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INTRODUCTION

As was shown in [1], the stage of the creation of
condensate thin films with overlapping surface layers at
the nucleus–film and the film–vapor interfaces plays an
important role in the theory of the nucleation of super-
saturated vapors on insoluble wettable nuclei. Special
properties of thin films related to their essential inho-
mogeneity can be described, for example, using the dis-
joining pressure isotherm or the isotherm of adsorption
from the gaseous phase on a solid substrate. These iso-
therms are interrelated, and if we know one of them, we
can obtain the other one.

The disjoining pressure was originally determined
for plane-parallel films [2]. This notion can also be
applied to the uniformly thick films on a curved sub-
strate, for example, on a spherical solid nucleus, pro-
vided that its curvature is not very large [1].

Generalization to the case of nonuniformly thick
films is also possible: the disjoining pressure at each
point at the substrate surface is equal to its value corre-
sponding to the local film thickness [2, 3]. In this case,
it is important that the film thickness should vary rather
slowly along the surface; i.e., the absolute value of the
local angle of thickness profile tilt should be small.

Whether the film is uniform or not depends on the
wetting conditions of the surface and the nucleus size.
In the case of partial wetting of a uniform nucleus sur-
face, the film is separated into the thin wetting film and
the sessile droplet representing small lens. Naturally,
the disjoining pressure isotherm or the adsorption iso-
therm completely determine both the wetting condi-
tions and the precise profile of the thickness of such a
nonuniform film [3, 4], provided that the substrate cur-
vature is preset. However, the entire disjoining pressure
isotherm is not easily measured, and its theoretical
description is rather complicated because surface

forces are governed by many factors that are significant
within different thickness ranges [2]. At the same time,
knowledge of the entire disjoining pressure isotherm is
not required at all in the theory of heterogeneous nucle-
ation to discuss the conditions of the creation of drop-
lets in the form of uniform films. Therefore, it seems
useful to formulate, via a relatively small number of
characteristic parameters, the wetting conditions of the
uniform surface of an insoluble nucleus and the forma-
tion conditions for a uniformly thick film formed as a
result of adsorption from vapor, which is transformed
into the condensation on a nucleus. The significance of
these conditions is stipulated by the existence of the
developed analytical theory [1, 5, 6] describing thermo-
dynamics and the kinetics of condensation and deter-
mining the possibility of barrierless nucleation.

1. RELATIONSHIP BETWEEN THE DISJOINING 
PRESSURE ISOTHERM AND THE WORK 

OF WETTING FOR UNIFORMLY THICK FILM 
ON A NUCLEUS

Let us recall some relations connecting the work of
nucleus wetting and the disjoining pressure, which are
important for further discussion. According to [1], the
isotherm of disjoining pressure 
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dimensionless work of nucleus wetting in the following
manner:
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where 

 

k

 

 is Boltzmann’s constant, 

 

T

 

 is the temperature,
and 

 

σ

 

γα

 

 is the surface tension at the vapor–condensate
interface.

As follows from (1.1), the work of wetting 

 

f

 

∗

 

 

 

at
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∞

 

 is equal to

 

(1.2)

 

On the other hand, at 

 

R

 

  

 

∞

 

, the expression for the
work of wetting tends to a quite definite limit:
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where 
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 and 
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γβ

 

 are the surface tensions at the
nucleus–condensate and the nucleus–vapor interfaces,
respectively. Formula (1.3) is known as the Dupré for-
mula. Let us introduce designation 
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. Ine-
quality 

 

∆σ

 

 < 0 corresponds to the film that wets the sub-
strate.

Comparing (1.2) and (1.3), we conclude that

 

(1.4)
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 is called the
spreading coefficient. For the case of complete wetting,
when the film covers the substrate uniformly and com-
pletely, 

 

s

 

 > 0. Note that since the evidently non-equilib-
rium (for the given system) value of surface tension 

 

σ

 

γβ

 

for a “dry” nucleus surface is present in the definition
of this parameter, the spreading coefficient thus deter-
mined is the non-equilibrium magnitude corresponding
to the spreading of a liquid over the “dry” surface.
Therefore, unlike equilibrium spreading coefficient 
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 =
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, which is determined at the equilibrium

surface tension , this parameter can be both nega-
tive or positive. The equilibrium spreading coefficient
is always negative or equal to zero, 
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e

 

 

 

≤
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.

We can derive expressions connecting the equilib-
rium surface tension and the spreading coefficient with
their non-equilibrium values obtained for a flat “dry”
surface. The work of wetting (it is convenient here not
to use its dimensionless value) of the unit area of a
“dry” substrate surface by the liquid phase (i.e., by
the infinitely thick film) is written similarly to (1.2) as

 

(

 

h

 

)
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 – 
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. The work of wetting of the unit area

of the “equilibrium” surface of a flat substrate, i.e., the
substrate already covered with the film of a certain

thickness, is then equal to 
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 – 
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. Hence,

using (1.4), for the flat surface, we obtain the following
relationships:
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2. ADSORPTION AND EXPONENTIAL 
ASYMPTOTICS OF THE WORK OF WETTING 

AND DISJOINING PRESSURE

As is seen from the above discussion, it is important
to know the initial part of the disjoining pressure iso-
therm in order to estimate the conditions for the forma-
tion of a uniformly thick film. For a sufficiently thin
film, the disjoining pressure isotherm is determined by
the surface adsorption properties. Note that we are
dealing here with polymolecular adsorption, which
always precedes the condensation in systems with com-
plete or partial wetting. In fact, there is no distinct dif-
ference between these phenomena, and the adsorption
of several tens of molecular layers can already be con-
sidered to be the condensation. For flat adsorption
films, the dependence of adsorption Γ on concentration
nβ of vapor molecules at the initial part of an adsorption
isotherm can be represented [7] as

(2.1)

where KΓ is a certain constant, which can be deter-
mined experimentally; parameter m is equal to unity for
the energy-homogeneous adsorbing surface (the Henry
isotherm), whereas for the energy-heterogeneous sur-
face its value does not exceed five (the Freundlich iso-
therm). These isotherms are rather universal (the pow-
ers depend on the energy homogeneity of the surface),
and constant KΓ depends on the types of surface and
adsorbate.

Naturally, in the case of polymolecular adsorption,
the real adsorption isotherm differs from isotherm (2.1)
in the range of thicknesses corresponding to the equi-
librium with almost saturated and, even more so, with
supersaturated vapor. This difference is to be discussed
below and, as will be shown, does not affect the final
result.

In order to find the disjoining pressure isotherm Π(h)
corresponding to the adsorption isotherm (2.1), let us
derive the expression for the chemical potential of a
film. To this end, we consider the vapor, which is in
equilibrium with a flat thin film. Chemical potentials of
vapor and film are identical and equal to b = b∞ +

s Π h( ) h,d

0

∞

∫=

se Π h( ) h, sed

he

∞

∫ s Π h( ) h,d

0

he

∫–= =

σe
γβ σγβ Π h( ) h.d

0

he

∫–=

Γ KΓ nβ( )1/m
,=



COLLOID JOURNAL      Vol. 62     No. 4      2000

ON THE CONDITIONS IMPOSED ON THE SPREADING COEFFICIENT 481

ln(nβ/ ), where b∞ and  are the dimensionless
chemical potential (expressed in kT units) and the satu-
rated vapor concentration, respectively. Using (2.1), we
specify this formula as b = b∞ + m ln(h/lA), where

lA ≡ KΓ( )1/m/nα is a certain characteristic film thick-
ness, and nα is the number of molecules per unit volume
of a liquid phase. Then, for the chemical potential bR of
the spherical film with the outer radius R formed
around the spherical nucleus with radius Rn with allow-
ance for the capillary pressure we have:

(2.2)

where h ≡ R – Rn. On the other hand, it is known from
the theory of heterogeneous condensation of com-
pletely wettable nuclei [1] that

(2.3)

From this expression, we obtain asymptotics for Π(h)
in the region of low thicknesses (or, for brevity, the
adsorption asymptotics):

(2.4)

In spite of sign “–”, this value is positive, because this
asymptotics is true at h < lA when the logarithm is neg-
ative.

Using (1.1), we find the following expression for the
adsorption asymptotics of the work of nucleus wetting
at h � Rn:

(2.5)

Such an asymptotics of the work of wetting operates in
the region of very thin films with thicknesses of units of
Angströms, whereas for thicker films (with the thick-
ness of dozen of angströms or thicker) the exponential
asymptotics of the work of wetting, which results from
the structural forces, is in operation:

(2.6)

where lS is the parameter with a meaning of the corre-
lation length, and C is a certain positive constant. For-
mula (2.6) suggests the monotonic achievement of the
limiting value of the work of wetting f∗ . As follows
from (1.1) and (1.4), in this case, Π(h) ≥ 0 and s > 0.

If it is assumed that the exponential asymptotics is
true up to the thinnest films, just as was done in [1], we
can formulate the condition required for the maximum
to exist at the curve of the chemical potential of a con-
densate in a nucleus. Indeed, as follows from (1.1) and
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(2.6), the derivative of disjoining pressure Π'(h) with
respect to film thickness is equal to:

(2.7)

With allowances for (2.3), (2.7), and (1.3), the equation
for radius R0 corresponding to the maximal chemical
potential has the following form:

(2.8)

Constant C can be determined, if we assume that the
work of the formation of a zero-thick film is equal to
zero. Then

(2.9)

Expressing f∗  from (1.3), we obtain

(2.10)

Finally, substituting C from (2.10) into equation (2.8)
and ignoring the difference between R0 and Rn (assum-
ing that lS � Rn) in the left-hand side of this equation,
we find:

(2.11)

To provide inequality R0 > Rn, it is necessary to fulfill
the condition

(2.12)

which can definitely be violated at a sufficiently low
(albeit positive) spreading coefficient s. If this inequal-
ity is violated, the maximal chemical potential is not
realized at physically correct (positive) values of the
film thickness.

However, this inequality should be understood as
the limitation on the applicability of the exponential
asymptotics of the work of wetting (2.6) at low film
thicknesses, rather than the real limitation on the
spreading coefficient, because it is related to the finite
value of Π'(h) for the exponential asymptotics at h  0.

Because, in reality, Π'(h)  –∞, the equation for
the maximum chemical potential of the condensate in a
nucleus has always a physically correct root. If it falls
into the range of very thin films, the exponential
asymptotics cannot be used.
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Thus, to determine thermodynamic characteristics
at sufficiently small film thicknesses, it becomes neces-
sary to use some other approximations, say the Henry
or the Freundlich isotherms.

3. SEWING OF ADSORPTION 
AND EXPONENTIAL ASYMPTOTICS 

OF THE WORK OF WETTING

Let us assume that the work of wetting for very thin
films is determined by the adsorption asymptotics (2.5),
while for rather thick films, it is determined by the
exponential asymptotics (2.6). Let us sew these two
asymptotics: we assume that there is a thickness hp at
which adsorption approximation (2.5) is valid at h < hp,
whereas exponential approximation (2.6) of the work
of wetting with constant C ' (which is, in general, differ-
ent than C) operates at h > hp. Let us require that the
sewing process be smooth, i.e., the work of wetting and
its derivative should be characterized by the continuity
in the point hp (the requirement of continuity of the
derivative is equivalent to that of the disjoining pressure
isotherm or the curve of the chemical potential for the
condensate). These requirements are expressed mathe-
matically by the set of equations:

(3.1)

Thickness hp corresponding to sewing and constant C'
are unknown variables in this set of equations. After the
substitution of the value of f∗  from (1.3) and some sim-
plifications, the set acquires the following form:
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hp
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(3.2)

Let us analyze the conditions of the solution of this
set of equations. Using the second equation, we can
exclude constant C '. Then, the first equation in (3.2) is
transformed into:

(3.3)

Taking into account that approximation (2.5) is true at
h < lA, we can conclude that physically correct solutions
correspond to the negative values of the left-hand side
of equation (3.3). Thus, condition (see Fig. 1) of the
physically correct solution of equation (3.3) and simul-
taneously that of set (3.2) appear in the following form:

(3.4)

By the construction of sewing procedure, equa-
lity (1.5) for the initial spreading coefficient is automat-
ically fulfilled if the sewing is possible, i.e., if sys-
tem  (3.2) has a physically correct solution. The case,
when hp > lA and C ' < 0, cannot be regarded as physi-
cally correct.

Let us make estimates for water under standard con-
ditions. Surface tension σαβ = 70 dyne cm–1, and nα =
3.3 × 1022 cm–3. At room temperature, kT = 4.2 × 10–14 erg.
Then, we have s/nαkT = (s/σαβ) × 5.0 × 10–8 cm. Substi-
tuting this estimate into (3.4), we find

(3.5)

Let be hp � lA; then in the first equation of system (3.2)
we can neglect unity compared with ln(hp/lA). Further,
using the second equation, the first equation in (3.2) can
be rewritten as:

(3.6)

At hp � lS, the approximate solution of this equation
has the following form:

(3.7)

Now we rewrite equality (3.6) as follows:

(3.8)

Hence, using the second equation of system (3.2), we
obtain
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Fig. 1. Dependence of (1) the left-hand and (2) the right-
hand sides of equation (3.3) on film thickness.
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(3.9)

Comparing (3.9) and (2.10), we can see that the cor-
rection to constant C related to the correction to the
exponential asymptotics for thin films is characterized
only by the second order of smallness with respect
to hp/lS:

(3.10)

i.e., it is relatively small.

4. PHYSICAL MEANING OF THE CONSTRAINT 
ON SPREADING COEFFICIENT

The meaning of the constraint (3.4) can be under-
stood, if we take into account equality (1.5). Setting the
behavior of curve Π(h) at a sufficiently low thickness h
by adsorption asymptotics (2.4), we thereby set the

value of integral (ξ)dξ for the small values of h. In

our case, this integral is positive, because the approxi-
mation (2.4) is true at h < lA where the integrand is pos-
itive. It is important that the behavior of integral

(ξ)dξ within this thickness range be determined by

the adsorption properties of a surface:

(4.1)

In fact, the disjoining pressure isotherm becomes
different from (2.4) as h approaches lA, this difference
being mostly pronounced for complete wetting. Figure 2a
illustrates the disjoining pressure isotherm for the case
of complete wetting; Fig. 2b shows the isotherm
obtained by the sewing procedure described above
(also corresponding to complete wetting), and Fig. 2c
represents the case of incomplete wetting. Dotted lines
in Figs. 2a and 2c show curves (2.4) of the adsorption
asymptotics of the disjoining pressure in the range
where it noticeably differs from the real isotherm.

Even if it is not assumed that the exponential
asymptotics operates at rather large film thicknesses,
we can nonetheless obtain constraint (3.4). This allows
us to consider the cases of both complete and incom-
plete wetting. In the case of complete wetting, the esti-
mate 

(4.2)

is true for all h > lA.
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Fig. 2. Disjoining pressure isotherms for (a, b) complete and
(c) incomplete wetting. Isotherm shown in Fig. 2b was
obtained by the sewing method.
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i.e., the thickness at which the spreading coefficient
becomes negative. The same condition can be rewritten
using the initial spreading coefficient s and the integral
over the initial part of the disjoining pressure isotherm:

(4.4)

Then it can be concluded that the sufficient condi-
tion of incomplete wetting is the existence of such a
film thickness he at which

(4.5)

and, hence, the necessary condition of complete wet-
ting is the fulfillment of condition

(4.6)

for any film thickness h. Hence, using estimate (4.2),
we obtain (3.4) as the necessary condition for complete
wetting.

As is seen from the above discussion, the condition
of (3.4) type is not bounded by the concrete choice of
the approximation for the initial part of the Π(h) iso-
therm but is the generally known fact. The specific pat-
tern of the adsorption isotherm affects only the value of
the right-hand side of condition (3.4). The general fact
is that, even at the positive initial spreading coefficient,
the forming adsorbate (condensate) film can substan-
tially change the wetting conditions.

It is the spreading coefficient that precisely charac-
terizes the wetting. We can introduce the current
spreading coefficient, which is dependent on film thick-
ness:

(4.7)

Subscript “ne” reminds us that this value is generally
the non-equilibrium parameter.

The behavior of the disjoining pressure isotherm
and the work of wetting at low film thicknesses is
unambiguously determined by the (2.1) type expres-
sion or other similar isotherms of polymolecular
adsorption. The behavior of the value of s – sne(h) =

(ξ)dξ in the range of low h is also determined. If

appears that condition (ξ)dξ > s is fulfilled for a

certain h falling into the domain of the applicability of
approximation (2.4), it means that sne(h) < 0. In this
case, upon further condensation, the surface will act as
though it is partially wetted, even if the initial spreading
coefficient s ≡ sne(0) was positive.
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Note that the use of thickness to describe adsorption
films is to some extent formal; the adsorption deter-
mined correctly both for very thin and thicker adsorp-
tion films has the physical meaning. However, we use
the thickness, considering it to always be proportional
to the adsorption. All the procedures performed above
can be rewritten in terms of the dependence of the
chemical potential of condensate on adsorption using
expression (2.3) that relates the disjoining pressure
with the chemical potential. The sewing procedure
described above can be physically understood to be the
sewing of the asymptotics of the condensate with
respect to adsorption.

5. FORMATION OF NONUNIFORMLY THICK 
FILM AND THE CONSTRAINT 

ON NUCLEUS SIZE

The equation of the droplet profile expressing the
constancy of chemical potential in a film has the fol-
lowing form:

(5.1)

where PL and Π are the local values of Laplacian and
disjoining pressures, respectively.

Let us assume now that, in the case of incomplete
wetting, the profile of nonuniformly thick film on the
curved substrate (i.e., on the solid nucleus) has, simi-
larly to the case of a flat substrate, the form of a uniform
thin film contacting with the droplet-small lens. The top
of this droplet represents almost a spherical segment
with a certain radius of curvature Rd; the Laplacian
pressure in this part of a droplet is much higher than the
disjoining pressure; hence, Rd ≅  2σαβ/∆P. More exactly

(5.2)

where H is the thickness of a liquid layer at the top of a
small lens.

However, in the bottom part of this droplet there is a
transition zone from the meniscus to the uniformly
thick film where both Laplacian and disjoining pres-
sures are significant. For the uniform film with thick-
ness he at the nucleus surface with radius Rn, we can
write:

(5.3)

Hence

(5.4)

In the case under consideration, the left-hand side of
this equation is positive; hence, the right-hand side
should also be positive. This condition imposes certain
constraints on a possible pattern of the disjoining pres-
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sure isotherm. For example, we can see at once that the
monotonically decreasing isotherm 

 

Π

 

(

 

h

 

)

 

 cannot satisfy
equation (5.4).

Considering the limiting case of a flat substrate
(

 

R

 

n

 

  

 

∞

 

), we can see that, in this case, the 

 

Π

 

(h) curve
should have the negative part in order to form a droplet-
small lens. Indeed, during the unlimited growth of Rd,
the contact angle tends to a constant value, and, hence,
thickness H is directly proportional to Rd. In this case,
the Π(H) value decreases rather quickly (usually in an
exponential manner with the power larger than two),
thus resulting in condition Π(he) < 0 derived from (5.4).

Figure 3 illustrates the typical pattern of the disjoin-
ing pressure isotherm for the case of incomplete wet-
ting. The case is also possible when the isotherm has no
positive β-branch. For the curve shown in Fig. 3, equa-
tion (5.4) results in two important constraints. Let us
consider them below.

Nuclei of Small Sizes. If the film thickness h is so
small that falls on the α-branch of the disjoining pres-
sure isotherm and Π(h) > Π(hmax), then such a film can-
not be separated into a still thinner film and droplet-
small lens, because it should contradict equation (5.4).
In the absence of the positive β-branch, the separation
does not occur under the condition Π(h) > 0. However,
the values of the disjoining pressure at the α-branch are
usually so large that the constraints Π(h) > Π(hmax) and
Π(h) > 0 on the film thickness are practically identical.
Therefore, for simplicity, hereafter we assume that such
a constraint is the inequality Π(h) > 0.

If the nucleus is so small that the nucleating center
corresponding to the maximum chemical potential falls
into the indicated region of very thin films, the separa-
tion can occur only during the further growth of the
nucleus. In this case, the threshold supersaturation
resulting in the condition of barrierless nucleation, as
well as the curve of the chemical potential and the work
of nucleus formation in the vicinity of the critical size
in the subthreshold region of supersaturations are deter-
mined in the same manner as in the case of condensa-
tion on completely wettable nuclei.

Let us find the quantitative solution corresponding
to this case. According to (2.3), film thickness hth for
the nucleus with the maximum (threshold) value of
chemical potential will be determined by the equality:

(5.5)

Assuming that derivative Π'(h) is monotonically
increasing function on the α-branch, let us write the
condition indicating that critical nucleus falls into the
given region of low film thicknesses in the form of
Π'(hth) < Π'(h0), where h0 is the smallest root of equa-
tion Π(h) = 0, i.e.,

Π' hth( ) 2σαβ

Rn hth+( )2
-------------------------.–=

(5.6)

This condition is reduced to the upper bound of the
value of Rn:

(5.7)

Such a constraint does not arise when conditions (2.12)
and (3.4) of the applicability of exponential approxima-
tion (2.6) for completely wetting films are fulfilled.

According to Derjaguin and Zorin’s data [8] for
water films on the glass surface, h0 � 70 Å, Π'(h0) � –7 ×
1013 dyne cm–3, thus resulting in condition Rn + hth <
140 Å. Since hth ≤ h0 = 70 Å, this condition corresponds
to very small nuclei, which are almost beyond the con-
ditions of the applicability of the concept of the disjoin-
ing pressure for describing the properties of thin films
on nuclei.

Nuclei of large sizes. Let us denote the difference
between the values of the disjoining pressures in the
maximum and minimum at the isotherm by ∆Π . For the
isotherm shown in Fig. 3 this means that ∆Π = Π(hmax) –
Π(hmin). When the positive β-branch is absent, ∆Π =
–Π(hmin).

Since Π(H) – Π(he) ≤ ∆Π , it is possible, using (5.4),
to write the following inequality:

(5.8)

Here, the sign of equality corresponds to the limiting
case he = hmin, H = hmax.

Assuming that he � Rn, we can rewrite this inequal-
ity in the form

(5.9)

2σαβ

Rn hth+( )2
------------------------- Π' h0( ).–>

Rn hth
2σαβ

Π' h0( )
---------------– .<+

2σαβ

Rd

-----------
2σαβ

Rn he+
----------------- ∆Π .≤–

Rn

Rd

------ 1
Rn∆Π
2σαβ--------------.≤–

h0 hmax h

hmin β-branch

α-branch

è(h)

Fig. 3. Typical disjoining pressure isotherm for the case of
incomplete wetting.
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Let us analyze this inequality. If the size of the drop-
let-small lens is sufficiently large, it can cover the
noticeable part of a nucleus. Under the conditions when
the radius of droplet-small lens Rd is larger than the
radius of nucleus Rn, the droplet spreads over the entire
nucleus, and the film thickness becomes uniform.
Apparently, this corresponds to the situation when the
Laplacian pressure suppresses the fine structure of the
disjoining pressure. However, when Rn � Rd, from
(5.9) we have

(5.10)

and, correspondingly,

(5.11)

According to [2], for water films on quartz, ∆Π �
5 × 103 dyne cm–2; the surface pressure of water is equal
to σαβ = 70 dyne cm–1. Thus, ratio σαβ/∆Π � 10–2 cm,
and condition (5.11) imposed on Rn acquires the form
Rn � 10–2 cm.

However, when the radius Rd exceeds Rn, we arrive
at the inequality:

(5.12)

as the condition of the uniform spreading of the liquid
film over the nucleus. Evidently, inequality (5.12) is
only sufficient condition. Note that the larger ∆Π , i.e.,
the deeper the minimum (the larger the contact angle),
the smaller the range of nucleus sizes satisfying condi-
tion (5.12) is.

CONCLUSION
Hence, let us summarize the results of the study

reported in this work. Once conditions (2.12) and (3.4)
imposed on the initial spreading coefficient are ful-
filled, the range of sizes of condensation nuclei
appears, where the exponential approximation (2.6) of
the work of nucleus wetting can be used in the theory

of nucleation. Once condition (2.12) is violated, the
adsorption asymptotics (2.5) of the work of nucleus
wetting can be used in calculations. When the condition
(3.4) is violated, the range of the sizes of condensation
nuclei, where the adsorption and exponential asymptot-
ics for the disjoining pressure operate in the theory of
nucleation of uniformly thick films, is significantly
bounded by the constraint (5.7). Nonetheless, the heter-
ogeneous nucleation occurring via the formation of
uniform films on nuclei can still take place within the
entire range of nucleus sizes that satisfies the sufficient
condition (5.12) (even in the case of substances with
finite contact angles). If the condition (3.4) is not ful-
filled for nuclei whose sizes satisfy inequality (5.11),
the emergence of droplets on these nuclei occurs in the
form of small lenses.
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