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INTRODUCTION
A large number of theoretical works was devoted to

the kinetics of micellization in surfactant solutions.
These works were initially stimulated by the existence
of two experimentally observed relaxation times of a
micellar solution. The understanding of the nature of
these times was reported already in [1–4]. The
approach proposed in [1] on the basis of the step-by-
step growth of micelles gained wide acceptance and
then was applied for describing more complex systems
(for example, see [5, 6]). However, being based on the
idea of the barrier character of a micellization process,
this approach did not use to the full extent the potenti-
alities of the theory of nucleation in the establishment
of the correlation between the basic characteristics of
the micellization process, individual properties of
molecular aggregates, and the parameters of the initial
and final states of micellar solution. Recently, the inter-
est to the micellization kinetics has been rekindled. The
works have been published [7, 8] where the starting (for
[1]) step-by-step scheme of the micellization kinetics
has been analyzed with respect to the solution stability,
and the procedure of shorter description, which allows
to optimize the algorithms of the numerical solution of
a system of kinetic equations, has been suggested.

The goal of a series of studies started in [9–11] and
continued in this work is to analytically describe the
micellization process basing on such fundamental ideas
and notions of the theory of nucleation as the activation
barrier of micellization, quasi-equilibrium and quasi-
steady states of the ensembles of molecular aggregates
within various ranges of aggregation numbers, direct
and reverse quasi-steady-state fluxes of the molecular
aggregates over the activation barrier of micellization,
and the hierarchy of the scaling times in the evolution
of micellar solution. The proposed theory formulates at

a quantitative level the conditions of the applicability of
kinetic description, takes these conditions into account,
and reveals complex multistage character of the micel-
lization process rather than just treats differently the
micellization kinetics.

In this work, we present physically transparent sub-
stantiation of the solution (discussed in [1–4]) of the
problem of the micellar solution relaxation at a final
stage of micellization, near the complete equilibrium of
a solution, and find analytically the time required to
establish this final stage. In [1], the equation for defin-
ing this time, which could be analyzed numerically,
was only derived. In this work, we determined the total
time of the establishment of an equilibrium in a solu-
tion.

1. THE SYSTEM OF KINETIC EQUATIONS 
OF THE MATERIAL BALANCE 

OF MICELLAR SOLUTION

As in [9–11], we consider the colloidal surfactant in
a micellar solution as a nonionic substance and the
solution is assumed to be ideal. The aggregation num-
ber of the surfactant micellar aggregate in a micellar
solution we denote by 

 

n

 

. The work of the aggregate for-
mation in the solution containing initially only surfac-
tant monomers is expressed in thermal units 

 

kT

 

 (

 

k

 

 is
Boltzmann’s constant, and 

 

T

 

 is the solution tempera-
ture) and is denoted by 

 

W

 

n

 

. The concentration of molec-
ular aggregates with the aggregation number 

 

n

 

 is
denoted by 

 

c

 

n

 

. At 

 

n

 

 = 1, the aggregates are none other
than surfactant monomers, which, in our case of one
nonionic surfactant, are considered to be identical. At

 

n

 

 

 

@

 

 1

 

, the value of 

 

n

 

 is assumed to be continuous. Posi-
tions of maximum and minimum of work 

 

W

 

n

 

 at the 

 

n

 

-
axis, i.e., the aggregation numbers of critical and stable
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molecular aggregates, are denoted by 

 

n

 

c

 

 and 

 

n

 

s

 

, respec-
tively; these maximum and minimum, i.e., the height
and the depth of the potential barrier and the potential
well of work 

 

W

 

n

 

, are denoted by 

 

W

 

c

 

 

 

≡

 

 

 

W

 

n

 

 and 

 

W

 

s

 

 

 

≡

 

W

 

n

 

, respectively. The half-widths of potential bar-
rier and potential well are denoted by 

 

∆

 

n

 

c

 

 

 

≡

 

[2/

 

|∂

 

2

 

W

 

n

 

/

 

∂

 

n

 

2

 

]

 

1/2

 

 and 

 

∆

 

n

 

s

 

 

 

≡

 

 [2/(

 

∂

 

2

 

W

 

n

 

/

 

∂

 

n

 

2

 

]

 

1/2

 

,
respectively. The 

 

n

 

 

 

& 

 

n

 

c

 

 – 

 

∆

 

n

 

c

 

 and 

 

n

 

 

 

* 

 

n

 

c

 

 + 

 

∆

 

n

 

c

 

 regions
we call subcritical and supercritical regions, respec-
tively. Micelles are mainly concentrated in the 

 

n

 

s

 

 – 

 

∆

 

n

 

s

 

 

 

&

 

n

 

 

 

&

 

 

 

n

 

s

 

 + 

 

∆

 

n

 

s

 

 region. We call this region micellar. It is
located inside the supercritical region. The part of the
supercritical region, where 

 

n

 

 * 

 

n

 

s

 

 + 

 

∆

 

n

 

s

 

 is of no interest
to us, because the concentration of micellar aggregates
is quite low in this region. The total concentration of
micelles (their total concentration in a micellar region)
we denote by 

 

c

 

M

 

.
Direct 

 

J

 

'

 

 and reverse 

 

J

 

''

 

 fluxes of molecular aggre-
gates overcoming (by fluctuation) the potential barrier
of the work of their formation from the side of the sub-
critical and supercritical regions, respectively, have
been introduced in [10]. According to formulas (5.8)
and (5.10) [10], we have:

 

(1.1)

(1.2)

 

where 

 

 (  > 0)

 

 is the number of surfactant mono-
mers absorbed from micellar solution by the critical
molecular aggregate with 

 

n

 

 = 

 

n

 

c

 

 per unit time.
The 

 

J

 

' 

 

and 

 

J

 

''

 

 fluxes result in the fluctuation transfer
of the 

 

J

 

' + 

 

J

 

'' (

 

J

 

'' < 0) 

 

number of molecular aggregates
from subcritical to micellar regions in a unit volume of
micellar solution per unit time. As a result, we have the
equation:

 

(1.3)

 

In the case, which is of interest for practice and
forthcoming study, where the surfactant concentration
is high enough to exceed the critical micellization con-
centration (CMC), strong inequalities:

 

(1.4)

 

[see [10], inequalities (1.3)] and 

 

exp(

 

W

 

c

 

) 

 

@

 

 1, exp(

 

W

 

c

 

) 

 

@

 

exp(

 

W

 

s

 

)

 

 [see [10], inequalities (1.4)] are valid.
According to the second of inequalities (1.4), the

scatter 

 

∆

 

n

 

s

 

 of the micellar aggregation numbers with
respect to their average value 

 

n

 

s

 

 is quite small. There-
fore, the number of surfactant monomers absorbed by
micelles in a unit volume of a micellar solution is equal
to 

 

n

 

s

 

c

 

M

 

 at a high degree of accuracy. Then, due to the
condition 

 

exp(

 

W

 

c

 

) 

 

@

 

 1

 

 and the resultant steep slope of
the potential barrier of the aggregation work (at not too

large values of 

 

n

 

c), the inequality cn ! c1 is

|n nc=

|n ns=

|n nc= )n ns=

J' c1 jc
+ Wc–( )/π1/2∆nc,exp=

J'' cM jc
+ Wc Ws–( )–[ ] /π∆nc∆ns,exp–=

jc
+ jc

+

∂cM/∂t J' J''.+=

∆ns @ 1, ∆ns/ ns nc–( ) ! 1

n
n 2=

nc ∆nc+∑

valid. As a result, for the amount of surfactant in solu-
tion, we have the following equation:

(1.5)

where c is the overall surfactant concentration (total
number of surfactant molecules per unit volume of a
solution). The nscM term is significant in (1.5) when
exp(Ws) does not exceed too much the ns∆ns value,
which is large in view of (1.4) (total micelle concentra-
tion cM is approximately by ∆ns times larger than the
concentration cn of micellar aggregates with n = ns).
The stronger inequality exp(Wc) @ exp(Ws), the more
noticeable the role of the nscM term. The possibility that
the law of the conservation of the amount of surfactant
can be expressed by the bimodal approximation (1.5)
was also discussed in [2] basing on the analysis of
experimental data. Possible deviations from the bimo-
dal approximation can be taken into account in the the-
ory being developed.

In the considered case of the materially isolated
micellar solution, the overall concentration c is the pre-
set value succeeding the CMC. Let us monitor the tem-
poral evolution of such a solution, assuming that, in the
initial moment when the surfactant is added to the sol-
vent and mixed throughout its volume, almost the
whole amount of dissolved surfactant is none other than
the monomers only. Hence, at the initial moment, con-
ditions c1 = c, cM = 0, and J '' = 0 (only the direct flux J '
exists out of two fluxes J ' and J'') are valid. The concen-
tration c1 decreases with time (at a given overall con-
centration c), while the micelle concentration cM
becomes different from zero and gradually increases.
Correspondingly, the reverse flux J '' of molecular
aggregates arises, which progressively compete with
their direct flux J '. At fairly long times, the reverse flux
J '' begins to fully compensate the direct flux J '. Then
the materially isolated micellar solution comes to equi-
librium.

As follows from (1.5) and explicit expressions (1.1)
and (1.2) for the J ' and J '' fluxes at the known depen-
dence of the aggregation work Wn on n and, hence, at
the known dependences of nc, ns, ∆nc, ∆ns, Wc, Ws, and

 on concentration c1, Eq. (1.3), at the material isola-
tion of a solution, can be reduced to the nonlinear differ-
ential first-order equation for the c1(t) function whose
right-hand side is independent of t. The solution of this
equation can be written in a general form in quadratures
immediately over the entire time interval. However, the
dependence of Wn on n is known only in some particu-
lar cases for the specific models of micelles [12–14].
Therefore, it is of interest to analytically solve the prob-
lem of the relaxation of the micellar solution at the final
stage of micellization near the state of the complete
equilibrium of a solution as well as the problem of the
determination of the time of the establishment of this
final stage, using only the most representative general
characteristics of the aggregation work Wn but not the

c1 nscM+ c,=

jc
+
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whole dependence of Wn on n. This will be performed
precisely in the next sections of this work.

2. RELATIONSHIP BETWEEN THE MONOMER 
CONCENTRATION, MICELLE 

CONCENTRATION, AND THE OVERALL 
SURFACTANT CONCENTRATION 

AT THE FINAL EQUILIBRIUM STATE 
OF MICELLAR SOLUTION

Denoting the values characterizing the equilibrium
state of the materially isolated micellar solution by the
wavy bar, we have

(2.1)

Substituting (1.1) and (1.2) into (2.1), we obtain

(2.2)

From (2.2) and expressions 

(2.3)

(2.4)

set by formulas (2.4) and (2.8) in [2], for the concentra-

tions  of molecular aggregates in the subcritical and
supercritical regions of their sizes it follows that the
complete equilibrium between all molecular aggregates
of a micellar solution is established at the final stage.
According to (2.2)–(2.4), this state is characterized by
the concentration of molecular aggregates

(2.5)

thus corresponding to formula (1.10) in [1].
Allowing for (2.2) in (1.5), we have

(2.6)

At a given overall concentration c and the known
dependences of ns, ∆ns, and Ws on monomer concentra-
tion c1, relation (2.6) results in the equation for the
determination of the equilibrium concentration .

Once the equilibrium concentration  of surfactant

monomers is found, the equilibrium concentration 
can be determined using the relation

(2.7)

which follows from (1.5).
If the equilibrium concentration  of surfactant

monomers is known from the experiment, the concen-
tration c and equilibrium concentration  are deter-
mined by relations (2.6) and (2.7). If the equilibrium
micelle concentration  is known experimentally, the

equilibrium concentration  can be calculated solving

J'˜ J''˜+ 0.=

c̃M π1/2c̃1∆ns W̃s–( ).exp=

cn
e( ) c1 Wn–( ) n & nc ∆nc–( ),exp=

cn
e( ) cM/π1/2∆ns( ) Wn Ws–( )–[ ]exp=

n * nc ∆nc+( )

cn
e( )

c̃n
e( ) c̃1 W̃n–( ),exp=

c̃1 π1/2c̃1ñs∆ns W̃s–( )exp+ c.=

c̃1

c̃1

c̃M

c̃M c c̃1–( )/ñs,=

c̃1

c̃M

c̃M

c̃1

Eq. (2.2) with respect to  and concentration c can be
determined using relation (2.7).

Hence, for the nonequilibrium micellar solution,
two concentrations (out of three characteristic concen-
trations c1, cM, and c) were independent parameters
[due to Eq. (1.5)], while for the equilibrium solution,
only one concentration will be an independent parame-
ter [because of supplementary equation (2.1)].

According to the mass action law, we have

(2.8)

where coefficients Kn are independent of concentration
 at the assumed ideality of micellar solution. From

(2.5), (2.6), and (2.8), it follows that

(2.9)

According to (1.4), the inequality  @ 1 is valid. In
this case, the dependence of the second term in the left-

hand side of (2.9) on  is quite strong due to factor .

However, the dependence of this term on  appears to

be much weaker because of factors  and . Then
in full agreement with [12] and basing on (2.9), we can
make the following conclusion. As the overall concen-
tration c exceeds the CMC, the monomer concentration

 also begins to exceed gradually (albeit rather slow)
the CMC, still remaining near the CMC.

Comparing (2.5) and (2.8), we obtain

(2.10)

Since, as was shown in [9], the work Wn of the molec-
ular aggregate formation is not related by its physical
meaning with the fact whether micellar solution is at
equilibrium or not, we can also specify Eq. (2.10) as

(2.11)

The relation (2.11) is equivalent to relation (1.12) in [9].
It follows from (2.11):

(2.12)

Taking into account the definition Ws ≡ Wn  of the
minimum Ws of work Wn, we evidently have

(2.13)

Because the work Wn is minimal at n = ns, in view of
necessary condition (∂Wn/∂n)  = 0, from (2.13)
with allowance for (2.12), we obtain

(2.14)

and, hence

(2.15)

c̃1

c̃n
e( ) Knc̃1

n,=

c̃1

c̃1 π1/2ñs∆nsKñs
c̃1

ñs+ c.=

ñs

c̃1 c̃1
ñs

c̃1

ñs ∆ns

c̃1

W̃n Kn n 1–( ) c̃1.ln–ln–=

Wn Kn n 1–( ) c1.ln–ln–=

∂Wn/∂c1 n 1–( )/c1.–=

|n ns=

∂Ws

∂c1
---------- ∂Wn

∂c1
----------

n ns=

∂Wn

∂n
----------

n ns=

∂ns

∂c1
--------.+=

|n ns=

∂Ws/∂c1 ns 1–( )/c1,–=

∂Ws/∂c1 0.<
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The same speculations, which were used for the
derivation of (2.14) and (2.15), can be applied to the
maximum Wc ≡ Wn  of work Wn. Then, together
with (2.14) and (2.15), we have

(2.16)

(2.17)

According to (2.15), the value in the left-hand side
of Eq. (2.6) monotonically increases with concentra-
tion . This indicates that the solution of Eq. (2.6)

with respect to concentration  at a given concentra-
tion c is the unique solution. According to (2.15), the
unique solution will also be the solution of Eq. (2.2) with
respect to concentration  at a given concentration .

Let us consider two micellar solutions, where
monomer concentrations are almost identical at the
equilibrium state so that , , and  virtually coin-
cide. Denoting the values for these solutions by super-

scripts 1 and 2, we then have /  ≈ 1, and, in view
of (2.14) and (2.16), we also have

(2.18)

(2.19)

From (2.2) and (2.18), it follows that

(2.20)

Because  @ 1, Eq. (2.20) demonstrates that, at almost
identical monomer concentrations in equilibrium solu-
tions, micelle concentrations can be quite different.
According to (2.19) and (2.20), we have

(2.21)

3. LINEARIZATION OF THE SYSTEM 
OF KINETIC EQUATIONS OF THE MATERIAL 

BALANCE OF A MICELLAR SOLUTION

The solution of the system of kinetic equations of
the material balance of a micellar solution derived in
Section 1 at all times after the initial addition of surfac-
tant to the solvent and mixing throughout the entire vol-
ume we begin with the times, when concentrations c1

and cM are already close to their values  and  at the
equilibrium state of a solution and the reverse flux J ''
almost completely compensates the direct flux J '.
These times correspond to the final stage of micelliza-
tion.

The smallness of the deviations of the solution char-
acteristics from their equilibrium values at a final stage
allows us to linearize the system of kinetic equations of
the material balance at this stage and hereby to signifi-

|n nc=

∂Wc/∂c1 nc 1–( )/c1,–=

∂Wc/∂c1 0.<

c̃1

c̃1

c̃1 c̃M

ñs ñc ∆ns

c̃1
1( ) c̃1

2( )

W̃s
1( )( )exp / W̃s

2( )( )exp c̃1
2( )/c̃1

1( )( )
ñs 1–

,=

W̃c
1( )( )/ W̃c

2( )( )expexp c̃1
2( )/c̃1

1( )( )
ñc 1–

.=

c̃M
1( )/c̃M

2( ) c̃1
1( )/c̃1

2( )( )
ñs

.=

ñs

W̃c
1( )( )/ W̃c

2( )( )expexp c̃M
2( )/c̃M

1( )( )
ñc 1–( )/ñs

.=

c̃1 c̃M

cantly simplify this system. This linearization will be
our next task.

Let us denote the deviations of the parameters from
their values at the equilibrium state of micellar solution
by symbol δ. Then, we have

(3.1)

(3.2)

The procedure for the determination of concentrations
 and  of surfactant monomers and micelles at the

final stage of the solution equilibrium using the overall
surfactant concentration was described in Section 2.

Linearizing Eqs. (1.3) and (1.5) and expressions (1.1)
and (1.2) disclosing Eq. (1.3) with respect to δc1 and
δcM and taking into account Eq. (2.1) and the constancy
of the overall concentration c in the materially isolated
solution, we obtain

(3.3)

(3.4)

Here, γ, η, and λ are the dimensionless parameters
defined by the equalities

(3.5)

(3.6)

(3.7)

These parameters characterize the influence of mono-
mer concentration c1 in the vicinity of its equilibrium
value  on the values of Ws, ∆ns, and ns. Similar effect

of the concentration c1 on the values of , Wc, and ∆nc

in expressions (1.1) and (1.2) was not taken into

account in Eq. (3.3) because the dependences on , Wc,
and ∆nc in expressions (1.1) and (1.2) are identical.
From (3.5) and (2.14), it follows:

(3.8)

According to (1.1), for the flux  in (3.3) we have

(3.9)

In view of (2.1), the reverse flux  differs from  only
in the sign.

Equations (3.3) and (3.4) form the closed system of
kinetic equations of the material balance for micellar
solution linearized near the final state of the solution
equilibrium. The functions of δc1 and δcM on time t are
the desired functions.

c1 c̃1 δc1,+=

cM c̃M δcM.+=

c̃1 c̃M

∂δcM

∂t
------------ J'˜ 1 γ η+ +

c̃1
----------------------δc1

1
c̃M

------δcM– 
  ,=

1 λ+( )δc1 ñsδcM+ 0.=

γ c̃1 ∂Ws/∂c1( ) c1 c̃1= ,–=

η c̃1 ∂ ∆ns/∂c1ln( ) c1 c̃1= ,=

λ c̃M ∂ns/∂c1( ) c1 c̃1= .=

c̃1

jc
+

jc
+

γ ñs 1.–=

J'˜

J'˜ c̃1 j̃c
+

W̃c–( )/π1/2∆nc.exp=

J''˜ J'˜
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4. RELAXATION TIME
OF MICELLAR SOLUTION

The solution of the system of Eqs. (3.3) and (3.4)
makes no problem. We have

(4.1)

(4.2)

where time tr is defined by the equality:

(4.3)

Let us estimate the role of parameters η and λ in (4.3).
We begin with parameter η.

From (3.6) and (3.8), we have:

(4.4)

The ∆ns value varies quite slowly with the variation
in c1: the scatter ∆ns of the micelle aggregation num-
bers is rather stable. In view of the first of inequalities
(1.4), the logarithmic value ln∆ns varies with concen-
tration c1 even more slowly than ln∆ns. Further, in view
of inequalities (1.4), ns @ 1 is readily valid. Then, from
(4.4) it follows:

(4.5)

According to (4.5), parameter η in (4.3) can be ignored.
Likewise, in view of the weak dependence of the

average micelle aggregation number ns on concentra-
tion c1, from (3.7) it follows

|λ| ! 1. (4.6)

According to (4.6), parameter λ in (4.3) can also be
ignored.

Omitting parameters η and λ in (4.3) and taking into
account (3.8), we have

(4.7)

Using (3.9) in (4.7), we obtain

(4.8)

Within the framework of approximations included in
(1.5), time tr given by relation (4.7) coincides with the
time of “slow relaxation” of micellar solution deter-
mined in [1]. However, this coincidence takes place
only while allowing for the fact that the 1/R value intro-
duced in [1] has the physical meaning of the direct flux
of molecular aggregates overcoming (by fluctuations)
the potential barrier of the work of their formation from
the side of the subcritical region. The quasi-steady state
of this flux was not substantiated in [1].

δc1

ñs

1 λ+
------------δcM,–=

δcM const t/tr–( ),exp=

1
tr

--- J'˜ ñs 1 γ η+ +( )
c̃1 1 λ+( )

-------------------------------- 1
c̃M

------+ .=

η
1 γ+
------------

c̃1

ñs

---- ∂ ∆ns/∂c1ln( ) c1 c̃1= .=

η / 1 γ+( )  ! 1.

1
tr

--- J'˜ ñs
2

c̃1
----- 1

c̃M

------+ 
  .=

tr

π1/2c̃M∆nc W̃c( )exp

c̃1 j̃c
+

---------------------------------------------- 1
ñs

2c̃M

c̃1
-----------+ 

 
1–

.=

According to (4.8), time tr is positive. Thus, expres-
sions (4.1) and (4.2) correspond to the irreversible ten-
dency of the materially isolated micellar solution to
equilibrium. These same expressions indicate that time
tr given by equality (4.8) is the relaxation time of a solu-
tion at the final stage of micellization. For the constant
in expression (4.2), we have inequality const < 0.
Indeed, it is this inequality that, according to (4.2),
ensures an increase in micelle concentration cM with
time mentioned at the end of section 1, whereas,
according to (4.1) and (4.6), it provides for a decrease
in concentration c1 with time also mentioned at the end
of section 1.

Expressions (4.1) and (4.2) describe the temporal
behavior of concentrations c1 and cM at the final stage
of micellization.

According to (4.8), the relaxation time of micellar
solution does not depend on its volume. Note that the
irreversible tendency of micellar solution to its final
state of complete equilibrium has been substantiated in
a general form in [9].

As is seen from (1.5), the /  value is the ratio
of the amount of substance accumulated by the
micelles at the final state of solution equilibrium to that
of substance remaining in the form of monomers. In
terms of the degree of micellization α [12], this value is
equal to α/(1 – α). Taking into account that, in a typical
case, even the critical degree of micellization (corre-
sponding to the CMC) is the value of the order of 0.1
[12] (in our case, it should be much greater); most
likely that, at  @ 1, the condition

(4.9)

is fulfilled.

Since  @ 1, this case surely takes place when

/  * 1, i.e., when micelles in the final state of
solution equilibrium accumulate noticeable or even the
main part of the whole amount of a surfactant containing
in a solution. In the case considered, term nscM in (1.5) is
significant. From (4.8), we obtain

(4.10)

For completeness, we also consider the opposite
representative (although highly improbable for non-
ionic surfactants) case, where

(4.11)

Because  @ 1, moreover /  ! 1, and, hence, at
the final state of solution equilibrium, micelles accu-
mulate only the small part of the whole amount of sur-
factant remained in a solution. Then term nscM in (1.5)
is a small value. From (4.8), we obtain

ñsc̃M c̃1

ñs

ñs
2c̃M/c̃1 @ 1

ñs

ñsc̃M c̃1

tr

π1/2∆nc W̃c( )exp

ñs
2 j̃c

+
--------------------------------------- ñs

2c̃M/c̃1 @ 1( ).=

ñs
2c̃M/c̃1 ! 1.

ñs ñsc̃M c̃1
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(4.12)

For the /  ratio, under conditions (4.9) and (4.11),
we have expression

(4.13)

followed from (2.2).

Let us establish the interrelation between time tr and
micelle concentration in an equilibrium solution at a
slow variation of the monomer concentration when ,

, , and  remain practically constant. Then,
taking into account (2.20) and (2.21) and the fact that

the intensity  of monomer absorption by critical
molecular aggregate is proportional to monomer con-
centration in a solution, we have from (4.10) and (4.12)

(4.14)

(4.15)

Superscripts 1 and 2 denote the values at two final
states of solution equilibrium, where the monomer con-
centrations are quite the same but micelle concentra-
tions are probably fairly different.

According to (4.14), i.e., when the degree of micel-
lization at the final state of solution equilibrium is nota-
ble, the relaxation time tr of a solution to this state
decreases with an increase in micelle concentration 

in proportion to . However, according to (4.15),
i.e., when the degree of micellization at the final state
of solution equilibrium is small, the relaxation time tr to
this state increases (because of  –  – 1 > 0) with the

micelle concentration  in proportion to .
As was already noted, this case is quite improbable.

The higher the micelle concentration at the final
state of solution equilibrium, the higher the overall sur-
factant concentration of this solution. Then from (4.14)
and (4.15) follows that, at rather large degree of micel-
lization at the final state of solution equilibrium, the
relaxation time of a solution decreases with an increase
in the overall surfactant concentration of this solution.
On the contrary, if the degree of micellization is low,
the relaxation time increases.

tr

π1/2c̃M∆nc W̃c( )exp

c̃1 j̃c
+

---------------------------------------------- ñs
2c̃M/c̃1 ! 1( ).=

c̃M c̃1

c̃M/c̃1 π1/2∆ns Ws–( )exp=

ñs
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+

tr
1( )/tr
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1( )( )
ñc/ñs

=

ñs
2c̃M

1( )/c̃1
1( )

 @ 1, ñs
2c̃M

2( )/c̃1
2( )

 @ 1( ),

tr
1( )/tr

2( ) c̃M
1( )/c̃M

2( )( )
ñs ñc– 1–( )/ñs

=

ñs
2c̃M

1( )/c̃1
1( )

 ! 1, ñs
2c̃M

2( )/c̃1
2( )

 ! 1( ).

c̃M

c̃M
ñc/ñs

ñs ñc

c̃M c̃M
ñs ñc– 1–( )/ñs

5. TIME OF THE ESTABLISHMENT 
OF THE FINAL STAGE OF MICELLIZATION

Let us turn to the solution of the system of kinetic
equations of the material balance of a micellar solution
at the times preceding to the final stage of micellization
derived in Section 1.

Assuming the equality ns = , which will be justi-
fied somewhat later, from (1.5) and (1.3) we have at a
given overall concentration c of a solution:

(5.1)

(5.2)

In Eq. (3.3), we used the linearization of exponent
exp(Ws) with respect to deviation δc1. Expanding
exp(Ws) in Taylor’s series in powers of δc1 and taking
(2.14) into account, we see that this linearization is
practically valid at

(5.3)

Condition (5.3) specifies the region at the c1-axis,
where the final stage of micellization occurs. Although
this region is quite narrow at  @ 1, the relative varia-
tion of exponent exp(Ws) can be, in view of (2.14),
rather significant.

Assuming equality ∆ns = , which will be sub-
stantiated somewhat later, from (1.1) and (1.2) with
allowance for (2.1), we have:

(5.4)

Using (5.4), we obtain

(5.5)

At the assumed equality ns = , according to (2.14),
we have:

(5.6)

Using (5.6) and the evident inequality cM ≤ , we
obtain from (5.5) with allowance for (3.1)

(5.7)

According to (5.7), the inequality

(5.8)

will be actually valid at

(5.9)

Taking (5.8) into account, we reduce (5.2) to:

(5.10)

ñs

c1 ñscM+ c,=
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δc1/c̃1 & 1/ñs.

ñs
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J' J'˜ c1 jc
+∆nc
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-------------------e
Wc– W̃c+
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J''
J'

--------
cM

c̃M
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c̃1

c1
----e

Ws W̃s–
.=

ñs

e
Ws W̃s–

c̃1/c1( )
ñs 1–

.=

c̃M

J'' /J' e
ñs 1 δc1/ c̃1+( )ln–

.≤

J'' /J' ! 1

δc1/c̃1 * 1/ñs.

∂c1/∂t ñsJ' δc1/c̃1 * 1/ñs( ).–=
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Let us emphasize the different relative role of the
reverse flux J '' compared with the direct flux J ' while
passing from the concentration range c1 admitted by
condition (5.9) to the concentration range c1 admitted
by condition (5.3). In the concentration range c1 admit-
ted by condition (5.9), the reverse flux J '' does not play,
according to inequality (5.8), any significant role. How-
ever, in the c1 concentration range admitted by condi-
tion (5.3), the reverse flux J '' is already quite notice-
able. According to expression (1.2), which includes
exponent exp(Ws), it is this flux that determines the
condition (5.3).

We assume equalities ∆nc =  and nc = , which
will be substantiated below. Then, from (1.1) and (2.16),
we have, respectively

(5.11)

(5.12)

[Eq. (5.11) could be derived from (5.4) at ∆nc = ].

The number of monomers  absorbed by the criti-
cal molecular aggregate from a solution per unit time is
proportional to the monomer concentration c1 in solu-
tion. Taking this fact into account and substituting
(5.12) into (5.11), we arrive at

(5.13)

Substituting (5.13) into (5.10), we obtain:

(5.14)

Condition (5.9), which is opposite to condition
(5.3), specifies the region at the c1-axis preceding the
final stage of micellization. For this region to exist, it is
necessary that the monomer concentration (1 + 1/ )
corresponding, according to (3.1) and (5.3), to the onset
of the final stage of micellization be lower than the
monomer concentration c corresponding to the onset of
the whole process of micellization. Thus, we should
have:

(5.15)

Otherwise, condition (5.3) should be valid within the
entire region c ≥ c1 ≥  of the micellization process.
Then the final stage would occur from the very begin-
ning of this process, and the relaxation time tr at this
stage would determine the total time of the establish-
ment of the equilibrium in a micellar solution.

Therefore, we assume hereafter that condition (5.15) is
true. As is shown by the equality

(5.16)

∆nc ñc

J' J'˜ c1 jc
+

c̃1 j̃c
+

---------e
Wc– W̃c+

,=

e
Wc W̃c–

c̃1/c1( )
ñc 1–

=

∆nc

jc
+

J' J'˜ c1/c̃1( )
ñc 1+

.=

∂c1/∂t ñsJ'˜ c1/c̃1( )
ñc 1+

δc1/c̃1 * 1/ñs( ).–=

ñs c̃1

1 1/ñs+( )c̃1/c 1.<

c̃1

1 1/ñs+( )c̃1

c
-----------------------------

ñs 1+

ñs ñs
2c̃M/c̃1+

-----------------------------,=

resulted from (5.1), this is possible only at /  > 1.

The fact that, at /  < 1, inequality (5.15), accord-
ing to (5.16), is invalid, excludes in advance the case of
strong inequality (4.11) from consideration. This can

explain the important meaning of the /  value.

Integrating Eq. (5.14) over c1 from c1 = (1 + 1/ )
to c1 = c, for the desired time t0 of the establishment of
the final stage of micellization, we obtain

(5.17)

or, in view of (3.9)

(5.18)

The accumulation of substance in micelles occurs pre-
cisely during the time t0 (accumulation at the final stage
is negligible).

Let us establish the interrelation between the time t0
and the micelle concentration at the final state of the
solution equilibrium at a small variation in the equilib-
rium monomer concentration at which , , , and

 remain virtually constant. Ignoring in (5.18) small,

in view of (5.15) and  @ 1, value [(1 + 1/ ) /c ,

taking (2.20) and (2.21) and the fact that  is propor-
tional to concentration  into account, in complete
analogy with (4.14), we have:

(5.19)

According to (5.19), at the final state of solution equi-
librium, time t0 decreases with an increase in micelle

concentration  in the inverse proportion to .

Evidently, the (t0 + tr) sum determines the total time
of the establishment of solution equilibrium. If the
degree of micellization at this state is quite large, (4.9)
and, hence, (4.14), (5.15), and (5.19) are valid. Accord-
ing to (4.14) and (5.19), the (t0 + tr) time decreases with
an increase in micelle concentration  in the equilib-

rium solution in proportion to . However, if the
degree of micellization is low, relations (4.11) and (4.15)
are valid; however, inequality (5.15) is already invalid.
In this case, as was mentioned earlier, the (t0 + tr) time
coincides with time tr. According to (4.15), the (t0 + tr)

ñs
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ñc/ñs
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time increases with the micelle concentration  in

proportion to .

Integrating Eqs. (5.14) over c1 at times preceding
the t0 time, we could easily reveal the behavior of the
concentration c1 at these times, whereas integrating (5.1),
that of concentration cM.

From (5.14) and  @ 1, it follows that the rate of a
decrease in concentration c1 with time is relatively high
in the region where c1 succeeds (at least negligibly) ,

i.e., in the region where (c1/  @ 1. Consequently,
this region does not actually appear during the integra-
tion of Eq. (5.14). All what have been said above justi-
fies the equalities ns = , ∆ns = , ∆nc = , and

nc =  suggested above. In view of (5.12), this also
justifies the suggested practical independence of expo-
nent exp(Wc) of time.

Let us consider the representative case, where con-
dition (4.9) is fulfilled. Then, according to (5.16), ine-
quality (5.15) is readily satisfied; hence, expression
(5.18) for time t0 is also valid. Comparing this expres-
sion with expression (4.10) derived in the same repre-
sentative case for time tr, and taking (5.16) into account,
we obtain

(5.20)

Let us assume in the estimates  ~ 102 and  ~

3 × 10; these values are quite real. At /  = 3,
when (4.9) is virtually fulfilled, from (5.20) we have

t0/tr ≈ 1.5. As the /  ratio becomes larger than
three, and correspondingly, inequality (4.9) becomes
stronger, according to (5.20), the t0/tr ratio slightly
increases but still remains smaller than 2.5.

As was mentioned above, t0 + tr is responsible for
the total time of the establishment of equilibrium in
micellar solution. Times t0 and tr, being proportional

[according to (5.18) and (4.10)] to exponent exp( ),
are quite sensitive, together with this exponent, to the

monomer concentration . Then, it is almost impossi-
ble to notice experimentally the slight difference
between time t0 and even the (t0 + tr) time from time tr

that was revealed above. Hence, it is clear that time tr is
responsible for the relaxation time of a solution at the
final stage of micellization and also estimates rather
exactly the total time of the establishment of equilib-
rium in a micellar solution.
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ñc

c̃1

c̃1 )
ñc
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ñs
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