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1. INTRODUCTION

In the theory of capillarity, the surface tension is
associated with the tension of two-dimensional mem-
brane located at the boundary between two phases. In
the absence of a field, the tensor of excess surface
stresses (which is used to introduce the surface tension)
is indeed two-dimensional for plane surfaces; however,
for the spherical surface, the transverse surface tension
(the normal component of the tensor of excess surface
stresses) appears, which can be nullified by a simple
selection of the position of the dividing surface as a ten-
sion surface [1]. In the presence of external (even such
simple as gravitational) field, the transverse surface
tension can hardly be eliminated by some conditional
procedures. As a result of the permanent presence of
three-dimensional aspect, the theory of interfacial phe-
nomena begins to loose its inherent simplicity and
attractiveness. How can this problem be solved? One of
the possibilities is self-evident: if nothing happens in
the absence of a field, the theory should be constructed
using the total pressure tensor, which includes external
fields and whose condition of mechanical equilibrium
has exactly the same pattern as in the absence of a field.
This possibility we would like to implement in this
work; however, it is associated with one complication.
As a rule, the common pressure tensor (where only the
short-range interaction is taken into account) is diago-
nalized together with the metric tensor in a system of
orthogonal curvilinear coordinates corresponding to
the metrics of the surface layer. Therefore, in a theory
of curved nonspherical surfaces (for example, see [1–
8]), the pressure tensor is usually assumed to be diago-
nal and in the bulk phases, even isotropic. The case of
the nondiagonal tensor of the surface tension (whose
principal directions do not coincide with the curvature
lines at the surface) has been considered only in [9],
although the pressure tensor in the bulk phase was

assumed to be isotropic. Meanwhile, already in an axi-
ally symmetric electric field, the total pressure tensor is
nondiagonal [10] (the droplet in the field of the electric
dipole of the condensation nucleus [11] or the droplet
in the external homogeneous field [12] can serve as
examples). In similar systems, during the determina-
tion of the tensor of excess surface stresses by the inte-
gration over the volume and cross section of the surface
layer one has to deal with different three-dimensional
nondiagonal tensors. It is necessary to study, using the
tensors, how we can express the conditions of mechan-
ical equilibrium at the surface, and is it possible to
reduce these tensors to two-dimensional pattern by the
selection of the dividing surface eliminating nondiago-
nal elements and transverse surface tension. This work
is devoted precisely to the solution of these problems.

2. METRICS OF A SURFACE LAYER 
AND THE DIVIDING SURFACE

The dividing surface was determined [1] as the
coordinate surface (
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 is the coordi-
nate normal to the surface), which diagonalizes the
metric tensor of the surface layer considered as the Rie-
mann surface with a curvature. Components of the met-
ric tensor  have the form:
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 are the Cartesian space coor-
dinates; and the point denotes the scalar product of vec-
tors. The tensor  is diagonalized in the orthogonal
system of curvilinear coordinates, leaving only compo-
nents 
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. The variation in the length 
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 of the coordinate
line is connected with that of corresponding coordinate
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 by the relation:
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Correspondingly, we have
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s the unit vector directed along the coordinate
line 
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. The differential of the volume is set by the
expression:
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 is the area of the coordinate surface normal to
the coordinate line 
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The dividing surface satisfies the condition 
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 =
const; however, its value remains arbitrary to some
extent, i.e., any coordinate surface within the bounds of
the surface layer or close to it can be selected as a divid-
ing surface. In this case, the orthogonal coordinate sys-
tem is characterized by the coincidence of its lines of
curvature with the coordinate lines at the dividing sur-
face. This implies that the radii of curvature 
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 are principal radii
(maximal and minimal out of all radii of the surface
curvature at a given point). As a result, the simple Rod-
rigues formula of differential geometry
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where 
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 is the unit vector of a normal to the dividing
surface, is valid. The geometric relation
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is also fulfilled.
The mutual position of the coordinate surfaces is

determined by the metrics of the surface layer; gener-
ally, one cannot state whether they are parallel or at
least conform each other [1]. Gibbs [13] and then other
authors took advantage of the approximation of con-
form surfaces where the passage from one position of
nonspherical curved dividing surface to the other is per-
formed by a simple displacement of each part of the
surface along its normal. The meaning of this approxi-
mation can be explained as follows. Let in some posi-
tion of the dividing surface 
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near hi0 in powers of ∆u3 with allowance for Eq. (2.6),
we have

(2.7)

It is seen from this expression that the expansion is
actually performed with respect to the dimensionless
parameter λ/Ri0, where λ ≡ h30∆u3.

If the coordinate line u3 is the straight line (h3 =
h30 = 1, λ = ∆u3, Ri = Ri0 + λ, ∂Ri/∂λ = 1), the third term
in the right-hand side of Eq. (2.7) and all subsequent
terms of a series vanish; as a result, Eq. (2.7) transforms
into the exact expression:

(2.8)

where λ denotes the displacement of the dividing sur-
face along the normal (i.e., the conformal transforma-
tion of the surface in its new position). In this case, we
deal with the specific model of the surface layer with
any (not definitely small) curvature. The Gibbs model
is an example of the metrics of the surface layer; this
model is rather general (the shapes of coordinate lines
u1 and u2 and the dividing surface are arbitrary) and, at
the same time, is rather simple (the coordinate line u3 is
the straight line) for analysis. This signifies the advance
as compared with the spherical surface, where only one
coordinate line is also the straight line but two other
coordinate lines are characterized by the constant and
equal curvatures.

On the other hand, addressing now to slightly
curved surfaces and considering the displacements of
the dividing surface within the bounds of the surface
layer (whose thickness is much smaller than principal
radii of the curvature of dividing surface), we can sim-
ply ignore the third term in the right-hand side of
Eq. (2.7) and the subsequent terms of a series, because
the expansion is performed precisely with respect to
small parameter λ/Ri0. Then, we arrive again at expres-
sion (2.8), however, in this case, as an approximation
for slightly curved surface layer with an arbitrary met-
rics. Hence, expression (2.8), largely simplifying the
theory, retains its certain generality. It will be used
below due to these considerations.

3. TOTAL PRESSURE TENSOR

Mechanical state of two-dimensional α–β system is

characterized by setting the field of stress tensor (r)
or pressure tensor (r) (they differ only in sign). The
latter tensor is more widely applied to the fluid systems
and we take advantage of its symbols. Generally, pres-
sure tensor is nondiagonal; however, it is always sym-
metric and is characterized by not more than six differ-
ent values out of nine components.
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In the presence of the external field, acting on the
unit volume of a system with force f, the condition of
mechanical equilibrium is expressed as:

(3.1)

where the point denotes the scalar product of a tensor
by vector (it produces the vector). Condition (3.1) rep-
resents the balance between internal and external forces
acting on the unit volume of a system (notation pattern
using a Hamiltonian is convenient, because it is inde-
pendent of the selection of the coordinate system). As
is known for the gravitational field, f = ρg, where ρ is
the local density of a system, and g is the vector of the
strength of gravitational field (gravitational accelera-
tion); for the electromagnetic field, we have [14,
pp. 346–347]

(3.2)

where ρe is the local density of a space charge; P and
M  are the vectors of electric and magnetic polariza-
tions, respectively; E is the vector of electric field
strength; and B is the vector of the induction of the
magnetic field. The value

(3.3)

characterizes the known Maxwell stress tensor (D is the
vector of electric induction; H is the vector of the mag-
netic field strength; ⊗  symbolizes tensor product of the

vectors; and  is the unit vector). Tensor products
appearing in (3.3) include nondiagonal components
(for example, the tensor D ⊗  E consists of components
DiEk). Substitution of (3.2) and (3.3) into (3.1) yields
the condition

(3.4)

The external field is generated by the foreign bodies,
i.e., by the bodies, which are not included into the sys-
tem under consideration. However, the problem of
which bodies should be included into a system is actu-
ally conventional. Interfacial phenomena can be con-
sidered the behavior of each of two contacting phases
in the field of another phase. However, we already
included both phases into the system considered. All
other bodies (including the Earth) generating external
fields can also be included in a system. With such an
approach, the external field is always absent, and the
condition of mechanical equilibrium (3.1) is written in
the following form:

(3.5)

where  is the total pressure tensor including the con-
tributions of the fields, which we assumed to be the
external fields prior to the inclusion of external bodies
in a system. In other words, the total pressure tensor
composed of the common pressure tensor and a certain
tensor whose divergence is equal to –f. For example,
comparing Eqs. (3.4) and (3.5), we conclude that, in the
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case of the electromagnetic field, the total pressure ten-
sor is composed of the common pressure tensor and the
Maxwell stress tensor taken with the minus sign
(because the pressure differs from the stress in sign).
The use of the total pressure tensor considerably sim-
plifies the formulation of the conditions of mechanical
equilibrium, because the pattern of principal Eq. (3.5)
remains the same at the simultaneous action of any num-
ber of fields and coincides with the equilibrium condi-
tion in the absence of the field. At the same time, the
structure of the pressure tensor per se becomes compli-
cated during the passage to the total pressure tensor.

Vector equality (3.5) corresponds to three scalar equal-

ities ei · ∇  = 0 (i = 1, 2, 3), which can be written as

(3.6)

Equalities (3.6) are fulfilled in the surface layer as well
as in both bulk phases; moreover, because the pressure
tensor includes external fields, generally it cannot be
considered an isotropic or at least a diagonal even in the
fluid bulk phases in the selected system of curvilinear
orthogonal coordinates connected with the metrics of a
surface layer. However, if we digress from the existence
of a surface layer, the system of curvilinear orthogonal
coordinates (its selection depends on the external
fields) diagonalizing the total pressure tensor can
always be found in any bulk phase. In this coordinate
system (connected with the metrics of the pressure ten-
sor in the bulk phase and, generally speaking, is not
coinciding with the coordinate system connected with
the metrics of a surface layer), conditions (3.6) are sim-
plified and written as

(3.7)

In the well-studied case of spherical symmetry
(P11 = P22 ≡ PT, P33 ≡ PN, h1 = r, h2 = rsinθ, and h3 = 1),
equalities (3.7) at i = 1, 2 lead to the condition of the
constancy of tangential pressure in the tangential direc-
tion, and the equality at i = 3 connects PT and PN by the
relationship [15]:

(3.8)

The latter expression is a good example of the relation-
ship between the inhomogeneity and anisotropy of the
equilibrium pressure tensor containing in Eq. (3.7) (this
relationship vanishes only during the passage to the zero
curvature). If the pressure tensor is isotropic (PN = PT), it
is also spatially homogeneous (dPN/dr = dPT/dr = 0) in
this and, hence, in any other coordinate system includ-
ing that connected with the metrics of a surface layer.
As we already know, the latter is always inhomoge-
neous and anisotropic; these considerations are of prac-
tical significance for the bulk phases.
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In the other thoroughly studied case of cylindrical
symmetry (P11 = Pϕϕ, P22 ≡ Pzz, P33 ≡ Prr, h1 = r, and h2 =
h3 = 1), equalities (3.7) at i = 1, 2 result in the condition
of the constancy of the tangential pressure Pϕϕ in the
direction of the variations in angle ϕ and pressure Pzz
along the axis, and the equality at i = 3 connects Pϕϕ and
Prr by the relation

(3.9)

4. TOTAL TENSOR 
OF EXCESS SURFACE STRESSES

The idea of passing to the total pressure tensor to
introduce the surface tension [16] was exploited for a
simple case of a spherical surface layer in the central
electric field [17–22]. Now our task is the consideration
of a more general case. Taking advantage of the com-
mon procedure for excess values [13] and method used
in [1] for the common pressure tensor, let us introduce

the total tensor of excess surface stresses  ≡  per
unit area of an arbitrarily selected dividing surface
between the α and β phases, which represents the coor-
dinate surface (u1, u2). Let this surface be located at

u3 = u30, and the surface layer extends from u3 =  to

u3 = . Let us single out the small part of a two-phase
system (the narrow “flow tube” of the coordinate lines
u3) in preset intervals ∆u1 and ∆u2 of the variation of
coordinates u1 and u2. Passing through any coordinate
surface (u1, u2), this “flow tube” cuts-out the small area
∆l1∆l2 = h1h2∆u1∆u2. Correspondingly, the area ∆l10∆l20 =
h10h20∆u1∆u2 is cut out at the dividing surface. Extrap-
olating ∆u1 and ∆u2 to zero, we establish the relation [1]

(4.1)

which determines the tensor of excess surface stresses
as an excess local value with respect to the pressure ten-
sor. Considering the coordinate line u3 to be the straight
line (h3 = 1, u3 = l3) and passing to the variable λ ≡ u3 –
u30 = l3 – l30, we can write Eq. (4.1) also as:

(4.2)

where Eq. (2.8) is taken into account. Note that, in this
model, all values of R1 in the integrand refer to the
unique center of curvature located in the first principal
cross section (we call it the first center of curvature);
similarly, all values of R2 refer to the unique second
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center of curvature; moreover, both centers are located
at the same straight coordinate line u3.

Like the pressure tensor, the tensor of excess surface
stresses can be characterized by three vectors:

(4.3)

or by nine scalar terms (out of which no more than six
terms are different). Among them, the diagonal ele-
ments γ11, γ22, and γ33 ≡ γN are the largest. The first two
vectors are responsible for the scalar surface tension,
which, as is known, is expressed by the equation

(4.4)

and the third vector is the transverse surface tension [1].
In accordance with Eq. (4.2), we can write

(4.5)

(4.6)

(4.7)

Multiplying the left- and right-hand sides of Eq. (4.5)
by the unit angle δθ2 = δl2/R2 = δl20/R20, we obtain

(4.8)

It is evident that γ11R20δθ2 = γ11δl20 is the excess force
applied to the arc δl20 at the dividing surface and
directed along the e1 vector. Since the γ11R20δθ2 force is
directed perpendicular to the radius vector R10 (perpen-
dicular to the vector of normal n to the dividing sur-
face), the γ11R10R20δθ2 product can be considered as an
absolute value of the moment of this force with respect

to the first center of curvature. The integrand (  –

P11)R2δθ2dλ = (  – P11)δl2dλ is the excess force act-
ing on the unit area δl2dλ and directed perpendicular to
radius vector R1. Consequently, the product of this
force by R1 is the absolute value of the moment of this
local force with respect to the first center of curvature.
The integration yields the torque for the whole surface
layer, and hence, equality (4.5) determines the equiva-
lence between the dividing surface and the real surface
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layer through the torque of the surface tension with
respect to the first center of curvature. Similarly, multi-
plying the left- and right-hand sides of (4.6) by δθ1 =
δl1/R1 = δl10/R10, we are ensured that the dividing sur-
face allotted by the tension is equivalent to the real sur-
face layer also through the torque of the surface tension
with respect to the second center of curvature. As for
the transverse surface tension γN, it is directed along the
normal n, and, hence, its torque with respect to both
centers of curvature is equal to zero. Therefore, equal-
ity (4.7) for the transverse surface tension does not have
the same meaning as equalities (4.5) and (4.6) have for
the components γ11 and γ22 of the tensor of excess sur-
face stresses.

Let us consider the dependence of  on the position
of the dividing surface at the fixed physical state of a
system. Differentiation of (4.1) with respect to u30 gives

(4.9)

or, with allowance made for (2.6),

(4.10)

As is seen, the tensor of excess surface stresses depends
on the position of the dividing surface. Let us assume
that the α phase is located from the side of higher pres-
sure (from the concave side of the surface, if both radii
of surface curvature are of the same sign), and the dis-
tance l30 of the coordinate line to the dividing surface is
counted from the boundary of the surface layer from

the side of the α phase. Then, Ri0 =  + l30, and (4.10)
acquires the form of differential equation:

(4.11)

where, for brevity, the tensor of a capillary pressure is

denoted as .

When total pressure tensor in the bulk phases is set as
a function of spatial coordinates, Eq. (4.11) is solved as:

(4.12)

where, according to (4.1), constant (0) is determined as:

(4.13)
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In the simplest case of the constancy of the tensor of

capillary pressure  (for example, as in the case of the
gravitational field) relation (4.12) is reduced to:

(4.14)

Note that in the case of a slightly curved surface layer
with an arbitrary metrics, the terms of the order of

(l30/ )2 and (l30/ )2 and higher in relation (4.14)
should be omitted.

Similar expressions can also be written for each (out
of nine) component of the tensor of excess surface
stresses. The most significant are the expressions for
the diagonal components of the tensor of excess surface
stresses:

(4.15)
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Considering formula (4.17), let us attract our atten-
tion to the fundamental difference between the depen-
dences γ11(l30) and γ22(l30), on the one hand, and γ33(l30) ≡
γN(l30), on the other hand. We believe, as of today, that
this difference is related to our understanding of the
behavior of the tangential and normal pressures inside
the surface layer. Tangential pressure (both P11 and P22)
changes its sign inside the surface layer and acquires
quite large negative values (otherwise, we cannot
explain the experimental values of the surface tension),
whereas the normal component of the pressure tensor
varies monotonically (by our assumption, it decreases)
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while passing from the α to β phase. As a result, in
accordance with Eq. (4.18), γ11(0) > 0 and γ22(0) > 0;
however, γN(0) < 0. In the case of γN, the first terms in
the right-hand sides of Eqs. (4.15) and (4.17) are nega-
tive, while the second terms are positive. As the divid-
ing surface moves from the α to β phase, the γN tension
passes from negative to positive values, so that we can
always find the position of the dividing surface inside
the surface layer for which γN = 0 (in this way, we can
eliminate only one of non-two-dimensional compo-
nents of nondiagonal tensor of excess surface stresses,
which remains three-dimensional as a whole). In con-
trast, γ11 and γ22 are always positive and do not change
their signs during the displacement of the dividing sur-
face. Situation changes if we differentiate Eq. (4.17)
with respect to l30: then, on the contrary, there are
always terms for γ11 and γ22 of opposite signs indicating
the possibility of vanishing the derivatives of γ11 and
γ22, whereas derivative ∂γN/∂l30 does not change its sign
during the displacement of the dividing surface. This
means that γ11 and γ22 can pass the extremum (the min-

imum is especially evident at small values of  and

) although they remain positive, whereas the trans-
verse surface tension does not exhibit extreme points.

5. EXCESS STRESSES IN CROSS SECTIONS
OF A SURFACE LAYER

Above, we defined the tensor of excess surface
stresses by the integration over the volume. However,
excesses can also be taken by the integration over the
cross section of the surface layer at a given position of
the dividing surface. Selecting the cross section as a
narrow band of the coordinate surface (u2, u3) within

the u2, u2 + ∆u2 and ,  ranges (figure) and extrap-
olating ∆u2 to zero, we state, similarly to Eq. (4.1), that

R1
α

R2
α

u3
α u3

β

(5.1)

Multiplying scalarly Eq. (5.1) by e1, we obtain:

(5.2)

Under the linearity of the coordinate line u3 h3 = 1 and
u3 = l3 using variable λ ≡ u3 – u30 = l3 – l30 with allowance
for Eq. (2.8), we can express Eq. (5.2) also as

(5.3)

Multiplying both sides of Eq. (5.3) by the unit angle dθ2
(figure), in the left-hand side we obtain the excess force
acting on the R20dθ2 area of the cross section of the
dividing surface. Integrands in the right-hand side are
the excess forces acting on the unit area R2dθ2dλ, and
integrals give the total excess force acting on the cross
section of the surface layer in the unit angle dθ2. Hence,

expression (5.3) determines the excess force  per
unit length of the cut-out of the dividing surface, which
is equal exactly to the real excess force acting on the
corresponding section of the surface layer.

All that has been said above refers to each compo-
nent of force , of which the most interesting is the

component of surface tension . From Eq. (5.3), we
have

(5.4)

This relation demonstrates that the surface tension in
the u1 direction is equivalent to the total excess force in
the surface layer in this direction.

Differentiating Eq. (5.1) with respect to u30 and tak-
ing Eq. (2.6) into account, we arrive at a simple differ-
ential equation for the dependence of  on the position
of the dividing surface
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(5.5)

that is similar to Eq. (4.10). Generally, the solution of
Eq. (5.5) [written in the variables of expression (4.12)]
can be represented as

(5.6)

where

(5.7)

and, in the case of constant  ≡  – , as

(5.8)

Similar speculations can be performed also for
another principal section of the surface layer. The ten-
sor of excess surface stresses is determined for this sec-
tion by the relation

(5.9)

and its vector component at the coordinate line u1 is:

(5.10)

that is equivalent to the condition

(5.11)

Correspondingly, condition

(5.12)
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0

∫

indicates that the surface tension in the direction of u2
is equivalent to the total excess force in the surface
layer in the same direction. From expression (5.9), we
have the differential equation

(5.13)

that describes the dependence of  on the position of
the dividing surface. The solution of this equation at a

constant  –  difference [written in the variables of
expression (4.14)] has the form:

(5.14)

Note that Eqs. (5.8) and (5.14) for the components 

and  of the surface tension are characterized by a
single minimum.

6. CONSISTENCE BETWEEN THE DEFINITIONS 
OF THE TENSOR OF EXCESS SURFACE 
STRESSES DURING THE INTEGRATION 

OVER THE VOLUME AND CROSS SECTION 
OF THE SURFACE LAYER

As was shown in Sections 4 and 5, the integration of
excess stresses in the surface layer over the volume or
cross section allows us to determine the components of
the tensor of excess surface stresses, so that the corre-
sponding dividing surface is equivalent to the real sur-
face layer through the torque of the surface tension with
respect to corresponding center of curvature or through
the force at the corresponding section of the surface
layer. Let us consider now how these definitions agree
with each other.

Let us compare expressions (4.17) and (5.8) for γ11

and . In the limit of infinitely large  and  val-
ues, these expressions result in the same linear depen-

dence; however, for finite  and , the γ11(l30) and

(l30) curves are characterized by the different slopes
and can intersect each other, so that it becomes possible
to select the position of the dividing surface from the
condition

(6.1)

when the dividing surface is equivalent to the surface
layer both through the force and the torque acting in the
u1 direction (such a dividing surface is called the ten-
sion surface). Similarly, comparing expressions (4.17)
and (5.14) for γ22 and , we also arrive at the conclu-
sion of the possibility of determining the position of the
dividing surface (tension surface) from the condition

. (6.2)
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In the case of the surface layer with the spherical
symmetry when the radii of curvature of principal nor-
mal sections coincide, conditions (6.1) and (6.2) are
identical, and the position of the tension surface is
determined uniquely from any of these conditions.

Let us consider now what conclusions follow from
conditions (6.1) and (6.2) in the case of the surface
layer with cylindrical symmetry. As at the end of Sec-
tion 3, we assumed that P11 = Pϕϕ, P22 = Pzz, P33 = Prr,
h1 = r, and h2 = h3 = 1. Liquid cylinder possess the finite
curvature only in one of the principal normal sections
(along the variation of the ϕ coordinate). Let us select
the cylindrical dividing surface in the surface layer at
r = R10 = Rϕ.

From Eq. (4.1), we find that the component of the
tensor of surface tension γϕϕ defined as the excess
torque acting in the surface layer along the variation of
axial angle ϕ is equal to

(6.3)

From Eq. (5.1), we find that the component of the ten-
sor of surface tension  defined as the excess forces
acting in the surface layer along the variation of axial
angle ϕ is written as

(6.4)

In accordance with (6.1), we seek for the tension
surface of a cylinder from the γϕϕ =  condition. As
follows from Eqs. (6.3) and (6.4), this condition
uniquely determines the Rϕ radius. Because the curva-
ture in the second of principal normal sections (along
the variation of coordinate z) is equal to zero in the cylin-
drical surface layer, then, as follows from Eqs. (4.6) and
(5.12), the equality

(6.5)

takes place at any value of Rϕ. Correspondingly, condi-
tion (6.2) is fulfilled together with condition (6.1), and
the tension surface is uniquely determined in this case.
Note that formulas (6.3)–(6.5) already appeared in
[23]; however, it was concluded in this work that it is
impossible to determine the single tension surface for
the cylindrical surface layer. This conclusion [23] was
related to the use of determining tension surface as cor-
responding to the maximum at the dependence of γzz on
the radius of the dividing surface. Such a dividing sur-

γϕϕ Rϕ Pϕϕ
α Pϕϕ–( )r r Pϕϕ
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∫+d
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∫+d
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1
Rϕ
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α Pzz–( )r rd

Rϕ
α

Rϕ

∫ Pzz
β Pzz–( )r rd

Rϕ

Rϕ
β

∫+

face actually exists and its radius differs from Rϕ but it
is not equivalent to the real surface layer through the
mechanical torque, because the arm of excess force at
the dividing surface in the direction of the z axis is not
equal to Rϕ.

In the general case of arbitrarily curved surface
layer, each of conditions (6.1) and (6.2) separately
determines the position of the dividing surface as a ten-
sion surface. Simultaneous fulfillment of these condi-
tions for a given dividing surface can result only from
the occasional coincidence. As a result, the tension sur-
faces in different directions are generally different;
however, for the large radii of curvature or small devia-
tions from the sphericity of the surface layer, the differ-
ence in their positions inside the surface is negligible
and it can be ignored.

7. CONDITION OF MECHANICAL EQUILIBRIUM 
AT THE SURFACE

Earlier we formulated the condition of mechanical
equilibrium using local relations (3.6), which act both
in the bulk phases and inside the surface layer. Passing
now to the excess values, we express conditions of
mechanical equilibrium in terms of surface tension.
The most important out of these conditions is the con-
dition of equilibrium across the surface layer (the Laplace
formula), which can be derived using only the third of
relations (3.6). The latter relation, with allowance for (2.6)
and the linearity of coordinate line u3 (h3 = 1), has the fol-
lowing form:

(7.1)

Let us apply this equality to the narrow section of
the surface layer within the range of coordinates  ≤

u1 ≤ ,  ≤ u2 ≤ ,  ≤ u3 ≤ . Multiplying (7.1)
by (2.4), integrating over this section, and using (2.8),
we obtain

(7.2)
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where A0 is the area of the dividing surface within the
bounds of selected section. Let us write the same
expressions for the α and β bulk phases with respect to
the regions of the selected section of the surface layer
adjacent to these phases on both sides of the dividing
surface and subtract these expressions from (7.2) using
“force” definitions of the components of the surface
tension in accordance with (5.1) and (5.9). As a result
of these manipulations, we arrive at the condition

(7.3)

Combining pairwise the latter four summands in (7.3),
we can transform them into the form similar to that of
the first summand

(7.4)

(7.5)

Substituting (7.4) and (7.5) into (7.3) and taking into
account that the equality of the unique integral (which
was obtained earlier) to zero should be fulfilled irre-
spective of the dimensions of the dividing surface, we
obtain the condition of the mechanical equilibrium of
the surface layer as

(7.6)

where all values refer to the dividing surface whose
position can be selected arbitrarily. The equation simi-
lar to (7.6) and describing the mechanical equilibrium
of the curved membrane was derived in [24].

In the case of the diagonal pressure tensor and,
hence, the diagonal tensors of excess surface stresses,

 =  = 0, relation (7.6) transforms into common
Laplace’s formula. Thus, relation (7.6) significantly
generalizes Laplace’s formula for the case of nondiag-
onal tensor of excess surface stresses.
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8. TRANSVERSE SURFACE TENSION

Let us consider now the transverse tension, which,
according to (4.7) and (2.8), can be written as

(8.1)

Integrating in parts (with allowance for the fact that
the pressure difference is nullified within the limits of
integration λα and λβ) and using (7.1), we arrive at the
expression:

(8.2)

Let us use now relation (2.8) so that the substitution λ =
R1 – R10 is used in the first, λ = R2 – R20 in the second,
λ = R10(h1 – h10)/h10 in the third, and λ = R20(h2 – h20)/h20
in the fourth of four summands of expression (8.2).
Remembering definitions γ11, γ22, γ31, γ32, , , ,

and , according to (4.1), (4.2), (5.1), and (5.9), we
obtain rather remarkable relation:
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(8.3)

As is seen from (8.3), even simultaneous fulfillment
of conditions (6.1) and (6.2) does not lead to the elimi-
nation of the transverse tension in the general case of
nondiagonal total pressure tensor, because for nullify-
ing the right-hand side of (8.3) it is necessary to fulfill
additional conditions of mechanical equivalence  =

γ31 and  = γ32. Simultaneous fulfillment of all these
conditions can result only from the occasional coinci-
dence, because it is impossible to select the position of
the dividing surface satisfying four independent condi-
tions. Although, as was mentioned at the end of Section 4,
the dividing surface, for which γN = 0, always exists. In
the general case of nondiagonal pressure tensor, this
surface is not the tension surface.

Let us consider the case of total nondiagonal pres-
sure tensor in more detail. In this case, the third and
fourth summands in (8.3) vanish, and the elimination of
the transverse tension can result from only one condi-
tion:

(8.4)

which is expressed as an equality of the sum of surface
tension components determined by the force and the
torque. Such a position of the dividing surface can
always be found and it can be taken as a tension surface
of a nonspherical curved surface in the case considered.
Taking the definition of scalar surface tension (4.4) into
account, condition (8.4) can be written as

(8.5)

where

(8.6)

represent the surface tension determined from the force
and torque in the surface layer, respectively.

Let us illustrate all what have been said above by the
examples of spherical and cylindrical surface layers. If
we select the sphere with radius R as a dividing surface,
the transverse surface tension γN for the spherical sur-
face layer has, according to (8.1), the following form:

(8.7)

Similarly, using Eqs. (4.5), (4.6), (5.4), (5.12), and
(8.6), for the selected dividing surface, we find:

(8.8)
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(8.9)

It can be easily seen with allowance for (3.8), (8.8),
and (8.9) that, under the fulfillment of condition (8.5),
the right-hand side of (8.7) can be reduced to zero. In
the case in question, Laplace’s formula (7.6) for the
spherical tension surface can be rewritten in the form:

(8.10)

Hence, the right-hand side of the Kondo equation
[resulted from (4.16) or readily derived by the differen-
tiation of Eq. (8.9)]

(8.11)

for the tension surface, determined at the total pressure
tensor, does not vanish, and, at γN = 0, the equality
∂γm/∂R = 0 (which took place in the absence of the
field) is not fulfilled.

According to (8.1), the transverse surface tension
for the cylindrical surface layer acquires the form

(8.12)

Integrating in parts the right-hand side of (8.12) and
using (3.9) and (6.3), we find

(8.13)

Noting that, in the case considered, Laplace’s for-
mula (7.6) can be rewritten for the cylindrical surface
in the following form:

(8.14)

we are ensured that γN = 0 under the condition (8.5)
with allowance for (6.5) and (8.6). We can also see that
the right-hand side of the Kondo equation [resulted
from (4.16) or easily derived by the differentiation
of (6.3)]

(8.15)

for the cylindrical tension surface determined at the
total pressure tensor does not vanish, and, at γN, the
equality ∂γϕϕ/∂Rϕ = 0 (taking place in the absence of
field) is not fulfilled.
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CONCLUSION
The analysis performed indicates that the three-

dimensional aspect appears also in the total tensor of
excess surface stresses. Selecting the position of the
dividing surface, we can eliminate the transverse sur-
face tension; however, we cannot avoid of the nondiag-
onal components of the three-dimensional tensor of
excess surface stresses. Nondiagonal components of
this tensor are present also in the condition of mechan-
ical equilibrium across the surface layer generalizing
Laplace’s formula.
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