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Abstract—The kinetics of the initial stages of micellization was considered for the solution of a nonionic col
loidal surfactant. Quasi-equilibrium concentrations of molecular surfactant aggregates in subcritical and over-
critical regions of their sizes, as well as the quasi-steady-state concentration of molecular surfactant aggregates 
in the near-critical region of their sizes, are established at these stages. The average time between two successive 
acts of emission of a surfactant monomer by a micelle, the average resident time of a monomer in a micelle, 
and the average micelle lifetime were treated from a statistical point of view. 

INTRODUCTION 

We continue the study of the micellization kinetics 
in a surfactant solution, which was initiated in [1,2]. The 
aim of this work is to consider the initial stages of 
micellization. At these stages, quasi-equilibrium con
centrations of surfactant molecular aggregates in sub-
critical and overcritical regions of their sizes, as well as 
the quasi-steady-state concentration of molecular sur
factant aggregates in the near-critical region of their 
sizes, are being established. 

The necessity of isolating the initial stages of micel
lization in subcritical and overcritical regions of the 
aggregate sizes, and the role of these stages in the relax
ation in micellar systems, were first discussed in [3-7] . 
However, the quantitative description was only given 
[3] to establish the quasi-equilibrium concentration in 
overcritical region of molecular aggregate sizes. It was 
assumed that it is this process that is responsible for one 
(smaller) of two observed relaxation times of the micel
lar solution. The establishment of a quasi-equilibrium 
concentration in a subcritical region of sizes [3-7] was 
deliberately considered to be a faster process, and the 
regularities of the establishment of quasi-steady-state 
concentration in the near-critical region of sizes were 
not discussed at all. 

In this work, the initial stages of micellization in all 
size regions of molecular aggregates will be described 
from a unified viewpoint. Furthermore, as will be seen 
from the expressions given below, the time of establish
ing quasi-equilibrium concentration in the overcritical 
region of the sizes of molecular aggregates cannot be 
regarded as the largest value and, hence, cannot serve 
as an estimate of the duration of the initial stages as a 
whole. 

The set of notions used in this work appears also to 
be convenient for the introduction, together with the 
solution of main problem, of the important parameters 
characterizing a micelle as a dynamic object being in 

material contact with the solution of monomelic surfac
tant. Among these parameters are the time between two 
successive acts of emission, the resident time of a 
surfactant monomer in a micelle, and the lifetime of a 
micelle. 

As in [1, 2], we consider the colloidal surfactant as 
a nonionic substance and the solution as an ideal mix
ture of molecular surfactant aggregates of different 
sizes in a solvent. 

1. TIMES OF ESTABLISHMENT 
OF QUASI-EQUILIBRIUM CONCENTRATIONS 

OF MOLECULAR AGGREGATES 
IN SUBCRITICAL AND OVERCRITICAL 

REGIONS OF THEIR SIZES 

Let us denote the aggregation number of a surfactant 
in a micellar solution by n. The formation work of a 
molecular aggregate (the work of aggregation) we 
express in thermal units kT (k is Boltzmann's constant, 
and T is the solution temperature) and denote by W„. 
The concentration of molecular aggregates with the 
aggregation number n we denote by cn. At n = 1, aggre
gates are none other than surfactant monomers, which, 
in our case of one nonionic surfactant, are considered to 
be identical. At n > 1, the value of n is assumed to be 
continuous. Positions of maximum and minimum work 
Wn at the n-axis, i.e., the aggregation numbers of criti
cal and stable molecular aggregates, we denote by nc 

and ns, respectively; these maximum and minimum 
works, i.e., the height and the depth of a potential bar
rier and potential well of work Wn we denote by Wc = 
W„\„-„ and Ws s W,J„ = „ , respectively. The half-
widths of potential barrier and potential well, which are 
defined by equalities (1.1) in [2], we denote by Anc and 
Ans, respectively. The regions n s nc - Anc, nc - Anc s 
n-&nc + Anc, and n a nc + Anc we call subcritical, near-
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Typical behavior of the formation work Wn of the molecular 
aggregate as a function of the aggregation number n. 

critical, and overcritical regions, respectively. Micelles 
are mainly concentrated in the n, - An, s ns n, + Ans 

region. We call this region micellar. It is located inside 
the overcritical region. The part of the overcritical 
region, where n a n, + An,, is of no interest to us, 
because the concentration of micellar aggregates is 
quite low in this region. These notions just introduced 
are clearly illustrated by the figure. 

To construct the theory of micellization, the 
assumption of quasi-equilibrium concentrations of 
molecular aggregates in subcritical and overcritical 
regions of their sizes are important. This assumption 
was discussed in [3-7] and qualitatively substantiated 
in [2]. 

Let us analyze how establishing these quasi-equilib-
rium concentrations occurs with time. It will be shown 
in our forthcoming publications that quasi-equilibrium 
state actually has time to be established, and the quan
titative criterion for the quasi-equilibrium aggregate 
concentration in the subcritical and overcritical regions 
of aggregate sizes will be defined. 

Let us first consider (in accordance with [3]) how 
the quasi-equilibrium concentration of aggregates is 
established in the micellar region. 

The variations in concentrations c„ of molecular 
aggregates with time t is defined by the equation of con
tinuity 

dcn(t)/dt = -dJ„(t)/dn (1.1) 

[equation (3.3) in [2]]. Here, Jn(f) is the flux of molec
ular aggregates. Argument t indicates the dependence 
of cn and /„ on time. 

According to relation (3.10) in [2], for the flux J„(t) 
in the micellar region we have: 

where j * (j* > 0) represents the number of surfactant 
monomers absorbed by a stable molecular aggregate 
(with n = ns) from a solution per unit time. 

Boundary conditions to the kinetic equation formed 
by relations (1.1) and (1.2) in a micellar region have the 
following forms: 

c „ ( 0 « 0 ( n « n , T A / i , ) . (1.3) 

Approximate equality (1.3) should be understood as if 
the micelle concentration at the boundaries n~nsT Ans 

of the micellar region is negligible compared to the 
concentration at n = ns. 

For quasi-equilibrium aggregate concentration, 
which is established with time in the micellar region, 
according to Boltzmann's fluctuation principle, we 
have 

(1.4) 

(1.5) 

J n{t) = -j+

s[2(n-ns)/^ns)2 + d/dn]cn(t) 

(n, - An, s n s ns + An,), 
(1.2) 

c[e) = c o n s t e x p [ - ( W n - ^ ) ] 

(ns-Anssnsns + Ans). 

Taking into account approximation 

(ns - Ans =s n s ns + Ans) 

[approximation (1.6) in [2]], we can see from (1.4) that 
the quasi-equilibrium concentration rather rapidly 
decreases as n approaches the boundaries n~ n s T An^ 
of the micellar region, thus satisfying the boundary 
conditions (1.3). 

Let us pass in the micellar region from variable n to 
the variable 

u = (n-ns)/Ans ( - l s u s l ) . (1.6) 

Assuming that 

c(u,t) = cn(t), cl'\u) = cl? (-Is us I), (1.7) 

from (1.1) and (1.2), we derive the kinetic equation 

dc(u, t) h d (~ d \ , 
—\ = 2u + z— \c(u, t) 

dt ( A n / M du) (1.8) 
( - I S M S 1) 

(differential operator dfdu acts on the entire expression 
to the right-hand side). In this case, equation (1.3) 
yields boundary conditions 

C ( M , 0 - 0 (1.9) 

to equation (1.8). According to (1.4)—(1.7), we also 
have 

c(e\u) = const e x p ( - « 2 ) ( - l s a s l ) . (1.10) 

Preparatory to solving equation (1.8), we introduce 
Hermitian polynomials H,{%) (i = 0, 1, . . . ) : / / 0 (£) = 1. 
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= 2x, H2{%) = 4E,2-2, .... They satisfy recurrent 
relations 

±H&) = 2if f | ._ 1 (£) , 

(1.11) 

and orthogonality and normalization relations 

jf , cjexp(-$V,-(S)^(M = /!2'8„ 

( i , r = o , i , . . . ) , 
where 8,T is the Kronecker symbol and 0! = 1. 

In view of (1.11), we obtain 

^ 2 c 3 + | ) e x p K 2 ) / / , ( c J ) = - 2 / e x p K 2 ) / / , ( ^ ) 

(1.12) 

(1.13) 
(i = 0 , l , . . . ) . 

Further, according to (1.10), the quasi-equilibrium con
centration c(e)(u) satisfies kinetic equation (1.8) and rel
evant boundary conditions (1.9). Taking into account 
all that has been said above, we can see that the general 
solution of equation (1.8) at boundary conditions (1.9) 
has the following form: 

c{u,t) = c w ( M ) + £ f c , e x p [ - 2 / y > / ( A n 5 ) 2 ] 

x exp(-u )//,•(«) ( - l s i ) < l ) . 

(1.14) 

Here, coefficients kt that are independent of u and t are 
expressed with the aid of (1.12) via the initial concen
tration c(u, f)lr = o m t n e micellar region. Quasi-equilib
rium concentration c(e\u) could be included into (1.14) 
in the sum over i, adding the term with i = 0 to the sum. 
This indicates that the obtained solution (1.14) is indeed 
the general solution: it represents the expansion in com
plete function system exp(-u2)Hj(u) (i = 0, 1,. . .) . 

Expression (1.14) describes the establishment of the 
quasi-equilibrium concentration of molecular aggre
gates in the micellar region. It is seen from (1.14) that 

values given by equalities 

tf = (Anf/2ij+

s ( / = 1 , 2 , . . . ) , (1.15) 

represent the spectrum of times required to establish 
this concentration. For the largest of these times, the 
principal and, hence, the characteristic time, which is 
denoted by ts, we have 

*, = (^ns)2/2j+

s. (1.16) 

According to (1.16), the larger Ans and the smaller j * , 
the larger is time ts. Relation (1.16) for time ts coincides 
with the Anianson and Wall formula [3] for the time of 

"fast" relaxation of a micellar solution at a relatively 
low amount of a substance in micelles. 

Now let us find out how the quasi-equilibrium con
centration of molecular aggregates is established with 
time in the subcritical region n s nc - Anc. We conclude 
that, since the same subcritical region also exists in the 
case of common nucleation, the quasi-equilibrium con
centration of molecular aggregates will be established 
in the subcritical region in the same manner as in the 
course of common nucleation. As was shown in [8, 9] , 
it occurs due to the tendency of molecular aggregates 
with the initial aggregation number equal to unity to 
overcome (by fluctuations) the potential barrier of the 
work of their formation. Then, according to [8, 9] , we 
can estimate the characteristic time of establishing the 
quasi-equilibrium concentration of molecular aggre
gates in the subcritical region n < nc - Anc, denoted 
by t\ as 

t - ncbnclfc, (1.17) 

where j * (fc > 0) is the number of surfactant mono
mers absorbed by critical molecular aggregate (with 
n = nc) from a solution per unit time. According to esti
mate (1.17), the larger nc and Anc and the lower j * , the 
larger is time t'. 

Finally, it remains to be explained how the quasi-
equilibrium concentration of molecular aggregates is 
established with time in the part nc + Anc s n^ns- Ans 

of the overcritical region, which is located at the «-axis 
to the left-hand side of the micellar region just consid
ered. Evidently, it occurs due to the tendency of molec
ular aggregates, which were originally located in the 
micellar region, to overcome (by fluctuations) the 
potential barrier of the work of their formation. Hence, 
there is a complete analogy between the establishment 
of the quasi-equilibrium concentration of molecular 
aggregates in the nc + Anc s n s / i , - A n s and n<n(- Anc 

regions. The only difference is the fact that the role of 
nc variable is now played by (ns - nc) difference. Taking 
these facts into account, we estimate, by analogy with 
(1.17), the characteristic time of establishing a quasi-
equilibrium concentration of molecular aggregates in 
the nc + Anc s n < ns - Ans region, denoted by /", as 

t"~(ns-nc)Anc/fc. (1.18) 

The larger ns and Anc and the smaller nc and j * , then, 
according to (1.18), the larger is time t". 

2. TIME OF THE ESTABLISHMENT 
OF QUASI-STEADY-STATE CONCENTRATION 

OF MOLECULAR AGGREGATES 
IN THE NEAR-CRITICAL REGION OF THEIR SIZES 

To construct the theory of micellization, the 
assumption of the quasi-steady-state concentration of 
molecular aggregates in the near-critical region of their 
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sizes is important. Let us consider how it is established 
with time. The possibility of the establishment of the 
quasi-steady state was qualitatively substantiated in [2]. 
A quantitative criterion of the quasi-steady-state con
centration of aggregates in the near-critical region of 
their sizes will be reported in our forthcoming publica
tions. It will be also shown that this concentration actu
ally has time to be established. In this case, we will pro
ceed from a similar treatment carried out in the kinetic 
theory of nucleation [10, 11]. 

The variation in concentrations cn of molecular 
aggregates with time is still determined by the continu
ity equation (1.1). However, according to relation (3.9) 
in [2], for the J„(t) flux of molecular aggregates in the 
near-critical region we have 

Jn(t) = j+

c[2(n-nc)/{*nc)2-d/dn]cn(t) 

(nc-Anc s n s nc + Anc). 
(2.1) 

According to formulae (4.9) in [2], in the near-criti
cal region, the boundary conditions to the kinetic equa
tion formed by relations (1.1) and (2.1.) are: 

c„(t)/c[e)=\ ( f l « n c T A n c ) . (2.2) 

For the quasi-equilibrium concentration cj, e ) of aggre
gates in (2.2), according to Boltzmann's fluctuation 
principle, we have 

cf = const e x p [ - ( W „ - Wc)] 

(nc - Anc s n s nc + Anc). 
(2.3) 

Let us pass in the near-critical region from the vari
able n to variable v, using relation: 

v = (n-nc)/Anc ( - l s v s l ) . 

Assuming 

(2.4) 

c(v,t)sC„(t), cie\v) = c{

n

e) ( - l s v s l ) , (2.5) 

obtain from (1.1) and 
lation: 

3 c ( v , t) _ j +

c 3 

we obtain from (1.1) and (2.1.) the following kinetic 
equation: 

dt ( A n c ) 2 d H dv) (2.6) 

(-1 s v s 1) 

(differential operator 3/3 v acts on the entire expression 
to the right-hand side). Then, from (2.2) we arrive at the 
boundary conditions: 

c(v,t)/c(e)(v)= 1 ( v « T l ) . 

Allowing for the approximation 

Wn = W c - ( ^ j 2
 ( n c - A n c s n s „ c + An c ) (2 .8) 

[approximation (1.5) in [2]], from (2.3)-(2.5) and (2.8), 
we also have: 

(2.7) 

cie)(v) = cons texp(v 2 ) ( -1 s v s 1). (2.9) 

To find the solution of equation (2.6) with boundary 
condition (2.7), we cannot directly use results obtained 
in Section 1, because equations (2.6) and (2.7) differ 
from equations (1.8) and (1.9). 

The quasi-steady-state concentration of molecular 
aggregates, which is established with time in the near-
critical region, we denote by c w ( v ) . This concentration 
satisfies kinetic equation (2.6) with boundary condi
tions (2.7). Taking this fact into account, and in view 
of (1.11) 

l f e - ^ H & ) = 2(«+ !)//, .($) 
(2.10) 

(i = 0, 1, . . . ) , 

and also allowing for the fact that, according to (2.9), 
the quasi-steady-state concentration c(e\v) increases 
with | v | quite rapidly within boundary conditions (2.7), 
we represent the general solution of equation (2.6) with 
boundary conditions (2.7) in the following form: 

c(v,t) = c ( J ) ( v ) 

+ £ p j e x p [ - 2 ( i + DfMAnfWtv) (2.11) 

(-1 s v s 1). 

Here, coefficients p„ which are independent of v and t, 
are expressed via the initial concentration c(v, OI ( =o m 

the near-critical region with the aid of equation (1.12). 
The solution obtained is indeed the general solution: it 
represents the expansion in the complete function sys
tem of Hermitian polynomials //,(v) (/ = 0, 1,. . .). Note 
that the rapid increase in the quasi-equilibrium concen
tration c w ( v ) with | v | provides for the smallness of the 
contribution from the polynomial sum over i in (2.11) 
to the boundary conditions (2.7), and, hence, provides 
for the fulfillment of boundary conditions (2.7). 

Expression (2.11) describes the establishment of the 
quasi-steady-state concentration of molecular aggre
gates in the near-critical region. As is seen from (2.11), 

the values of f'(), given by equalities 

tf = (An c ) 2 / 2 ( i + l)j+

c (i = 0, 1, . . . ) , (2.12) 

represent the spectrum of times required to establish 
this concentration. For the largest of these times, the 
principal and, hence, the characteristic time, which we 
denote by tc, we have 

tc = (Anc)2/2j+

c. (2.13) 

According to formula (2.13), the larger Anc and the 

smaller j * , the larger is time tc. 

Comparing times ts, t\ t", and tc in (1.16)-(1.18) and 
(2.13), taking inequalities nc < ns, Anc < nc, and 
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Anc + Ans < ns - nc into account, and assuming that 
Anc ~ Ans, we conclude that inequalities 

ts<tc< f and ts < tc<t". (2.14) 

take place. 
We cannot determine in advance the interrelation 

between times t' and t". The longest of these times deter
mines the duration of the initial stages of micellization. 

3. AVERAGE TIME BETWEEN TWO 
SUCCESSIVE ACTS OF EMISSION 

OF SURFACTANT MONOMER BY A MICELLE, 
THE AVERAGE VALUE OF THE RESIDENT TIME 

OF A SURFACTANT MONOMER 
IN A MICELLE, AND THE AVERAGE VALUE 

OF MICELLE LIFETIME 

The average time between two successive acts of 
emission of a surfactant monomer by a micelle is an 
important parameter in the micellization. Let us denote 
this time by x1 and find a statistical expression for this 
value. 

Using formula (2.6) in [1], at n > 1, we have 

fn = j+

ncxp(Wn + l-W„), (3.1) 

where j ~ (j~ > 0) is the number of surfactant mono
mers emitted by the aggregate containing n molecules 
into the micellar solution per unit time; and j * {f„ > 0) 
is the number of surfactant monomers absorbed by the 
aggregate containing n molecules from the micellar 
solution per unit time. As is seen from (1.5), in the 
micellar region, the relation 

(ns -Ansisn&ns + Ans) 

is true. Allowing for condition Ans > 1 of the applica
bility of the macroscopic description of the micelliza
tion kinetics (required by conditions (1.3) in [2]), from 
(3.1) and (3.2) with a high degree of accuracy we 
obtain: 

fn = L (ns-Ans^n^ns + Ans). (3.3) 

0*j is the number of surfactant monomers absorbed by 
the stable molecular aggregate from the solution per 
unit time). 

According to statistical notions, the average time 
between two successive acts of emission of surfactant 
monomer by the aggregate containing n molecules is 
determined by time l/y'~. Taking this fact and rela
tion (3.3) into account, for the average time x{ between 

two successive acts of emission of the surfactant mono
mer by a micelle we obtain the following expression: 

T, = l/jt (3.4) 

It is evident that, simultaneously, T[ is the average 
time of emission of any of ns surfactant monomers, 
containing in a micelle, from a micelle. Because the 
probability of the emission of some of these monomers 
from a micelle is larger by ns times than that of the iso
lated (labeled) surfactant monomer, the ns%i product 
determines the average time when the labeled surfac
tant monomer could emit from a micelle, i.e., the aver
age value of the resident time of a surfactant monomer 
in a micelle. 

The most important parameter in micellization is 
also the average value of a micelle lifetime. Let us con
sider this time. 

In [2], we found the direct flux / of molecular 
aggregates overcoming by fluctuations the potential 
barrier of the work of their formation from the side of 
the subcritical region and the reverse flux / ' of molec
ular aggregates overcoming by fluctuations the poten
tial barrier of the work of their formation from the side 
of the overcritical region. The existence of reverse flux / ' 
results in the fluctuation transfer of the - / ' ( / ' < 0) 
number of molecular aggregates from the micellar to 
subcritical region in the unit volume of the micellar 
solution per unit time (the outflow of molecular aggre
gates from the micellar region to the region n a ns + Ans 

is virtually not observed due to a rather rapid increase 
in the formation work of a molecular aggregate with an 
increase in n in this region.) 

The fluctuation transfer of molecular aggregates 
from the micellar to subcritical region signifies "the 
decomposition" of micelles. This decomposition 
occurs by the multistage mechanism of the exchange of 
surfactant monomers between the molecular aggre
gates and the micellar solution rather than by a single 
act of decay. The derivation of the kinetic equation of 
the formation of molecular aggregates was based on 
precisely such a mechanism [1]. 

During time xM given by the equality 

%u = cM/\J"\, (3.5) 

where cM is the total concentration of micelles (with 
allowance for J" < 0), the micellar region would be left 
by all the micelles due to their fluctuation transfer to the 
subcritical region. Hence, it is the time xM given by 
equation (3.5) that represents the average value of a 
micelle lifetime. Of course, the reverse process of the 
fluctuation formation of micelles exists, together with 
the fluctuation decomposition of micelles. This process 
is caused by the / flux. 

Using formula (5.10) in [2] for the / ' flux 

J" = -cMj+

cexp[-(Wc-Ws)]/nAncAns, (3.6) 
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we represent (3.5) in the form: 

xM = xAncAnsexp( Wc - Ws)/j+

c. (3.7) 

According to (3.7), time xM is independent of cM and the 
volume of the micellar solution. 

Let us emphasize that the statistical substantiation 
of the notions of the average time between two succes
sive acts of the emission of a surfactant monomer from 
a micelle, the average resident time of a surfactant 
monomer in a micelle, and the average value of a 
micelle lifetime proved to be possible only on the basis 
of the kinetic approach to the micellization problem 
that we are developing. 

The emission of surfactant monomers by molecular 
aggregates into the micellar solution and the fluctuation 
transfer of molecular aggregates from the micellar to 
subcritical regions do not occur only at the initial stages 
of micellization. These processes also take place when 
the final equilibrium of a micellar solution is being 
established and even after this equilibrium is reached. 
Hence, characteristic kinetic times X\ and xM refer to 
both the initial stages of micellization and the subse
quent development of this process as a whole. How
ever, times t[ and xM are already physically meaningful 

at the initial stages of micellization where fluxes j * and 
/ ' are formed. 

The shorter the time x,, the greater the ability of 
micelles to change their entire molecular composition. 
However, the longer the time xM, the stabler the 
micelles are as aggregative molecular formations. 

The hierarchy of times x b x M , ts, t\ t", and tc in the 
set of all characteristic kinetic times of micellization 
will be elucidated in our forthcoming publications. 
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