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INTRODUCTION

It may be said without exaggeration that Laplace’s
classic formula

 

(1)

 

(where 

 

p

 

α

 

 and 

 

p

 

β

 

 are the pressures in the contacting
phases, 

 

γ

 

 is the scalar surface tension, and 

 

R

 

1

 

 and 

 

R

 

2

 

 are
the principal radii of the surface curvature) is the most
important and the most well-known relationship in the
theory of capillarity. For a nonspherical surface, it is
natural to assume that the surface tension will be of an
anisotropic (tensor) nature, and then formula (1) is
written in the form [1, 2]

 

, (2)

 

where 

 

γ

 

1

 

 and 

 

γ

 

2

 

 are the components of the surface ten-
sion along directions 1 and 2. Moreover, the form of
Eq. (2) is preserved both for the principal directions of
the surface and for the principal directions of the tensor
of surface tension (where 

 

R

 

1

 

 and 

 

R

 

2

 

 are no longer prin-
cipal radii but just radii of surface curvature in cross
sections along directions 1 and 2, respectively) [3].

There have been many attempts to generalize the
Laplace formula in thermodynamics of surface layers
of an arbitrary curvature (in addition to [1–3], one can
also mention, for example, [4–8]), but, as a rule, the
pressure tensor was taken in the diagonal form. In other
words, it was assumed (as is clear from our earlier pub-
lications [9, 10]) that the metric tensor of the surface
layer and the pressure tensor are diagonalized concor-
dantly. There was no such assumption only in [3, 11].
At the same time, the analysis in [3] was limited to the
case of mechanically isotropic bulk phases. This
restriction was removed (in the absence of external
fields) in [11], where the concept of bending moments
was used and the equilibrium condition for the surface
layer was written with allowance for the pressure and
tension anisotropies. Similar results have earlier been
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obtained in the theory of shells [12, 13]. The problem
of deriving the complete condition of mechanical equi-
librium for an arbitrarily curved nonspherical surface
layer still remains to be solved in the general case in the
presence of external fields (which may be the reason for
anisotropy in the bulk phases). In analysis of this gen-
eral case in [10], the Laplace formula was generalized
[10, Eq. (7.6)]. However, the relationship provided in
that work represents only one component of the com-
plete condition of mechanical equilibrium at a curved
surface, and now we will present this complete condi-
tion.

DERIVATION OF THE CONDITION 
OF INTERFACIAL MECHANICAL EQUILIBRIUM

To characterize the shape of the interface most com-
pletely, the metric tensor must be specified as a function
of coordinates in the whole space of the surface layer.
If we select an orthogonal coordinate system (

 

u

 

1

 

, 

 

u

 

2

 

, 

 

u

 

3

 

)
diagonalizing the metric tensor so that the 

 

u

 

3

 

-axis
would be directed along the normal to the surface, then
any coordinate surface (

 

u

 

1

 

, 

 

u

 

2

 

) may be chosen as the
dividing surface (this approach was substantiated in
detail in [9, 10]). In accordance with the above state-
ments, this coordinate system does not necessarily
diagonalize the pressure tensor, and we will use it in the
most general form.

Let us cut out an element of the surface layer by
coordinate surfaces in such a way that it would also
include some regions of the bulk phases 

 

α

 

 and 

 

β

 

between which the surface layer is situated (see figure).
Let this element be situated between the coordinates 

 

u

 

1

 

,

 

u

 

1

 

 + 
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u

 

1
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u

 

2
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u

 

2

 

 + 
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u

 

2

 

;

 

 and 

 

, 

 

 (hereafter, the super-
scripts 

 

α

 

 and 

 

β

 

 denote the quantities pertaining to the
corresponding bulk phases). The condition of mechan-
ical equilibrium for this element is expressed by the fact
that the total force acting on it is zero, that is,

 

(3)
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Here,  is the complete pressure tensor (including the
contributions of external fields if they are present [10]);

 

 

 

≡

 

 –

 

 is the corresponding stress tensor; 

 

d

 

A

 

 = 

 

n

 

dA

 

 is
the vector of the differential of the element surface (

 

n

 

 is
the unit vector of the outer normal to the surface of the
element); 

 

–

 

P

 

 = –

 

n

 

 is the vector of the force applied to
a unit surface area of the element (the stress vector);
and integration is performed over the whole closed sur-
face of the element. This surface includes six faces,
and, accordingly, the integral in Eq. (3) may be repre-
sented by six summands (now we will supplement each
vector 

 

P

 

 with a subscript showing the orientation of the
face). The integrals for the lower and upper faces may
be written in the form 
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where 
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 are the segments of
the coordinate lines (corresponding to the coordinates

 

u

 

1

 

 and 

 

u

 

2

 

) falling into the selected element at the level
of the corresponding face; 

 

h

 

i

 

 are the Lamé coefficients,
which are, just as these segments, the functions of spa-
tial coordinates. For the faces perpendicular to direc-
tions 1 and 2, we obtain 
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∆

 

l
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 = 
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l

 

2h3du3 and
dA2 = ∆l1dl3 = ∆l1h3du3, respectively. In addition, let us
write pairwise differences of the integrals in Eq. (3) for
the element faces, because the forces acting on opposite
faces are oppositely directed. Now we can represent
Eq. (3) as

(4)

where ∆ in front of the integrals denote their increments
due to passage from one of the opposite faces to the
other one along directions 1 and 2.

Now let us place the dividing surface with the coor-
dinate u30 and area ∆l10∆l20 inside the element (in all
other respects, its position may be arbitrary). The divid-
ing surface separates this element into parts α and β
(see figure) adjacent to the corresponding bulk phases.
Now, if we assume that parts α and β are filled with the
substances of phases α and β, respectively, and both
parts are in the state of mechanical equilibrium, then we
can write a condition similar to (4) for each of these
parts separately:
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Now, subtracting Eqs. (5) and (6) from Eq. (4), we
arrive at the expression

(7)

where the vector designations

(8)

(9)

are introduced. These designations correspond to the
force definition of the vector of surface tension in the
cross-cuts of the surface layer perpendicular to direc-
tions 1 and 2—see formulas (5.2) and (5.10) in [10]
with g1 ≡  and g2 ≡ . The physical meaning of g1

and g2 is that they represent the excess stresses at the
lines ∆l20 and ∆l10, respectively, for each of the cross-
cuts of the surface layer.

Now the last step remains. Let us divide Eq. (7) by
∆l10∆l20 and, rigorously passing to a local relationship,
let us consider ∆u1 and ∆u2 (and, accordingly, ∆l10 and
∆l20) tending to zero. In this case, the condition of inter-
facial mechanical equilibrium assumes the form
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Element of a curved surface layer.
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(10)

which is the main result of this study. Note that now we

have omitted the argument at  and , because all
quantities in Eq. (10) refer to the same point at the

dividing surface. The actual  and  values at the
dividing surface are found by extrapolation of their
bulk (not necessarily uniform) values.

Condition (10) is universal and applicable to sys-
tems in any aggregation state; however, the stress tensor

 = –  is generally used for solid bodies instead of the
pressure tensor. Passing from the pressure vector P to

the stress vector E (  ≡ (u30) = – (u30) ≡ – ,

 ≡ (u30) = – (u30) ≡ – ), we can write condi-
tion (10) as

(11)

Relationship (10)–(11) is no less compact than the
Laplace formula but much more universal than this for-
mula or any of its known generalizations. The form and
the (vector) nature of Eqs. (10)–(11) are very different
from those of the Laplace formula, and this relationship
cannot be called the generalized Laplace formula. It is
another matter that such a generalized formula may be
derived as one of the corollaries of this relationship (the
dependence on the surface curvature is apparent, if only
from the fact that the derivative of the vector depends
on its turn due to a change in the orientation of the area
element in the cross-cut of the surface layer). Below,
we will show how to derive this formula.

MORE DETAILED FORMULATION 
OF THE CONDITION OF INTERFACIAL 

MECHANICAL EQUILIBRIUM

To distinguish between the changes in the modules
and directions of all vectors in Eq. (10), let us introduce
the unit vectors Â1, Â2, and Â3 along the coordinate lines
of our coordinate frame and write the relationships

(12)

(13)

(14)

where the additional subscript i refers to the compo-
nents of the vectors along direction i [note that, accord-
ing to definitions (8) and (9), the γ21 and γ12 components
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in Eqs. (13) and (14) are not equal]. Substituting
Eqs. (12)–(14) into Eq. (10), we obtain

(15)

To calculate the derivatives of unit vectors, let us use
the standard Serret–Frenet formulas from differential
geometry:

(16)

where t is the unit vector of the tangent to the spatial
line (in our case, the coordinate line); n is the unit vec-
tor of its principal normal; b is the unit vector of the
binormal; c is the curvature of the line; T is its torsion
(in our coordinate system, the torsion is zero); and L is
the length of the line. Considering the coordinate lines
at the dividing surface, we obtain t = e1, n = –e3, b = e2
for L ≡ l10 and t = e2, n = –e3, b = –e1 for L ≡ l20. Now,
using Eq. (16), we can find the following expressions
for the derivatives of the unit vectors:

(17)

(18)

where R10 and R20 are the principal radii of curvature of
the dividing surface.

Substituting Eqs. (17) and (18) into Eq. (15) and
successively multiplying expression (15) by Â1, Â2, and
Â3, we obtain three scalar equalities equivalent to the
vector equality (10):

(19)

(20)

(21)

Equality (21) is just the generalization of the Laplace
formula that was earlier obtained in [10]. In the absence
of external fields, Eqs. (19)–(21) have the same form as
the Kirchhoff–Love equations of mechanical equilib-
rium of thin shells [12, 13] and, in this sense, are equiv-
alent to the equations of equilibrium derived by Eriks-
son, Ljunggren, and Kralchevsky [11, Eq. (192)]. An
important new feature of formulas (19)–(21) compared
to the Kirchhoff–Love formulas is that they assume a
self-consistent force definition of the components of
the vectors g1 and g2 according to Eqs. (8) and (9).
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A self-consistent definition means that components of
the vectors g1 and g2 must satisfy the generalized
adsorption equation in a given external field.

In [9, 10], attention was paid to the three-dimen-
sional aspect of surface tension, which is illustrated by
the γ31 and γ32 quantities in Eqs. (19)–(21). If the sur-
face tension were a purely two-dimensional tensor,
these components would be absent, and Eq. (21) would
pass into the Laplace formula (2) written for an arbi-
trary dividing surface. On the other hand, it also passes
into the same formula in the case where the three-
dimensional aspect of surface tension is present but the
γ31 and γ32 values are constant along their coordinate
lines, and their derivatives are zero. It is interesting that
equalities (19) and (20) are preserved even in the
absence of a three-dimensional aspect of surface ten-
sion; only the terms with the radii of curvature disap-
pear. In the simple case where the selected coordinate
system diagonalizes the pressure tensor, the γ31 and γ32
values are automatically nullified. Then, Eq. (21)
passes into the Laplace formula (2) again, and Eqs. (19)
and (20) are transformed into the constancy condition
of the γ11 and γ22 values along their coordinate lines:

(22)

This condition is far from trivial for the curved sur-
faces, since the surface tension is always regarded as
dependent on the surface curvature, which may change
as we move along the coordinate lines.

In the simple derivation procedure described here
for the condition of interfacial mechanical equilibrium,
we used only vectors of surface tension but did not
introduce the complete tensors of surface tension (in
the variant of the force definition) for both cross sec-
tions, as was done in [10]. If we use such tensors, then,
to avoid confusion due to similar designations of their
components, we should use primes to distinguish the
cross sections: one prime for the cross section perpen-
dicular to direction 1, and two for the cross section per-
pendicular to direction 2. In this notation, Eqs. (10),
(11), and (19)–(21) assume the form [14]
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Condition (26) has just the same form as the one
obtained (in a more complicated way) in [10].
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