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A general form of the Laplace equation has been derived using non-diagonal tensors for pressure and surface tension typical of
non-spherical interfaces in external fields.

The Laplace equation, the principal relationship of colloid science,
is well known for a non-spherical interface with the scalar sur-
face tension g as

where p is the pressure (a and b indicate the adjacent phases)
and Ri (i = 1, 2) are the principal curvature radii of the interface.
Since surface tension depends on curvature, the interfacial non-
sphericity itself leads to the anisotropy of surface tension, so
that equation (1) can be written in the form

where g1 and g2 are the surface tensions along the principal
directions on the interface. There were many attempts to gen-
eralise the Laplace equation, but the results (see, e.g., refs. 1–9)
mostly referred to the case when the pressure tensor and(or) the
tensor of surface tension (defined as excess surface stress) are
of a diagonal form. The latter, however, not always exists and is
scarcely attainable if an interface is subjected to an arbitrarily
directed external field. Using the total pressure and surface-
tension tensors (including the field), the only problem remains
to formulate the Laplace equation in terms of the non-diagonal
pressure and surface-tension tensors, and this is the goal of this
paper.

First, we have to choose a co-ordinate system. Studying the
interface shape, it is most convenient to use such curvilinear co-
ordinates as reflecting the interface shape. In the mathematical
language, this means that we use an orthogonal curvilinear co-
ordinate system (u1, u2, u3) diagonalising the metric tensor of the
interface, so that any co-ordinate surface (u1, u2) inside or near
the interface can play a role of the Gibbs dividing surface, the
u3 co-ordinate corresponding to the direction perpendicular to
the interface.9 In contrast with the metric tensor, the pressure
and surface-tension tensors are assumed to maintain (e.g., due
to an external field) their non-diagonal form even in the above
co-ordinate system.

As the Laplace equation is a condition of mechanical equilib-
rium, it may be derived from the condition that the total force act-
ing on any part of the system is zero. This can be formulated as

where  is the local pressure tensor, dA is the vector of a sur-
face element (i.e., an elementary surface area multiplied by the
vector n of the unit normal to the surface), and P = n is the
vector of force applied to the elementary unit surface. The inte-
gration in (3) is carried out over the whole closed surface of a
system part selected. Let us select an element at the interface
between the phases a and b, the interphase thickness being so
chosen as to attain bulk phases on both sides of the interface.
Introducing a dividing surface inside the interphase divides the
interface element into the a-layer (adjacent to the phase a and
depicted as opaque in Figure 1) and the b-layer (adjacent to
the phase b and depicted as transparent in Figure 1). Within the
boundaries of the element, the dividing surface area is A0 =
= l10l20, where l10 and l20 are the lengths of the dividing surface
in directions 1 and 2 (Figure 1). 

Let us apply, as the first step, equation (3) to the a-layer
filled (in mind) with the matter of the bulk phase a (extra-
polated to the a-layer). As the second step, we similarly apply
equation (3) to the b-layer filled with the matter of the bulk
phase b. Then, we subtract both of the relationships obtained
from equation (3) applied to the real interface element under
consideration as a whole. In this way, we arrive at the mechani-
cal equilibrium condition in the vector form

where the first term represents the pressure-force difference at
the dividing surface on its opposite sides, and the second and
third terms represent the tension-force differences on the oppo-
site edges of the dividing surface in directions 1 and 2, respec-
tively. Note that, according to the above procedure, the vectors
g1' and g2'' correspond to the force definition of the surface-ten-
sion vector (which is equivalent to the definition by integration
of the excess strain over the cross-sections for directions 1 and
2, respectively10). Equation (4) implies the vectors P3, g1' and
g2'' not to be directed, by necessity, along the normal or the tan-
gent to the dividing surface, respectively.

Dividing (4) by l10l20 with the subsequent transitions l10 ® 0
and l20 ® 0, we proceed to the rigorous local formulation of the
mechanical equilibrium condition

Equation (5), the main result of this work, is a generalization of
the Laplace equation valid for any (diagonal or non-diagonal)
forms of the pressure and surface-tension tensors. Surprisingly,
the Laplace equation exhibits an extremely compact form even
in the general and complicated case.

Vector equation (5) comprises three scalar equations, which
can be deduced as described below. There are the identities
[with ei (i = 1, 2, 3) as unit vectors along the co-ordinate line
directions]

where g'i1 and g''i2 are the components of the surface-tension
tensors as excess stress tensors over the cross-sections for direc-
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Figure 1 Element of a non-spherical interface.
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tions 1 and 2, respectively. Using (6), we can write equation (5)
in the form

Now, we have to account for the standard Serret–Fr enet equa-
tions of differential geometry

where t, n and b are the unit vectors of the line tangent, the line
principal normal and the line binormal, respectively; c and T are
the line curvature and the line torsion, respectively. According
to the above choice of the co-ordinate system, T = 0 in our case.
Then, applying (8) to the co-ordinate lines on the dividing sur-
face (we have t = e1, n = – e3, b = – e2 with L = l10 and t = e2,
n = – e3, b = – e1 with L = l20), we obtain

Putting now (9) in (7), we can pass to separate scalar compo-
nents of equation (7). In particular, multiplying (7) scalarly by
e3, we have

Equation (10) was derived by Evans and Skalak11 for a curved
membrane. In the case when the surface-tension tensor is diag-
onal (g31 = g32 = 0), equation (10) is identical to equation (2).

Multiplying now equation (7) by e1 and e2, we obtain, res-
pectively,

Nobody seems to consider these equilibrium conditions so far.
Passing to the diagonal form of the pressure and surface-tension
tensors, equations (11) and (12) change to the known conditions

that means the conservation of the principal surface-tension com-
ponents along the corresponding co-ordinate lines.
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