hydrocarbon chain to be
approximately half that for a flat interface (50 mJ/m2).

1.2. Packing of Chains into the Hydrocarbon Core

If chains are compactly (without cavities) packed
into a spherical core of radiusr, the condition holds

4pr 3/3 = nvC, (1.2.1)

where n is the aggregation number. From (1.2.1)

r = (3nvC/4p)1/3 = ln1/3, (1.2.2)

wherel = (3vC/4p)1/3 is the radius of a sphere which
is equivalent, by volume, to a single hydrocarbon
chain [according to (1.1.2),l = 4.37A at nC = 12].
The core surface area is given by the expression

A = 3nvC/r = 4pr 2. (1.2.3)

One more important characteristic of packing is the
core surface area per one chain

a = 3vC/r = 4pr 2/n. (1.2.4)

Comparing (1.1.4) and (1.2.4), we arrive at the
relationship

a/aC = 3lC/r, (1.2.5)

that shows that the core surface area per one chain
decreases with increasing core radius and attains the
value 3aC at r = lC. This value of the hydrocarbon
core radius is regarded as a maximum one for direct
micelles. So we see that, even at a maximum size of a
spherical micelle, the hydrocarbon core surface area
per one chain still trebly exceeds the chain cross-
section area. The ratio is lower for micelles of other
shapes.

The chains are assumed to be ideally flexible in
this (drop) model. In reality, chain flexibility is
restricted (it is well known that rotation around C3C
bonds in hydrocarbon chains is hindered). Therefore,
the model works the better the longer are hydrocarbon
chains and the higher is the aggregation number.

1.3. Elements of the Gibbs Energy
of Molecular Aggregate

It is assumed in the drop model of a molecular
aggregate that the mechanical (g) and thermodynamic
(s) definitions of surface tension coincide, as it should
be for fluids. The possibility for micelles to possess
solid-like properties was taken into account in [1] and,
correspondingly, the difference in the above quantities
was taken into account (the theory was formulated in
terms ofs in [1]). A surfactant micelle has a multi-
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layer (onion-like) structure, so one may ascribe an
individual tensiongk to each layer. It is convenient
that the Gibbs energy of a molecular aggregateGM is
additive with respect to the contributions of individual
layers and, therefore, the contribution of each layer
may be calculated separately. This is seen from the
equation [2]

GM = S

k
gkAk/3 + m

an, (1.3.1)

whereAk is the area of the surface of tension for the
kth layer,ma is the chemical potential of a molecule
in a micelle (a symbolizes the hydrocarbon phase of
the micelle core). Two terms in the right-hand side of
Eq. (1.3.1) are related by the relationship

ndma = 3S

k
d(gkAk/3) (T, pb, mi 3 const), (1.3.2)

wherepb is the pressure in the solution surrounding a
micelle (b is the symbol of this phase) andmi are the
chemical potentials of the solvent components. In
contrast withma, the chemical potentialma refers to a
higher pressurepa > pb. However, ifpb is reduced to
its valuema(pb) = ma(b) for the pressurepb, Eq. (1.3.1)
is simplified to the expression [2]

GM = S

k
gkAk + m

a(b)n. (1.3.3)

In a direct micelle or a corresponding molecular
aggregate of a surfactant, two tensile surfaces can be
distinguished: the boundary between the hydrocarbon
core and a polar solvent, and the surface of tension
(of negative tension because of repulsion) for polar
groups. In the former case, neglecting the curvature
dependence of surface tension, we may set the surface
tension g0 equal to its macroscopic value (g0 =
50 mH/m for the boundary between the hydrocarbon
phase and water). Then the contribution of this surface
is explicitly present in Eqs. (1.3.1) and (1.3.2). The
contribution of polar groups is more complex. Polar
groups, both dipole and ionic, form the electrical
double layer. So, strictly speaking, we deal with two
surfaces (plates of the double layer), but it is more
reasonable to consider them conjointly.

Turning to spherical molecular aggregates of suf-
ficiently large dimensions, we may estimate the elec-
trostatic contribution with the aid of the spherical
capacitor model. The expression for its energy (the
work of charging) is well known. The charging at a
fixed state of the surrounding medium just yields the
electrical contributionGM

el to the Gibbs energy of a
molecular aggregate:

Gel
M = 777

(ezn)2

8pe0e
777 + 7777

r + Dr
1

r + Dr + d

1�

�

9

�

�

9

= 77777777777

8pe0e(r + Dr)(r + Dr + d)
(ezn)2d

, (1.3.4)

whereezn is the charge of the primary (internal) ca-
pacitor plate (e is the elementary charge andz is the
charge ratio),e0 is the electric constant,e is the di-
electric permittivity, Dr is the distance between the
internal capacitor plate and the hydrocarbon core
surface (r + Dr is the radius of the internal capacitor
plate), andd is the distance between the capacitor
plates. We assume the parametersDr and d to be
independent of the core radius and the aggregation
number. Then substitution of (1.2.2) in (1.3.4)
gives an explicit dependence ofGM

el on the aggrega-
tion number:

Gel
M = 777 777777777

8pe0el
2

(ez)2d

(n1/3 + k1)(n1/3 + k2)

n2
. (1.3.5)

For the sake of brevity, the notationsk1 = Dr/l and
k2 = (Dr + d)/l have been introduced in Eq. (1.3.5),
so that k2 3 k1 = d/l.

Using the definition of chemical potential [2]

m
a =

�

�

977

§GM
§n

�

�

9

T, pb, mi
(1.3.6)

and Eq. (1.3.5), we also can calculate the electrostatic
contribution m a

el to the chemical potentialma:

= 7777 . 7777777777777

24pe0el
2

(ez)2d 4n5/3 + 5(k1 + k2)n4/3 + 6k1k2n

[n2/3 + (k1 + k2)n1/3 + k1k2]2
.

m
a
el =

�

�

977

§GM
§n

�

�

9

T, pb, mi

el

(1.3.7)

To discuss the role of this contribution, let us
consider the detailed expression for the chemical
potential of a molecular aggregate as a function of the
aggregation number.

1.4. Chemical Potential of Surfactant
Molecule in Molecular Aggregate

(Phase Approach)

The concentration of molecular aggregates is not
taken into account in the phase approach: each mole-
cular aggregate is considered as if it would be alone
and would be a phase. It is known, however, that such
a [phase] chemical potential coincides with the real
chemical potential in an aggregative system at the
extreme points in the curve of the distribution of
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aggregates in the aggregation numbers [4, 5]. Just
these points are of the most interest for us.

In any phasea, the molecular chemical potential
ma is given by the standard expression of statistical
mechanics

m
a = m

0 + wa + kTln (caL3), (1.4.1)

where m0 is the chemical potential of an isolated
molecule with resting center of mass in a vacuum,wa

is the work of transfer of the molecule from a fixed
position in a vacuum to a fixed position in phasea
with the molecular concentrationca, L = h(2pmkT)31/2

is the mean de Broglie wavelength (h is Planck’s
constant,m is the molecular mass). We will apply
Eq. (1.4.1) to a surfactant molecule located inside a
molecular aggregate in a surface solution.

Regarding the solution surrounding an aggregate
as phaseb (this is a real phase without any ifs), we
can write a similar expression for the surfactant
chemical potential in phaseb and subtract it from
Eq. (1.4.1) to obtain the expression

m
a = m

b + wa
3 wb + kTln (ca/cb1), (1.4.2)

wherec1
b is the concentration of surfactant monomers

in solution. Obviously, the differencewa 3 wb is the
work of transfer of a surfactant molecule from the
aqueous phase to the aggregate. In such transfer, only
the hydrophobic part of the surfactant molecule
changes its surrounding medium and passes from the
solution into the hydrocarbon core of the molecular
aggregate. If the hydrocarbon core surface were flat,
the work of transfer of a single hydrocarbon chain
from water into the depth of the hydrocarbon phase
would be 3wC (as already stated above, this
quantity is known from experiment). However, since
the hydrocarbon core surface is curved and possesses
tensiong0, the work of transfer is complemented by
the termwL giving the work necessary for overcoming
the Laplace pressure difference at the surface under
consideration (we will account for the surface of
polar groups separately). In the case of a spherical
surface of radiusr, this term (the contribution to
molecular chemical potential) is

wL = vC(2g0/r) (1.4.3)

and plays the role of a correction to3wC (as estimated
per a chain segment, this term contributes 2v1g0/r,
which, at v1 = 26.9 A3 and g0 = 50 mH/m, makes
0.654kT, i.e. 47% of the above quantityw1; the con-

tribution of wL will become still smaller at increasing
r). Using (1.2.2), Eq. (1.4.3) can be transformed to
the form

wL = bLn31/3, bL = (32p/3)1/3
g0vC

2/3. (1.4.4)

In addition, we have to take into account that a sur-
factant molecule is not transferred into the depth of
the hydrocarbon phase as a whole, but remains in a
position when it intersects the dividing surface (to
which surface tension refers) inside the aggregate.
Therefore, the work of transfer also contains the
surface contribution3g0a0, where a0 is the effective
area occupied by a surfactant molecule on thedividing
surface (usually, this is the parkingarea of a polar
group). We note at once that such an additive is
constant and, hence, does not influence the following
calculations.

As for polar groups, they remain in the solvent
medium in the course of transfer of a surfactant
molecule in a molecular aggregate but come closer to
each other and form an electrical double layer, which
requires (as estimated per one molecule) the workwel
(the subscript el indicates an electrical nature of the
work). Above, we have already estimated this contri-
bution to the chemical potential asma

el in Eq. (1.3.7),
and we now write it in the form

wel = bel 7777777777

n5/3 + 7 kn4/3 + 7 k`n
5 3
4 2

(n2/3 + kn1/3 + k`)2
,

bel = 7777

6pe0el
2

(ez)2d
,

(1.4.5)

where

k = k1 + k2 = (2Dr + d)/l,

k` = k1k2 = Dr(Dr + d)/l2. (1.4.6)

It is easy to see thatwel is a monotone increasing
function of the aggregation numbern.

Neglecting other interactions (in particular, we
consider the polar groups not to be in direct contact
and interacting only electrostatically), we now can
write Eq. (1.4.2) in the form

m
a = m 3 wC + wL 3 g0a0 + wel + kTln (ca/c1), (1.4.7)

where all the quantitiesw are positive and the super-
script b is omitted (at equilibrium,mb is just the real
chemical potentialm in the whole aggregative system).
By referring wC to the macroscopic phase, we imply
the matter density in the macroscopic phase and inside
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the micelle hydrocarbon core to be the same. At a
constant density of hydrocarbon chains, one may also
consider the molecular concentrationca as approxi-
mately constant, not to speak thatca stands in the
logarithmic form in (1.4.6). The quantitiesm and c1
are also constants at a given state of solution, so that
the whole dependence ofma on the aggregation
number n is realized viawL and wel. Hence,

ÄÄÄÄÄÄÄÄÄÄÄÄ

77 = 77 + 77 .
dma

dn dn dn

dwL dwel (1.4.8)

To avoid dealing with fractional exponents, it is
more convenient to perform differentiation with
respect to the variablen1/3 = x. Using (1.4.4) and
(1.4.5), we obtain

77 = 77 + 77 = 3 7 + bel 777777777777777777777

dma

dx dx dx

dwL dwel bL

x2
x6 + 3kx5 + (2.5k2 + 3.5k`)x4 + 6.5kk̀x3 + 4.5k`2x2

(x2 + kx + k`)3
. (1.4.9)

ÄÄÄÄÄÄÄÄÄÄÄÄ

The second differentiation yields

ÄÄÄÄÄÄÄÄÄÄÄÄ

77 = 77 + bel 777777777777777777777777777 > 0,
d2
m
a

dx2

2bL

x3

(k2
3 k`)x5 + (2.5k3

3 kk̀)x4 + (10k2k` 3 4k`2)x3 + 15kk̀2x2 + 9k`3x

(x2 + kx + k`)4
(1.4.10)

ÄÄÄÄÄÄÄÄÄÄÄÄ

showing that the curve of the dependence ofma on x
is concave in its whole length [there are differences in
the numerator of (1.4.10), but all of them are positive,
as it is easy to see with using (1.4.6)]. Let us examine
the dependence with respect to the presence of
stationary points. By equating (1.4.9) to zero, we
arrive at the algebraic equation of the eighth degree

x8 + 3kx7 + (2.5k2 + 3.5k`)x6 + 6.5kk̀x5 + 4.5k`2x4

3 b(x2 + kx + k`)3 = 0, (1.4.11)

where the notationb = bL/bel is introduced for
the sake of convenience. In Eq. (1.4.11), the terms of
orderx8 andx7 are positive, and the terms of orderx3

and lower are negative, whereas three middle terms
can be of any sign depending on the value ofb. We
write these terms in the form

(a6 3 b)x6 + 3k(a5 3 b)x5 + 3(k2 + k`)(a4 3 b)x4, (1.4.12)

where

a6 = 2.5k2 + 3.5k` > a5 = 13k`/6

> a4 = 1.5k`2/(k2 + k`). (1.4.13)

At the above proportion of positive quantitiesa4,
a5, and a6, there is only one sign change in the
sequence of coefficients of Eq. (1.4.11), irrespective
of theb value. Then, in accordance with the Descartes
sign rule, Eq. (1.4.11) has a unique positive root.

Thus, a stationary point has been found as a unique
point, and the condition expressed in Eq. (1.4.10)
gives evidence that this is a minimum.

The conclusion on the existence of a unique
minimum evidently remains true also for the de-
pendence ofma on n. We designate the minimum
value of ma asmamin and the aggregation numbern at
the minimum point asn0. As was already noted, the
condition

m = m
a (1.4.14)

corresponds to extremes in the curve of aggregate
distribution in size. Them value is given by the con-
centration of the surfactant solution. Ifm < mamin, the
existence of extremes and, therefore, micelle forma-
tion (a maximum in the distribution curve corresponds
to micelles) is impossible. This is the primicellar
concentration range. There are two extremes (a
minimum and a maximum) atm > mamin. If m = mamin,
both the extremes merge and degenerate into an inflec-
tion point, the precursor of micellization, whose co-
ordinaten0 is an important parameter of the theory.

The positive root of Eq. (1.4.11) givesn0
1/3 and can

be expressed analytically only whenkx31 andk`x32 are
small as compared with unity (whenn0 lies in the
range of values, wheren1/3 >> (Dr + d)/l). At kx31 <<
1 andk`x32 << 1, we immediately obtain from (1.4.11)

x ; b1/2, n0 ; (bL/bel)
3/2. (1.4.15)
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If the internal capacitor plate is located close to the
hydrocarbon core (k` ; 0, k # 0), the degree of the
algebraic equation (1.4.11) is reduced to five, but,
nevertheless, Eq. (1.4.11) is only solved numerically.
As an example withk` = 0, we consider the packing,
into a spherical micelle, of molecules of a nonionic
surfactant containing one polar (dipole) group and
dodecyl as a hydrocarbon radical. In accordance with
published data, we set nC = 12, l =
4.37A, vC = 350A3, g = 50 mH/m,z = 1, e = 40, and,
for the beginning,k = 1 (i.e. d = l = 4.37 A).
Computation via Eqs. (1.4.4) and (1.4.5) yieldsb =
9.111 and, correspondingly, Eqs. (1.4.11) and (1.4.15)
lead to the valuesn0 ; 27.5 andn0 ; 29.1. If we set
k = 0.5 (d = 2.185A), Eqs. (1.4.11) and (1.4.15) give
close valuesn0 ; 78.5 andn0 ; 77.8. If, however,
k = 2 (d = 8.74 A) is taken, Eq. (1.4.15) yields
n0 ; 9.7, while the exact Eq. (1.4.11) yieldsn0 ; 12.6
(such discrepancy is of no wonder, since the condition
n1/3 >> k is here not fulfilled any more). In accordance
with (1.1.1) and (1.1.2), the limiting value of the
aggregation number is 55.5 in the model under con-
sideration. We see that there is a certain range of
d-values where the realization of a minimum of the
chemical potential of surfactant molecules in a micelle
is secured by electrostatic repulsion forces in the
absence of more powerful short-range repulsion forces.

1.5. Transition to Ionic Surfactants

In the case of an ionic surfactant, the electrical
double layer of a molecular aggregate possesses a
more complex structure, on account of the spatial dis-
tribution of counterions. One can distinguish between
the layer of bound counterions (Stern layer) adjacent
direct to the surface of the primary charge of the
molecular aggregate (one cannot exclude partial
penetration of counterions into the primary charge
layer) and the diffuse part of the double layer.Still
operating with the image of a spherical capacitor, one
can say the outer plate has become more distant from
the inner one as compared with the case of a dipole
double layer, and, therefore, the capacitor energy has
become higher. Herewith, the coefficientbel in
Eq. (1.4.5) increases, the coefficientb in Eq. (1.4.11)
decreases, and, as a consequence, the aggregation
numbern0 decreases. To be more exact, one can say
the outer plate has segregated into to plates. The first
of them coincides in position with the surface of
bound counterions which bring, with themselves,
bound water of a reduced dielectric permittivitye1 and
are located, although not so close as in the dipole case,
at a small distanced1 from the inner plate. As for the
second plate simulating the diffuse part of the double
layer, it is located at a sufficiently long distanced2

from the inner plate. If the degree of counterion
binding b is high enough in a molecular aggregate
and the concentration of monomeric ions in solution is
still low enough, the Debye lengthdD, the principal
parameter of the theory of electrolyte solutions, plays
the role ofd2. Under ordinary conditions (at 293 K),
the dependence of the Debye length on the monomer
concentration c1 (M) can be approximated by
the formula

dD ; 3/(zHc1) A,
33

(1.5.1)

where z is the ion valency. The critical micelle con-
centration of ionic surfactants typically ranges within
103331032 M, so dD takes values 30A and more
at z = 1. For such long distances between plates, one
should already use the macroscopic valuee of dielec-
tric permittivity (80 for water). To complete the
picture, we should account for a small probability of
penetration of counterions into inner capacitor plate.
This lead to the change of its charge by 13 b1 times
if b1 is the degree of counterion binding in the inner
plate.

In such a model, the capacitor energy is given by
the expression {see [1], Eq. (33.1)}
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(1.5.2)

Equation (1.5.2) changes to Eq. (1.3.4) (we now
designate this value asGM

el) at b1 = 0 andd2 = 0. For
comparison of these equations, it is convenient to
write Eq. (1.5.2) as

Gel
M = (Gel

M)0 (1 3 b1)2 + 777777777
9

9
9

99

9

3

3

d2e1(1 3 b)2( r + Dr)
9

9
9

99

9

3

3
d1e(r + Dr + d1 + d2)

.

(1.5.3)

Water hase1/e = 0.5, and the factore1(1 3 b)2/e in
Eq. (1.5.3) amounts to 0.0230.08 atb = 0.630.8. The
ratio d2/(r + Dr + d1 + d2) is always smaller than unity,
and, therefore, a significant value of the second term
in brackets in Eq. (1.5.3) might be only caused by a
small value ofd1. However, in the case under con-
sideration, the value ofd1 is not so small as for
dipoles, for we now speak about the contact of two
hydrated ions (one has to add two diameters of water
molecules to the own radii of the two ions). Ifd1 is of
order 10A, the ratio (r + Dr)/d1 is of order 2, so that
the value of the whole second term in brackets in Eq.
(1.5.3) is smaller than 0.0430.16 and plays the role of
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a small correction at not largeb1 values (this correc-
tion, however, stands in the exponent if speaking
about the size distribution of aggregates). Thus we
see that Eq. (1.3.4) proves to be a good approximation
also for ionic surfactants in many cases. This allows
us to apply also other results of the preceding section
(the existence of a unique minimum of the chemical
potential of molecules in a molecular aggregate as a
function of the aggregation number and the existence
of two extremes in the curve of the size distribution
of molecular aggregates) to ionic surfactants.

1.6. Condition of Phase Equilibrium

At phase equilibrium,ma = m (using this, we
address to stationary points in the curve of the size
distribution of aggregates), and Eq. (1.4.7) changes to

3wC + wL 3 g0a0 + wel + kTln (ca/c1) = 0. (1.6.1)

Putting (1.4.4) and (1.4.5) in (1.6.1) and account-
ing for b = bL/bel, we write (1.6.1) in the form

77 + 77777777777 = B,
n1/3

b n1/5 + 7 kn4/3 + 7 k`n
4 2
5 3

(n2/3 + kn1/3 + k`)2

B = 77777777777

wC + g0a0 3 kTln (ca /c1)

bel
. (1.6.2)

As was already stated above, the concentrationca

may be regarded as a constant in the model under
consideration. Then Eq. (1.6.2) allows us to calculate
the aggregation numbers for stationary points at a
given c1.

Again introducing the notationn1/3 = x, we rewrite
Eq. (1.6.2) as

x6 + (a5 3 B)x5 + 2k(a4 3 B)x4 + (k2 + 2k`)(a3 3 B)x3

+ 2kk̀(a2 3 B)x2 + k`2(a1 3 B)x + bk̀2 = 0, (1.6.3)

where the set of positive quantitiesai (i = 1, 2, 3, 4, 5)
has been given:

a1 = 2bk/k̀ > a2 = b(k2 + 2k`)/2kk̀ > a3 = 2bk/(k2 + 2k`),

a4 = (b + 1.5k`)/2k, a5 = 1.25k. (1.6.4)

The quantityB increases with the surfactant con-
centration in solution. If the concentration is very low,
B < 0, all the coefficients in Eq. (1.6.3) are positive,
and, hence, Eq. (1.6.2) has no solution. However, the
condition

B > 0, (wC + g0a0)/kT > ln (ca/c1) (1.6.5)

is fulfilled in practice long before the critical micelle
concentration (for dodecyl, for instance,wC/kT ; 16.7
at 293 K, ca ~ 1/vC ~ 1021 cm33 ~ 5 M and, even
at a0 = 0, extremely low surfactant concentrations
(c1 < 301037 M) are needed in solution to
disturb Eq. (1.6.5)). Further increase in the concentra -
tion leads to a situation, whenB becomes larger than
the smallest of the quantitiesai. Then two changes of
sign appear in the sequence of coefficients of
Eq. (1.6.2). Such a situation is maintained at any still
larger values ofB, if a4 proves to be the smallest ora4
is intermediate betweena3 and a5. If, however,a4 is
larger thana3 and a5, four sign changes may arise at
further increase ofB. In this case, the Descartes sign
rule is not so categorical as at a single sign change,
and predicts the number of positive roots either equal
to the number of sign changes or smaller than the
number of sign changes by an even. In the preceding
section, however, we proved that, atc1 > c10 (if c10 is
the concentration corresponding to a minimum value
of the chemical potentialma), Eq. (1.6.2) has two
roots evidently corresponding to a minimum and a
maximum in the curve of size distribution of
aggregates.

1.7. Work of Formation of Molecular
Aggregate as a Function of the Aggregation Number

If the process of formation of a molecular aggre-
gate occurs at constant temperature, external pressure,
and the state of solution, the work of the processW is
given by a change in the Gibbs energy of the mole-
cular aggregate cell. Using (1.3.3), we can write

W = GM 3 mn = S

k
gkAk + (ma(b)

3 m)n. (1.7.1)

The expression of this form has already been
analyzed in [1], but in terms of another model of
molecular aggregate, with resting center of mass. Such
a molecular aggregate never is in equilibrium with
solution, and, when differentiating between phasesa
and b, the latter is understood as the region between
the hydrocarbon core surface and the outer boundary
of the molecular aggregate, where polar groups of
surfactant molecules are located. For this reason, the
electrostatic repulsion of polar groups was not related
to the surface and was ascribed to the chemical poten-
tial ma(b). We now consider a mobile molecular
aggregate that can be in equilibrium with a real solu-
tion forming phaseb. The electrostatic repusion of
polar groups simulated with a spherical capacitor is
expressed in Eq. (1.7.1) as an interface with a
negative surface tension and, in addition, as a certain
contribution to the chemical potentialma(b). It is no
need to compute these quantities separately, because
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we already know their joint contributionGM
el given by

Eq. (1.3.4). This means that, if we addGM
el to

Eq. (1.7.1), we simultaneously exclude the electrostatic
contribution both from the sum standing in Eq. (1.7.1)
and from ma(b):

W = GM
el + g0A + (m0

a(b)
3 m)n. (1.7.2)

Instead of the sum, we now have the only term
related to the hydrocarbon core surface, and should be
understood asm 0

a(b) after subtracting both the Laplace
(we remind thatma(b) has been reduced to pressurepb)
and electrostatic contributions. Turning to Eq. (1.4.7),
we can now write an explicit expression for the
chemical potential difference in Eq. (1.7.2):

m0
a(b)

3 m = 3wC 3 g0a0 + kTln (ca/c1), (1.7.3)

which is practically independent of the aggregation
number. The surfaceA in Eq. (1.7.2) coincides with
the hydrocarbon core area and is estimated, according
to (1.2.3) and (1.2.2), as

A = 4pl2n2/3. (1.7.4)

Neglecting all other effects and putting now (1.3.5)
and (1.7.4) in Eq. (1.7.2), we arrive at the expression

W = 777777777 3 b2n + b3n2/3 + ...,
(n1/3 + k1)(n1/3 + k2)

b1n2

(1.7.5)

where

b1 = 7777 = 7 bel,
8pe0el

2

(ez)2d 3
4 (1.7.6)

b2 = m 3 m0
a(b) + g0a0 = wC + g0a0 + kTln (c1/ca), (1.7.7)

b3 = 4pl2
g0 = Ä

3
2

bL. (1.7.8)

At a sufficiently large aggregation number, when
n1/3 >> k1, k2, Eq. (1.7.5) is approximated by the
expression

W = b1n4/3
3 b2n + b3n2/3 + ..., (1.7.9)

which (with slightly different coefficients) was just
analyzed in [1].

To the results obtained in [1], it is useful to
add the following. Ifc10 is the monomer concentra-
tion in solution atm = mamin [when there is a stationary
inflection point in the curve of the size dependence of
aggregates and, therefore, also in the curve of the
functionW(n)], the curve of the dependence ofW on n
exhibits, atc1 > c10, the existence of two extremes and,

naturally, of an (already nonstationary) inflection
point between them. The location of the inflection
point on the aggregation number axis,n0, is found by
equating the second derivative of the function W(n) to
zero:

n0 = (b3/2b1)3/2 (1.7.10)

[taking into account Eqs. (1.7.6) and (1.7.8), it is seen
that Eq. (1.7.10) is equivalent to the second of Eqs.
(1.4.15)]. Since, herewith, the coefficientb2, the only
concentration-dependent coefficient, is absent, we
come to the important conclusion that the location of
the inflection point in the curve of the dependence of
W on n and, therefore, in the curve of the equilibrium
size distribution of molecular aggregates, does not
depend on the concentration of solution. It is of note
that this result is of general character and is unneces-
sarily related to the approximation expressed in
Eq. (1.7.9).

The relation between the coefficients at the inflec-
tion point (established in [1])

b2 = Ä
4
3

(2b1b3)1/2 (1.7.11)

can be extended to any concentrations ifb2 is replaced
by

~
b2 = b2 3 kT ln (c1/c10). (1.7.12)

Thus, the relationships are generally fulfilled

~
b2 = Ä

4
3

(2b1b3)1/2, b2 > Ä
4
3

(2b1b3)1/2. (1.7.13)

1.8. Work of Deformation of Hydrocarbon
Chain. Proceeding to the Model of Rigid Chains

The hydrophobic part of a surfactant molecule
undergoes a certain deformation at packing into the
spherical hydrocarbon core of a molecular aggregate.
So, on the average, the chain conformation will be
different from that in a hydrocarbon phase. The con-
formational difference produces a positive contribu-
tion wd to the chemical potentialma. Nagarajan [6]
gives the expression for the deformation work ob-
tained form Semenov’s formula [7] by means of
integration over the whole aggregate volume (i.e. this
is the work per the whole aggregateWd = nwd):

77 = 77 777 = 777 ,
Wd

kT 80
3p2

nsL
2
s

r 2
3p2r 2

80lCLs
(1.8.1)

where ns is the number of rigid segments per chain,
Ls is the length of a rigid segment (4.6A), and lC =
nsLs is the chain length. Using (1.2.2), we can
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represent Eq. (1.8.1) as

77 = bdn2/3, bd = 7777 ; 0.3777 .
Wd

kT

3p2
l

2

80lCLs lCLs

l
2

(1.8.2)

For dodecylbd ; 0.092, and we obtainWd/kT ; 1.34
even for the maximum value 55.5 of the aggregation
number. Concerning the deformation work as a whole
given by Eqs. (1.8.1) and (1.8.2), one can say it
contributes to the total work with the same dimen-
sionality with respect ton as the surface energy of the
hydrocarbon core. The improved value of the coef-
ficient b3 in Eq. (1.7.5) should be written as

b3 = 4pl2
g0 + bd = 4pl2

g0 1 + 7777

�

�

9 320lCLsg0

3pkT �

�

9. (1.8.3)

The estimation for dodecyl atT = 293 K andg0 =
50 mH/m

77777 = 3.160 1033
320lCLsg0

3pkT

clearly demonstrates that the correction under dis-
cussion tob3 is small (the uncertainty of the choice
of g0 yields a more significant error) and may be
neglected.

Another model, where the work of deformation of
chains is strictly zero, is the model of rigid chains
(rods) which cluster round a certain element, a gas
molecule dissolved or an admixture. It is most
natural to take for such an element an end CH3
group of a hydrocarbon chain. According to (1.1.2),
the volume of the CH3 group is 54.3A3. Then its
minimum surfacearea (corresponding to a spherical
shape with radius 2.349A) is 69.345 A2. In ac-
cordance with Eq. (1.1.7), thisarea can be easily
covered by the ends of four chains, one of which (to
whom the CH3 group belongs) already exists. Four
rods make a seed tetrahedron whose interspaces are
filled with new chains. It this way, a hedgehog-like
aggregate is formed. The rod ends can be located at
different levels, and filling in is completed when all
the interspaces between the chains up to polar groups
of the four first molecules has been filled. Such a
model of a molecular aggregate feature a more com-
plex charge distribution which cannot already be
approximated by a spherical capacitor. If, however,
the condition is required that the charges of each sign
are located at the same distance from the micelle
center, one has either to allow existence of a cavity at
the center of a molecular aggregate (the cavity re-
gularly grows with the aggregate size), or to consider
the chains to be partly (far from the polar groups)
flexible and also capable to coiling into a internal

hydrocarbon phase, although of a smaller size than in
the drop model. The first variant has already been
analyzed in [8]. The second one (we call it a quasi-
drop model) is considered below. It is of note that a
realistic feature of this model will be accounting for
the partial penetration of water into the hydrocarbon
core of a direct micelle, which is known from experi-
ment and was regarded as probable in [9].

2. QUASI-DROP MODEL
OF MOLECULAR AGGREGATE

2.1. Geometrical Parameters of Surfactant
Molecular Aggregate in the Quasi-Drop Model

Formation of micelles in a surfactant solution
involves initial formation of aggregates of two, three,
etc. molecules. Herewith, part of the volume of a
future micelle is filled with water. As new surfactant
molecules join an aggregate, water is extruded from
the interspaces between molecules. Nevertheless,
water can penetrate sufficiently deep into a molecular
aggregate at small aggregation numbers. The
maximum possible penetration of water in a molecular
aggregate is assumed in the consideration given below.

In the quasi-drop model, the hydrophobic part of
each molecule in an aggregate is regarded to be
composed of two fragments. The first (reckoning from
the hydrophilic part) is still surrounded by water
molecules. The second fragment is located in the inner
region of the molecular aggregate, where water mole-
cules cannot penetrate. This region is similar to the
hydrocarbon core in the drop model of a molecular
aggregate, which explains the term[quasi-drop model.]
Due to the mutual repulsion of the hydrophilic parts,
the first fragments of the hydrophobic parts of sur-
factant molecules forming the aggregate are located,
on the average, along the radii outspreading from the
aggregate center and angularly uniformly distributed
in space. The plane anglej between two such radii
corresponding to neighboring aggregate molecules is
determined by the aggregation numbern and, for not
too small aggregates, is given by the simple formula

j = (4p/n)1/2 (n >> 1). (2.1.1)

In particular, we understand as[not too small]
such values ofn as to justify the inequalityj/2 << 1,
which, for example, allows us to replace the function
sin(j/2) with its argument. In this sense, the value
n = 10 already acts as[not too small.]

The possibility of accommodation of a water mo-
lecule with a typical diameterdH2O

between the
hydrophobic parts of neighboring surfactant molecules
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with a typical cross-section diameterd = 2r1 is
determined by the radiusra of the inner region at the
molecular aggregate center, free from water molecules
and filled by the above second fragments of the hydro-
phobic parts of the aggregate molecules coming out of
the aqueous medium. Accounting for Eq. (2.1.1), we
estimate the radiusra as

ra = 77777 n1/2,
d + dH2O

2p1/2
(2.1.2)

where the approximation sin (j/2) ; j/2 has been
used. As in the drop model, we assume the hydro-
phobic part fragments filling the inner region of a
molecular aggregate, to interact mutually so as if they
formed a hydrocarbon phase. We will term[mole
cular aggregate core] the inner part of the molecular
aggregate defined as was said above. When carrying
out numerical estimations, we shall use, in addition to
the data from Section 1.1, the valued = 5.2A follow-
ing from the above definition ofd, and also the
value dH2O

= 3.1A.

Let us find the number of hydrocarbon groupsDnC
of the hydrophobic part of each aggregate molecule
entered the aggregate core. This number is evident to
equal the number of hydrocarbon groups in the second
fragments of the hydrophobic parts of the molecules.
The volumeDvC of each such fragment is represented,
with the aid of Eq. (1.1.2), in the form

DvC = v1(DnC + 1), (2.1.3)

where the unity in parentheses is the approximate
value of the ratio 27.4/26.7 [see Eq. (1.1.2)]. Accord-
ing to the rule of packing, we have

Ä
4
3

pr 3
a = nDvC. (2.1.4)

From (2.1.4) and (2.1.3) it follows

DnC = 7 p 77 3 1.
4
3

r 3
a

nv1
(2.1.5)

Using (2.1.2), we transform Eq. (2.1.5) to

DnC = 777777 3 1.
(d + dH2O)3n1/2

6p1/2v1
(2.1.6)

The determination ofDnC from Eq. (2.1.4) as a
continuous variable implies that this number itself is
not smaller than three to four units:

DnC > 3 to 4. (2.1.7)

The same restriction forDnC will be needed below

for deriving the chemical potential of a surfactant
molecule in a molecular aggregate. Because of
Eq. (2.1.6), the aforesaid implies existence of a lower
limit n1:

n > n1, (2.1.8)

for aggregation number values securing the validity
of the results obtained with using the model under con-
sideration. From Eqs. (2.1.6) and (2.1.7), we obtain
for the n1 value

n1/2
1 = (536) 77777

(d + dH2O)3
6p1/2v1 . (2.1.9)

By contrast, the condition

DnC < nC, (2.1.10)

introduces an upper limitn2

n < n2, (2.1.11)

for the aggregation numbersn compatible with the
validity of the model. Accounting for Eqs. (2.1.6) and
(2.1.10), then2 value is determined from the relation-
ship

n1/2
1 = (nC + 1) 77777

(d + dH2O)3
6p1/2v1 . (2.1.12)

Using typical values ofd, dH2O
, andvC quantities,

we obtain the estimate

(d + dH2O)3
6p1/2v1

77777 ; 7 .
1
2 (2.1.13)

We combine the inequalities (2.1.8) and (2.1.11).
From (2.1.9) and (2.1.12) with account for the
estimate (2.1.13), it follows that, for the validity of
the model, the aggregation numbers should lie within
the interval

(5 3 6)2/4 < n < (nC + 1)2/4. (2.1.14)

As determined by (2.1.14), the range of the aggrega-
tion number n is already representative enough
at nC > 12. It is of note that the restriction onn from
below in (2.1.14) is compatible with the restriction
introduced in the comment to Eq. (2.1.1).

Of the first (surrounded by water molecules)
fragments of the hydrophobic parts of surfactant
molecules in the aggregate, each contains, evidently,
nC 3 DnC hydrocarbon groups and has the length (nC 3
DnC)l1. By adding this length to the radiusra, we
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obtain the radiusr of the sphere (with its center at the
center of the molecular aggregate) holding the whole
hydrophobic parts of surfactant molecules in the
aggregate:

r = l1(nC + 1) + 7777 3 77777

d + dH2O

2p1/2 6p1/2v1

(d + dH2O)3l19

9

9

9

3

3

9

9

9

9

3

3

n1/2,

(2.1.15)

where Eqs. (2.1.2) and (2.1.6) have been taken into
account. In accordance with (2.1.10),r 3 ra > 0.
Introducing the designation

a =
d + dH2O

2p1/2 6p1/2v1

(d + dH2O)3l19

9

9

9

3

3

9

9

9

9

3

3

[l1(nC + 1)]31,7777 3 777777

(2.1.16)

we represent Eq. (2.1.15) in the form convenient for
further use

r = l1(nC + 1)(1 + an1/2). (2.1.17)

Putting numerical values for the quantities in
Eq. (2.1.16), we arrive at the estimate

a ; 3 777 .
nC + 1
0.15

(2.1.18)

With account for the restriction expressed in
(2.1.14), the estimate given in (2.1.18) shows that, in
the model under consideration, the terman1/2 in the
second parentheses on the right-hand side of
Eq. (2.1.17) cannot exceed the value

³an1/2
³ ~< 0.08 (2.1.19)

that is small as compared with unity. The numerical
value of the parametera given by (2.1.18) and the
corresponding restriction expressed in (2.1.19) can
change at using other numerical values of the quanti-
ties in calculations. However, in any case, this para-
meter is expected to be small in its absolute value, as
well as the number on the right-hand side of (2.1.19)
will be small as compared with unity.

Eqs. (2.1.1), (2.1.2), and (2.1.17) determine the
geometrical parameters of a molecular aggregate in
the model under discussion. We assume that, at these
parameters, a molecular aggregate is in mechanical
equilibrium. In any case, if mechanical equilibrium is
established atra and r values different from those
given by Eqs. (2.1.2) and (2.1.17), respectively, the
difference is assumed to be relatively small.

2.2. Chemical Potential of Surfactant Molecules
in Molecular Aggregate

Searching for hermodynamic quantities to charac-
ter a molecular aggregate in the quasi-drop model, we

shall basically follow the reasoning in Section 1. As
possible, we will also use the notation in Section 1
for quantities of same meaning, additionally marking
such quantities in the quasi-drop model with a bar.
For example, the chemical potential of surfactant
molecules in a molecular aggregate is designated as
3ma . Strictly speaking,a should also be barred, since
the hydrocarbon core of a molecular aggregate as a
hypothetical condensed phasea now consists not of
whole hydrocarbon chains of surfactant molecules, but
of the second (as defined in Section 2.1) fragments of
the chains. All phase characteristics change with the
length of the fragments.

By analogy with Eq. (1.4.7), we have the expres-
sion for

3

ma

3
m
a = m 3

3wC + 3wL 3 g0
3a0 + 3wel + 3wconc, (2.2.1)

where
3

a0 can now be understood as the cross-section
area of a hydrocarbon chain (the quantitya1 defined
in (1.1.3)). The quantity3

3

wC on the right-hand side
of Eq. (2.2.1) is the work of transfer of the second
fragment of the hydrocarbon chain of a surfactant
molecule from solution to the hydrocarbon core of a
molecular aggregate under the assumption that the
core surface is flat. This

3

ma quantity is related to its
analog 3wC from Eq. (1.4.7) by the equation

wC ; 7 DnC + n 777

�

�

9

wC
nC

3 dDnC
dn

�

�

9
. (2.2.2)

Due to Eqs. (2.2.2) and (2.1.6), the quantity
3

wC (in
contrast with wC) is a function of the aggregation
number n. It is of note that the second term in the
parentheses on the right-hand side of Eq. (2.2.2)
accounts for the change of the length of the second
chain fragments as another surfactant molecule joins
the aggregate. Using the notationw1 introduced for
the ratio wC/nC in Section 1 and accounting for
Eq. (2.1.6), we represent Eq. (2.2.2) in the form

wC = 7 an1/2
3 w1,

3
2

3

a = w1 77777

(d + dH2O)3
.

6p1/2v1

(2.2.3)

(2.2.4)

The curvature of the hydrocarbon core surface in
the quasi-drop model and the existence of surface
tensiong0 at this surface are taken into account, on the
right-hand side of Eq. (2.2.1), by the contribution

3

wL
giving the work needed for overcoming the Laplace
pressure difference at adding a molecule to the
aggregate. Writing for

3

wL a relationship similar to
Eq. (2.2.2) and taking into account that the quantity
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DvC (molecular fragment volume in phasea) is
dependent onn but practically independent of the
phase pressure, we have

wL ; 7 DvC + n 777

�

�

9ra
3 dDvC

dn
�

�

9
.

2g0
(2.2.5)

Using (2.2.5) with accounting for (2.1.2), (2.1.3),
and (2.1.6), we obtain

3wL = g0(d + dH2O
)2. (2.2.6)

As follows from Eq. (2.2.6), the contribution
3

wel
to the molecular chemical potential

3

ma does not
depend on the aggregation number. This circumstance
is a particular feature of the quasi-drop model.

The electrostatic contribution
3

wel on the right-hand
side of Eq. (2.2.1) is estimated using the spherical
capacitor model. We apply general equations (1.3.4)
and (1.3.6) and Eq. (2.1.17) for the radius of the
surface bounding the hydrocarbon parts of surfactant
molecules in the quasi-drop model of a molecular
aggregate. Repeating the reasoning leading to
Eq. (1.4.5), we obtain

wel = 7777777777777777777777
3

[(1 + k1)(1 + k2) + an1/2(2 + k1 + k2) + a
2n]2

3 3 3 3

2n(1 + k1)(1 + k2) + 3an3/2 1 + 7 (k1 + k2) + a
2n29

9

9
3

3

1
2

3 3 3 3

,

9

9

9
3

3

(2.2.7)

where

bel = 7777 , lC = l1(nC + 1),
8pe0el

2
C
3

(ez)2d3 3

(2.2.8)

3

k1 = Dr/
3

lC,
3

k2 = (Dr + d)/
3

lC. (2.2.9)

From Eq. (2.2.7) with accounting for (2.1.19), the
contribution

3

wel is seen to be an increasing function of
the aggregation numbern in the range of applicability
of the quasi-drop model [within the limits where the
inequality (2.1.19) holds].

According to Eq. (2.1.3), the concentrationca an
analog of the molecular concentration

3

ca of the
hydrocarbon phase in the drop model, is derived from
the relationship

3

ca = [v1(DnC + 1)]31 and depends on
the aggregation numbern, as it follows from
Eq. (2.1.6):

3ca = gn31/2, (2.2.10)
where

g = 77777

(d + dH2O)3
.

6p1/2

(2.2.11)

The dependence of the concentration
3

ca on n
influences the contribution

3

wconc related to the
concentration

3

ca on the right-hand side of Eq. (2.2.1).
The analogous contribution in the drop model is given
by the last term on the right-hand side of Eq. (1.4.7).
This term is of the formkTln (ca/c1). Taking this into
consideration and also accounting for Eq. (2.2.10),
we write, for the contribution

3

wconc, the relationship
similar to Eqs. (2.2.2) and (2.2.5):

3wconc = kT[ln (3c a/c1) + ndln (3ca/c1)/dn]

= kT[ln (3ca/c1) 3 1/2]. (2.2.12)

At a given state of solution (the quantitiesm andc1
are constant), the dependence of

3

ma on the aggrega-
tion number n is executed via

3

wC,
3

wel, and the
concentration

3

ca. Hence

77 = 3 77 + 77 + 777 .
dma3

dn dn dn dn
dwC dwel dwconc
3 3 3

(2.2.13)

Not to deal with fractional exponents in the ana-
lysis of the dependence of

3

ma on the aggregation
numbern in the quasi-drop model, it is convenient to
proceed from derivatives with respect to the aggrega-
tion number to derivatives with respect to the variable
y = n1/2. Accounting for Eqs. (2.2.3), (2.2.7), (2.2.10),
and (2.2.12), we replace (2.2.13) with the equation

+ bel y 7777777777777777

4m2
2 + 9m2m1ay + 6m2

1a
2y2 + m1a

3y3

[m2 + 2m1ay + a
2y2]3

3

,

77 = 3 7 a 3 7

dma3

2
3

dy
kT
y

(2.2.14)

where, for the sake of brevity, we introduced the
notations

m1 = 1 + Ä
1
2

(
3

k1 +
3

k2), m2 = (1 +
3

k1)(1 +
3

k2). (2.2.15)

After the second differentiation, we obtain

77 = 7 + 777777777

dma3

dy2
kT
y2 [m2 + 2m1ay + a

2y2]4

2bel
3

2m3
2 + m1m2

2
ay

3 10m2
2a

2y2
3 16m1m2a

3y3
3 8m1

2
a

4y4
3 m1a

5y5].
(2.2.16)

It follows from Eqs. (2.2.16) and (2.2.15) that the
curve for the dependence of

3

ma on y is concave within
the range of applicability of the model under consi-
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deration [when (2.1.19) is fulfilled]. Let us investigate
the existence of stationary points in the dependence of
3

ma on y. Equating the right-hand side of Eq. (2.2.14)
to zero, we arrive at an algebraic equation of the
seventh degree

S qiy
i = 0

i =0

7
(2.2.17)

with the coefficientsqi including

q0 = 2kTm2
3, q1 = 3am2

3 + 12kTam2
2m1,

q2 = 38
3

belm2
2 + 18aam2

2m1 + 6kTa2m2(4m1
2 + m2),

q3 = 9aa2m2(4m1
2 + m2) + 8kTa3m1(2m1

2 + 3m2)

3 18
3

belam1m2,

q4 = 12aa3m1(2m1
2 + 3m2) + 6kTa4(4m1

2 + m2)

3 123bela
2m1

2,

q5 = 9aa4(4m1
2 + m2) + 12kTa5m1 3 2

3

bela
3m1,

q6 = 18aa5m1 + 2kTa6, q7 = 3aa6. (2.2.18)

Generally, the coefficientsqi do not possess the
property of predicting a unique solution of an algeb-
raic equation, as it was with the coefficients of Eq.
(1.4.11). Nevertheless, a unique physically significant
root of Eq. (2.2.17) can exist in the range of applica-
bility of the quasi-drop model. In terms of the variable
y, this range is restricted by the condition³ay³~< 0.08
according to (2.1.19). In accordance with the aforesaid,
the root of Eq. (2.2.17) corresponds to a
minimum of the chemical potential

3

ma. To prove this
statement, we have, first of all, to estimate the coef-
ficients a and bel in Eqs. (2.2.7) and (2.24), respec-
tively. From Eqs. (2.2.4) and (2.1.13) at the above
work value w1 = 1.39kT, we obtain for the coeffi-
cient a

a ; 2.78kT. (2.2.19)

Putting the values of known constants in the defini-
tion of the coefficient

3

bel, Eq. (2.2.8) and takingl1 =
1.265 A, we write

bel = 22077777 kT.
el1(nC + 1)2

d

(2.2.20)

Using Eq. (2.2.20) withe = 40, nC = 12 and three
values of thed parameter 4.37A, 2.185A, and 8.74A
used as examples at the end of Section 1.4, we obtain,
for the coefficient

3

bel, three corresponding values
0.084kT, 0.042kT, and 0.169kT as a representative set
of values. NeglectingDr as compared with

3

lC(
3

k1 = 0),
the quantities m1 and m2 amount, according to
(2.2.15) and (2.2.9),m1 ; 1.25 andm2 ; 1.5 even for

the largest of the above values of thed parameter.
Thus, the quantitiesm1 and m2 are somewhat larger
than unity. Thed parameter is about 0.01 in its ab-
solute value atnC = 12. It is of note that both the
coefficient

3

bel and the square of thea parameter
equally steeply decrease with increasingnC.

Let us consider Eqs. (2.2.18) with using the above
estimates. It is seen that the order of magnitude of the
right-hand side of each of Eqs. (2.2.18) is determined
by the first terms (they also are the only terms forq0
and q7). The first terms forqi with i > 3 include the
multipliers ai+1. Therefore, one can assert that the
terms with i > 3 on the left-hand side of Eq. (2.2.17)
steeply decrease with increasing their ordinal number
in the range³ay³ ~< 0.08. The term withi = 3 is
already small as compared with the term withi = 2.
Hence, retaining only the first three terms on the left-
hand side of Eq. (2.2.17), we obtain the equation of
the second degree as a good approximation of the
exact equation. A positive root of the equation is of
physical meaning. We retain the main terms in the
expressions for the coefficientsq1 andq2. Designating
the corresponding (to the above root) aggregation
number as

3

n0, we obtain

n0 ; 777 +
3am2

16bel
3

9
9

9

9

3

3

777 + 777

H

/
/
/
�

�

9

3am2

16bel
3

�

�

9

2
7777

kTm2

8bel
3

9
9

9

9

3

3

.3

(2.2.21)

Using the numerical estimates of the coefficientsa
and

3

bel, as well as of the quantitym2, we affirm that
the second term in the square root on the right-hand
side of Eq. (2.2.21) is numerically small as compared
with the first one and can be neglected. As a result,
we have for the aggregation number

3

n0 corresponding
to a minimum of the chemical potential

3

ma and
approximately estimating the aggregation number of
micelles.

n0 ; 777

�

�

9

�

�

9

2
3am2

8bel
3 .

3

(2.2.22)

Accounting for Eqs. (2.2.22), (2.2.19), (2.2.20),
and (2.2.15), the condition that the minimum of

3

ma is
located in the range of applicability of the quasi-drop
model is

³a
3n0

1/2
³ ~< 0.08 (2.2.23)

Equation (2.2.23) is a necessary condition imposed
on the physical parameters of surfactant molecules to
make possible the application of the quasi-drop model.
For the above numerical value for the coefficienta,
the three above values for the coefficient

3

bel, and three
corresponding values for the quantitym2, the left-
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hand side of the inequality (2.2.23) is 0.121, 0.216,
and 0.093, respectively. Thus, with such parameters,
the necessary condition expressed in (2.2.23) is
strictly fulfilled in no one of the examples given. In
accordance with Eq. (2.2.22),

3

n0 ; 86 in the third
example which is the closest to satisfy (2.2.23). This
n0 value is larger than the corresponding value ob-
tained in Section 1 for the drop model. The cause of
the discrepancy is that, in the quasi-drop model, the
hydrophilic parts of surfactant molecules in a mole-
cular aggregate are more distant from the aggregate
center. As a consequence, the effect mutual repulsion
of hydrophilic groups is reduced. Returning to the
initial equation (2.2.17), we note that an exact physi-
cally significant numerical solution of Eq. (2.2.17) is
determined as a smallest positive root of the equation.
The

3

n0 value corresponding to this root, will be the
closer to that found from (2.2.22), the smaller are the
absolute value of parametera and the value ofm1.

2.3. Stationary Points in the Curve of Size
Distribution of Molecular Aggregates.

Work of Formation of Molecular Aggregate
in the Quasi-Drop Model

We designate the minimum value of
3

ma as
3

ma
min. As

was already stated, the phase equilibrium condition

m = 3
m
a (2.3.1)

corresponds to stationary points (extremes) in the
curve of the size distribution of aggregates. Putting the
expression for the chemical potential

3

ma, Eq. (2.2.1),
in Eq. (2.3.1) changes Eq. (2.3.1) to an equation for
finding the coordinates of stationary points

3
3wC + 3wL 3 g0

3a0 + 3wel + 3wconc = 0. (2.3.2)

Accounting for Eqs. (2.2.3), (2.2.7), (2.2.10),
(2.2.12), and (2.2.15), Eq. (2.3.2) becomes

7 an1/2 + 7 ln n 3 bel 7777777777

33
2 2

kT 2m2n + 3am1n3/2 + a
2n2

[m2 + 2am1n1/2 + a
2n2]2

= w1 + wL 3g0a0 + kT ln (g/c1) 3 73 3
9

9

9

3

3

9

9

9

3

3

1
2

.
(2.3.3)

The value ofm is determined by the concentration
of a surfactant solution. Ifm <

3

ma
min (primicellar

concentration range), the existence of extremes and,
hence, the appearance of micelles is impossible.
Equation (2.3.3) has no solution in the primicellar
concentration range. At the solution concentration
securing the equalitym =

3

ma
min (we designate this

concentration as
3

c10),
3

n0 is evident to be a root of

Eq. (2.3.3). If
3

n0 satisfies the condition expressed in
Eq. (2.2.23), when already the inequalitym >

3

ma
min

holds, Eq. (2.3.3) will have two roots because of the
concave shape of the dependence of

3

ma on n. Here-
with, the condition that the larger root of the equation
satisfies the inequality (2.1.19), acts as the sufficient
condition for applicability of the quasi-drop model.
In the general case, the roots of Eq. (2.3.3) atc1 >

3

c10
are found numerically.

The basic principles of deriving the work of forma-
tion of a surfactant molecular aggregate, formulated in
Section 1.7, also remain valid in thecase of the quasi-
drop model under consideration. The analog of
Eq. (1.7.2) for the sought-for work

-

W =
-

GM3 mn is

-

W =
-

GM
el + g0

3A + (3m0
a(b)

3 m)n. (2.3.4)

The electrostatic contribution
3

GM
el on the right-hand

side of Eq. (2.3.4) is given by Eq. (1.3.4), where
Eq. (2.1.17) is now used for the radiusr. Accounting
for Eq. (2.1.1), the surfacearea of the hydrocarbon
core

3

A is estimated as

3A = 4pr a
2 = aan, (2.3.5)

where

aa = (d + dH2O
)2. (2.3.6)

The quantity
3

m 0
a(b) on the right-hand side of

Eq. (2.3.4) is understood as the chemical potential
(without the Laplace and electrical contributions and
reduced to the outer pressure) of a surfactant molecule
in the aggregate under the condition that hydrocarbon
chains only partly enter the hydrocarbon core. The
difference

3

m 0
a(b) 3 m is given by the relationship

3
m0
a(b)

3 m = 3wCDnC/nC 3 g0
3a0 + kTln (3ca/c1), (2.3.7)

that almost coincides with Eq. (1.7.3). However, this
difference now depends on the aggregation numbern,
as is seen from Eqs. (2.1.6) and (2.2.10).

Summing up the aforesaid with taking into
account (1.3.4), (2.1.17), (2.2.8)3(2.2.10), (2.3.5),
(2.3.7), (2.1.6), and (2.2.4), we represent Eq. (2.3.4)
in the form

W = bel 7777777777777

(1 + k1 + an1/2(1 + k2 + an1/2)

3

3 3

n2

3 an3/2
3 b2n + 7 kTnln n,
3 1

2
(2.3.8)

where
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3

b2 = w1 + kTln (c1/g) 3 g0(aa 3
3a0). (2.3.9)

In the zero-limit for
3

k1,
3

k2, anda, Eq. (2.3.8) coin-
cides in form with that obtained in [8]. The presence
of additional numerical coefficients in the respective
equation in [8] is related to the neglect of variability
of the length of second fragments of the surfactant
hydrocarbon chains at adding a molecule to the
aggregate.

Comparison of the forms of Eq. (2.3.8) and
Eq. (1.7.5) for the work of formation a molecular
aggregate in the drop model leads to the following
conclusion. According to Eq. (1.7.5), the dependence
of the work of formation of a molecular aggregate on
the aggregation number is expressed by means of the
cubic root of the aggregation number (this is seen
more explicitly from approximate Eq. (1.7.9)). By
contrast, this dependence is realized through the
square root of the aggregation number according to
Eq. (2.3.8). The square-root dependence may be
considered as reflecting the quasi-two-dimensional
structure of surfactant molecular aggregates.
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