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Abstract 

The role of microphysical effects in the ability of a small new phase nucleus to emit molecules 
into the vapor is revealed on a thermodynamic basis. It is shown that dependence of the surface 
tension of a nucleus on its temperature and the dependence of the vaporisation heat on the nuclear 
surface curvature are insignificant in nonisothermal nucleation. The meaning of the quantities 
used in the one-dimensional theory of isothermal nucleation has been clarified from the point of 
the two-dimensional nonisothermal theory. Statistical and kinetic treatment of the microphysical 
effects in the emitting rate of a nucleus has been performed. An association of the microphysical 
effects with deviation of the kinetic equation of nonisothermal nucleation from the Fokker-Planck 
form has been examined. © 1998 Elsevier Science B.V. All rights reserved. 

PACS: 64.60Qb; 82.60Nh; 68.10Jy 
Keywords: Nonisothermal nucleation; Latent heat; Drop; Evaporation rate 

0. Introduction 

The state of a condensed phase nucleus is characterised in the theory of nonisother
mal nucleation [ 1 6] by two variables, the number of nuclear molecules and the tem
perature of the nucleus or the nuclear energy associated with this temperature. Thus, 
the theory of nonisothermal nucleation is basically two dimensional. This makes an es
sential difference of nonisothermal nucleation theory from more simple one-dimensional 
theory of isothermal nucleation where the state of a nucleus is characterised by one 
variable only, the number of nuclear molecules. 

A relation of the theory of nonisothermal nucleation to its thermodynamic, statisti
cal, and kinetic grounds is quite nontrivial. Earlier this relation had been considered in 
Ref. [1], mostly from thermodynamic point of view, in Refs. [2-5] through statistical 
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and kinetic approach, and recently in Ref. [6], where the role of temperature in classi
cal nucleation theory was examined. Nevertheless, this relation is still not completely 
clear even from the thermodynamic point. This missing relation in the theory will be 
established in the present paper. Simultaneously, the meaning of the quantities used in 
the one-dimensional nucleation theory will be clarified from the point of more general 
two-dimensional nonisothermal theory. 

The sizes of nuclei involved in fluctuation formation, i.e. overcoming the activa
tion barrier of nucleation, are not too large: these nuclei contain only several tens of 
molecules. Only such size of nuclei allow rather high nucleation rates under conditions 
of barrier nucleation. 

The heat of vaporisation, given to or taken off the new phase nucleus with ab
sorption or emission of a vapour molecule is, as a rule, large. If the sizes of nuclei 
involved in fluctuation formation are not large, then the mean-squares fluctuation of 
nuclear energy is also not large. In this case, the ratio of the vaporisation heat to 
the mean-squares energy fluctuation appears comparable with unity. This fact shows 
the existence and importance of the microphysical effects (or effects associated with 
rather large latent heat and small size of the nucleus) which complicate significantly 
the theory of nonisothermal nucleation. The microphysical effects reveal themselves 
not only through the ability of nuclei to emit vapour molecules, but also through the 
deviation of the kinetic equation of nonisothermal nucleation from the Fokker-Planck 
form. 

Thermodynamic, statistical and kinetic treatment of the microphysical effects in non
isothermal nucleation will be the main goal of the present paper. This complex treat
ment has not been performed earlier. 

The small size of nuclei, that are of interest for nucleation, complicates the theory 
because of existence of the microphysical effects but allows us, at the same time, to 
bring a simplification into the theory. As was shown in Ref. [2], the time of the internal 
thermal relaxation for such nuclei is much smaller than the time between two events 
of absorption or emission of a vapour molecule by the nucleus, and much smaller than 
the time between the events of collisions of vapour and carrier gas molecules with 
the nucleus. Therefore, the nucleus is in a state of internal thermodynamic equilibrium 
before the events of interaction with the vapour-gas environment, and can be considered 
as a closed system with the number of molecules and the energy fixed. This important 
fact which simplifies the theory will be taken into account and used below. 

1. The work of nuclear formation 

Let T be the temperature of the vapour gas environment, v and Te the number 
of molecules and the temperature of the new phase nucleus, respectively. These two 
quantities, v and Te, characterise the state of internal thermodynamic equilibrium of a 
nucleus with a small compressibility of the condensing substance. 



KM. Kuni et al. IPhysica A 252 (1998) 67-84 69 

As well as Te, we will use another quantity, 

E = cv(Te - T)/T , (1.1) 

where cv stands for the heat capacity of the nucleus in units of the Boltzmann constant 
k (c is the heat capacity per molecule of the nucleus). Evidently, the quantity E 
plays the role of the nuclear energy expressed in units kT and counted off the value 
corresponding to Te = T. 

For nuclei involved in fluctuation formation, the characteristic values of the energy 
E are limited [3] within the mean-squares energy fluctuation, (cv)!/2 (calculated from 
the equilibrium distribution of nuclei in energy). Therefore we have 

|£ |<(cv) , / 2 . (1.2) 

As we said in the Introduction, the number v of molecules in a nucleus involved 
in fluctuation formation consists of several tens. Thus the number satisfies inequality 
v > 1. This yields 

( cv ) , / 2 >l . (1.3) 

Then according to Eqs. (1.1)-(1.3) we have 

Te/Tnl. (1.4) 

Let q be the vaporisation heat (latent heat) per molecule of the condensing substance. 
We assume that /? = qjkT is the dimensionless molecular vaporisation heat in units kT. 
The large value of the vaporisation heat means 

P>\. (1.5) 

Experiment shows that the quantity q depends on the temperature weaker than the 
reciprocal power of temperature (with the temperature counted off absolute zero). In 
view of Eq. (1.4), this fact will allow us to linearise the exponential in the Clausius-
Clapeyron equation in small temperature deviations under the condition of constant q 
(not the condition of constant dimensionless quantity fi). 

In spite of Eq. (1.3), with rather small number of molecules in a nucleus involved 
in fluctuation formation, we have due to Eq. (1.5): 

0 / ( cv ) 1 / 2 ~ l . (1.6) 

This relationship guarantees, as we will see below, an existence and importance of 
microphysical effects in nonisothermal nucleation. 

The work of nuclear formation serves as a starting quantity for thermodynamic con
sideration. We will express this work in units kT. Two-dimensional work F(v,E) of 
formation of the nucleus which is kept in the state of internal thermodynamic equi
librium with the number v of molecules and with energy E can be written on a strict 
thermodynamic basis as 

F(v,E) = F(v) + E2/2cv, (1.7) 



70 KM. Kuni et al. IPhysica A 252 (1998) 67-84 

where F(v) is the one-dimensional work of formation of the nucleus which is kept in 
the state of internal thermodynamic equilibrium with the number v of molecules and 
with the same temperature T as the temperature of environment, E2/2cv stands for the 
work of heating (or cooling) of the nucleus when its temperature Te deviates from the 
environment temperature T. 

According to thermodynamics of isothermal nucleation we have 

F(v) = -b(v~ l) + av2/3. (1.8) 

Here b is the vapour chemical potential expressed in units kT and counted from the 
value corresponding to the equilibrium of the vapour and the condensing substance with 
the flat interface between them. The quantity a stands for the dimensionless surface 
tension of the nucleus, 

a = (4na/kT)(3v/4n)2/\ (1.9) 

where a is the surface tension of the nucleus, v the molecular volume for the condensing 
substance (the quantity a is defined in such a way to obtain that av1^ is the surface 
energy of the nucleus in units kT). The fact that v is counted from 1 in Eq. (1.8) 
indicates that the homogeneous formation of the nucleus from v molecules of vapour 
proceeds by attachment of v — 1 vapour molecules to one of its molecules serving as 
a centre of condensation [7]. For the sake of simplicity we dropped the microscopic 
corrections to the dependence of the surface tension of the nucleus on the curvature 
of its surface and on the compressibility of its substance. These corrections had been 
considered in Ref. [8]. 

The activation barrier of nonisothermal nucleation determined by two-dimensional 
work F(v,E) has, according to Eqs. (1.7) and (1.8), the saddle form with the line of 
"waterfall" defined by equality E = 0 (Te = T) and the line of "watershed" defined by 
equality v — (2a/3b)3. In this case variable E can be called stable and variable v can 
be called unstable. 

2. The role of corrections arising from the surface tension dependence on 
temperature 

Let us clarify the role of corrections to the work of nuclear formation, which arise 
from the dependence of the nuclear surface tension on temperature. This also allows 
us to refine the meaning of quantities a and fi introduced in Section 1. 

Let us consider ah elementary event of absorption of a vapour molecule by a nucleus 
(we consider absorption, not the reverse process of emission of a molecule, just for the 
sake of definiteness). Let 8F be the work performed on the nucleus in this elementary 
event. 

We will find 5F with taking into account the curving of the nuclear surface as a 
first step and the heating of the nucleus by the vaporisation heat as a second step. 
In this case, the vaporisation heat will be different from that for the flat surface of 
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the condensing substance. Let us denote this heat as /?„, with index v indicating the 
dependence of the vaporisation heat on the nuclear curvature. The nuclear energy E will 
increase by the amount /?v in the event of absorption of a vapour molecule. According 
to Eqs. (1.7) and (1.8), we have in the linear order in variations of the nuclear number 
of molecules and energy in the event of absorption 

SF = -b + 2a(T)/3vl/3 + (E/cv)[iv, (2.1) 

where a(T) is the dimensionless surface tension of the nucleus at Te = T. 
Let us now find SF with taking into account the heating of the nucleus by the 

vaporisation heat as a first step and the curving of the nuclear surface as a second step. 
The vaporisation heat coincides now with that for the flat surface of the condensing 
substance. Let us denote this heat as /?oo, with index oo indicating that [^ is the 
limiting value for /?v, as v —> со. Now the nuclear energy increases by amount /^ 
during the event of absorption of a vapour molecule. However, the surface tension 
deviates already from the surface tension under the condition of equality of the nuclear 
temperature Te and the environment temperature T. Therefore, according to Eqs. (1.7) 
and (1.8), we have in the linear order in variations of the nuclear number of molecules 
and energy in the event of absorption 

SF = -b + 2a(Te)/3v1'3 + (E/cv)^ , (2.2) 

where a(Te) is the dimensionless surface tension of the nucleus at temperature Te. 
According to principles of thermodynamics, the work performed on a nucleus in a 

process does not depend on the specific way of realisation of the process. Therefore, 
two expressions for SF, Eqs. (2.1) and (2.2), should coincide. Setting these two ex
pressions to be equal and assuming rather smooth dependence of the surface tension 
on temperature, 

a(Te) = a{T) + [da(T)/8T]TE/cv (2.3) 

(we have used the definition (1.1)), we come to 

fiv = px + (2/3vl/3 )da(T)/3 In T . (2.4) 

Energy E and heat capacity с dropped out of Eq. (2.4). 
According to Eq. (1.9), the dimensionless nuclear surface tension a depends on 

nuclear temperature by means of a and v. The factor \jkT in Eq. (1.9) appeared as a 
result of the procedure which we used to make the quantities dimensionless. Therefore 
this factor does not depend on the nuclear temperature. 

Using Eqs. (2.4) and (1.9) yields 

„ 2a fd In о 2 дIn v \ y^ ^4 
А = ^ + з М ^ + злтф (2'5) 

where all the quantities on the right-hand side are related to the temperature of environ
ment. The relationship (2.5) represents Sresnevskii's formula. Most detailed derivation 
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including direct thermodynamic finding of p\ and generalisation of this formula to take 
into account the microscopic corrections and possible effect of the central electric field 
in the case of heterogeneous nucleation was performed in Ref. [9]. 

The results of numerical calculations presented in Ref. [9] show that for water 
and many other liquids under typical conditions for their nucleation from vapour, at 
7, = 300K and v1,/3 R* 3 — 5, the relative deviation of the heat p\. from the value p1^ 
is, according to Eq. (2.5), within 10%. 

Using Eqs. (1.2) and (2.3) and taking into account Eq. (1.9), we find for the relative 
deviation Aa/a of the surface tension a(Te) from the surface tension a(T) 

\Aa\ 1 
^ (cv)'/2 

d In a 2 d In v 

d\r\T 3dlnT 
(2.6) 

According to Ref. [9], the second factor on the right-hand side of Eq. (2.6) (taken in 
the absolute value) is less than unity for water at T = 300 K and only slightly exceeds 
unity for many other liquids. Then, according to Eqs. (2.6) and (1.3), the quantity 
|Aa|/a is much less than unity. 

So we see that the dependence of the surface tension on the nuclear temperature 
and the associated dependence of the vaporisation heat on the surface curvature of the 
nucleus give only minor corrections to the work of nuclear formation in nonisothermal 
nucleation. We see also that these corrections duplicate each other. So we can omit the 
dependence of the surface tension on temperature, but take into account the dependence 
of the vaporisation heat on surface curvature. 

We will neglect these corrections below and refer the nuclear surface tension a to 
the temperature of environment. The vaporisation heat [i will be referred to its limiting 
value /?oo at the flat interface of the condensing substance. 

3. Two-dimensional equilibrium distribution of nuclei 

Let us find two-dimensional equilibrium distribution of nuclei in variables v and E. 
We will denote this distribution as n(v,E). The equilibrium distribution of nuclei is 
important in nucleation theory because it is used in the boundary conditions for the 
kinetic equation governing the development of nucleation. We will need the equilibrium 
distribution for thermodynamic derivation of the emitting rate from a nucleus to the 
vapour. 

The equilibrium distribution n(v,E) has the form of a Gibbs distribution, 

n(v,E) = Aexp[-F(v,E)], (3.1) 

where A is the pre-exponential factor. With very strong dependence of the exponential 
on v and E in Eq. (3.1), this factor can be considered practically as a constant. 

As we see from Eqs. (1.7) and (3.1) with account of Eq. (1.1), at every v, the 
average energy and average temperature of nuclei, calculated from their equilibrium 
distributions, equal zero and the environment temperature T, respectively. Therefore, 
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we can give the following interpretation for the quantity F(v) in Eq. (1.7). This quan
tity represents the work of formation of a nucleus which is kept in the state of internal 
thermodynamic equilibrium with the number v of molecules and with the temperature 
Te which equals the average temperature of nuclei calculated from their equilibrium dis
tribution. This is the meaning of the one-dimensional work F(v) in the two-dimensional 
nonisothermal theory. As also follows from Eqs. (1.7) and (3.1), the mean-squares fluc
tuation of the energy of nuclei in their equilibrium distribution equals, as mentioned 
in Section 1, (cv)1//2. 

One-dimensional equilibrium distribution n{\>) of nuclei in variable v is related to 
two-dimensional equilibrium distribution n{v,E) by the apparent equality, 

OG 

«(v)= / n(y,E)dE. (3.2) 

— oo 

According to Eqs. (1.7), (3.1) and (3.2) we have 

n(v) = A(2ncv)]/2 exp[-F(v)]. (3.3) 

Using Eqs. (1.7) and (3.3), we can write Eq. (3.1) as 

n(v,E) = (2ncvy-l/2n(v)exp(-E2/2cv). (3.4) 

The fact that the main contribution to the integral in Eq. (3.2) is given by the region 
\E\ ^(cv)1'/2 confirms the estimate (1.2). 

The exponential in Eq. (3.3) depends on v much stronger than the pre-exponential 
factor does. So Eq. (3.3) can be reduced, with the logarithmic accuracy which is 
sufficient for experiment, to the form 

n(v) = const x exp[-F(v)], (3.5) 

which again has a form of Gibbs distribution. Then the formula (3.4) can be written as 

n(v,E) — const x «(v)exp( — E2/2cv). (3.6) 

(the constants in Eqs. (3.5) and (3.6) are different). 
The formula (3.5) is well known in the one-dimensional theory of nucleation. This 

formula is correct at such very small v and even at v = 1,2,3... where the thermody
namic expression (1.8) for quantity F(v) is no longer valid, but, however, the physical 
meaning of this quantity as a work of the isothermal formation of a nucleus from v 
vapour molecules is preserved. 

Let us show how the pre-exponential factor in Eq. (3.5) can be found. Let nv be 
the number of vapour molecules per unit volume of the vapour-gas environment. We 
will refer the distribution of nuclei to this unit volume. Let us take into account the 
boundary condition «(v)|v=i =nv (at v= 1 the nuclei are just single vapour molecules). 
We should recognise also equality F(v)|v=i = 0 (vapour molecules are initially present 
and do not require a work of formation performed on them). We see now that the 
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pre-exponential factor in Eq. (3.5) equals nv. Then formula (3.5) can be reduced to 
the form 

n(v) = nvexp[-F(v)]. (3.7) 

The formula (3.7) determines the distribution n(v) and together with Eq. (3.4) de
termines the distribution n(v,E), including the pre-exponential factors in these distribu
tions. These factors play an important role in the boundary conditions for the kinetic 
equation of nucleation, but, however, they will not have a significance for our subse
quent analysis. 

4. The thermodynamic derivation of the nuclear emitting rate 

The emitting rate of nuclei is important in nucleation theory because it appears as a 
coefficient function in the kinetic equation of nucleation. 

From the conditions of detailed balance which fulfil for the equilibrium distribution 
of nuclei we have 

W+(v- l ) n (v - \,E - P)=W-(v,E)n(v,E). (4.1) 

Here W+(v) and W~(v,E) are the numbers of vapour molecules absorbed and corre
spondingly emitted per unit time by the nucleus with the number of v of molecules and 
the energy E. We neglect the dependence of W+(v) on E because it is small. Thus, the 
quantity W+(v) is the same for nonisothermal and isothermal nucleation. This quantity 
can be easily found with the help of kinetic theory of gases, and therefore we can 
assume it known. Note that the argument v in W+(v) stands for the number of nuclear 
molecules before the event of absorption of a vapour molecule, and the arguments v 
and E in W~(v,E) stand for the number of nuclear molecules and the nuclear energy, 
respectively, before the event of emission of a vapour molecule. 

After absorption of a vapour molecule by a nucleus, the number of molecules and 
the energy of the nucleus increase correspondingly by unity and by fi. After emission 
of a vapour molecule by the nucleus, the number of molecules in the nucleus and the 
nuclear energy decrease correspondingly by unity and by ft (assigning /? > 1 we neglect 
the thermal dispersion in energies of adsorbed and emitted molecules [2]). Therefore, 
condition (4.1) expresses the equality of rates of direct and reverse transitions v — 1, 
E — /J <̂> v, E which is reasonable for the two-dimensional equilibrium distribution. 

The quantity W~(v,E) is related to a single nucleus and (as well as the quantity 
W+(v)) does not depend on actual distribution of nuclei, which can be non-equilibrium. 
So, we will use formula (4.1) for a thermodynamic derivation of the emitting rate 
W~(v,E) through known equilibrium distribution of nuclei (and known absorption 
rate W+\v)). 

Let us introduce the quantity W~(y), 

W~{y)=W+{y- l ) exp( -6 + 2a/3v1/3). (4.2) 
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As follows from Eqs. (1.8), (3.5) and (4.2) with account of equality F(v) — 
F(y — l) = <3F(v)/<3v (which fulfils with a great accuracy at v> 1), 

W+(v-l)n(v-l)=W-(v)n(v). (4.3) 

This is the equation of the detailed balance in the theory of isothermal nucleation which 
deals with one-dimensional distribution of nuclei. This equation shows that quantity 
W~(v) has meaning of the number of vapour molecules emitted under isothermal 
conditions per unit time by the nucleus containing the number v of molecules. 

Using Eqs. (3.6), (4.1) and (4.3) and recognising that the variation of the quantity 
cv with changing the number v by unity is negligible at v > 1, we obtain 

W~(y,E)= Pf-(v)exp(/J£/cv)exp(-/?2/2cv). (4.4) 

Substituting Eqs. (4.2) in (4.4) yields 

W~(v,E)=W+(v- l )exp(-6 + 2a/3v1/3)exp(/J£/cv)exp(-/i2/2cv). (4.5) 

Formula (4.5) gives the expression for the nuclear emitting rate W~{y,E) in non-
isothermal nucleation. This expression agrees with the formula used in Ref. [1]. 

The quantity ff/lcv in Eq. (4.5) takes account of the correction dropped in Eqs. (2.1) 
and (2.2). This correction is square in the nuclear energy change in the course of 
absorption of a vapour molecule by the nucleus. This quantity is associated with the 
microphysical effects (which we are interested in) in nonisothermal nucleation. Being 
of order of unity according to Eq. (1.6), the quantity ff-jlcv is essential in Eq. (4.5). 
It is of order of the classical nucleation theory terms, —b and 2a/3v1/3, and exceeds 
significantly the errors of the theory (mentioned in Section 2) due to neglecting the 
nuclear surface tension dependence on nuclear temperature and the vaporisation heat 
dependence on nuclear curvature. So we can say that it lies within the limits of validity 
of the theory. 

At small compressibility of the substance in the nucleus, the emitting rates W~(y) 
and W~(v,E) do not depend on the vapour chemical potential b and are determined by 
the chemical potential of the nucleus. This can be easily seen from Eqs. (4.2) and (4.5) 
with taking into account the Gibbs-Kelvin relation and recognising that the absorption 
rate W+(v — 1) depends on b proportionally to exp(b). 

The emitting rate W~(v,E) does not depend on the temperature of the vapour-gas 
environment and is determined by the temperature of nucleus. This can be easily seen 
from Eq. (4.5) by taking into account the definition (1.1), the definition of the chemical 
potential b and recognising that the saturated vapour density depends on temperature 
T according to the Clausius-Clapeyron equation, i.e. the saturated vapour density is 
proportional to exp(—qjkT) if the vaporisation heat q is constant. 

The equilibrium distributions (3.5), (3.6) and the detailed balance equations (4.3), 
(4.1) are physically realised only in the sub-threshold region of the variable v which 
occupies at least a half-width of the potential hump of the activation energy of nu
cleation in the v-axis before the "watershed" line v = (2a/3/?)3. Since emitting rates 
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W~(v) and W~(v,E) do not depend on the vapour chemical potential b, then the lim
itation in their determination by the sub-threshold region of variable v do not affect the 
quantities given by formulae (4.2) and (4.5). Indeed, in order to determine W~(y) and 
W~(v,E) at every large v, we can consider an imaginary vapour with such a small 
value of the chemical potential b that v appears in the sub-threshold region. 

The importance of the formulated conclusion for the theory of nucleation is seen from 
the fact that usually the possibility of extension of the expressions for the coefficient 
functions in kinetic equation over the sub-threshold region of nuclear sizes is motivated 
[10] only by absence of mathematical peculiarities in these functions. 

5. The critical nucleus 

Let us consider the thermodynamic approach to determination of the nuclear emitting 
rate with the help of conception of the critical nucleus. This allows us to clarify the 
meaning of isothermal emitting rate from the point of two-dimensional nonisothermal 
theory. The conception about the critical nucleus in nonisothermal nucleation had not 
been introduced previously. 

As follows from Eq. (4.2) at v = vc, where 

vc = (2a/3b)\ (5.1) 

we have 

W-(vc)=W+(vc-\). (5.2) 

It means that the value v = vc is related to the critical nucleus in isothermal nucleation. 
According to Eq. (5.2), such nucleus emits per unit time the same number of molecules 
as it absorbs, i.e. this nucleus stays in the state of material equilibrium with the vapour. 

This equilibrium is not stable. Indeed, we have from Eq. (4.2): W~{y)>W+{y— 1) 
at v<v r (the nucleus shrinks) and W~(v)<W+(v — 1) at v>vc (the nucleus grows). 

As follows from Eq. (4.5), at v = vc and E = EC where vc is still defined by Eq. (5.1) 
and Ec is determined as 

Ec = m , (5-3) 

we have 

W-(vc,Ec)=W+(vc-\). (5.4) 

Thus, the nucleus corresponding to values v = vc and E = Ec is critical in nonisothermal 
nucleation. According to Eq. (5.4), such nucleus, even with taking into account the va
porisation heat, emits and absorbs per unit time the same number of vapour molecules. 
Alternating sequence of the events of emission and absorption initiates direct and re
verse transitions vc,Ec <=> vc — \,EC — fi, i.e. the transitions vc,j8/2 <=> vc — \,—p/2, 
where we have taken into account of Eq. (5.3). In view of Eqs. (5.3) and (5.1) the 
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temperature of the critical nucleus is higher than the temperature T of the vapour-gas 
environment by quantity 5Te given by equality 

5Te = pT/2cvc. (5.5) 

The material equilibrium of the critical nucleus with the vapour is, evidently, still 
unstable. By contrast, the thermal equilibrium of the critical nuclei with the vapour-
gas environment is stable. Indeed, we see from Eq. (4.5) that W~(v,E) < W+(v — 1) 
(the nucleus grows and increases its energy) at E < Ec and W~(v,E)> W+(v — 1) 
(the nucleus decreases and lowers its energy) at E>EC. Let us remind that it is just 
the equality v = vc which determines the "watershed" line on the saddle surface of the 
nucleation activation barrier. 

According to Eqs. (4.2), (4.5) and (5.3), we can write 

W-(v)=W~(v,Ec). (5.6) 

Formula (5.6) reveals the meaning of the nuclear isothermal emitting rate W~(v) from 
the point of the nonisothermal theory. From this point, the quantity W~(v) is related 
to the nucleus which contains the number v of molecules and has the temperature 
exceeding the temperature T of the vapour-gas environment by the quantity ST. The 
quantity ST is determined, according to Eqs. (5.3) and (1.1), as 

8T = pT/2cv. (5.7) 

In view of conditions (1.3) and (1.6), the formulae (5.5) and (5.7) provide a fulfilment 
of inequalities 3Te/T^\, 6T/T<| 1 which are consistent with Eq. (1.4). 

Because quantity W~(v) is independent of the vapour chemical potential b (as was 
shown in Section 4), we can rewrite Eq. (5.2), with taking into account Eq. (5.1), as 

W-(v)=W+{y-\)\b=he (5.8) 

where 

be = 2a/2v]/3. (5.9) 

The nuclear absorption rate on the right-hand side of Eq. (5.8) is related to an imagi
nary vapour-gas environment with the vapour chemical potential be determined by the 
Gibbs-Kelvin relation, Eq. (5.9), and with the temperature that equals the temperature 
T of the actual vapour-gas environment. 

Because the quantity W~(v,E) is independent of the vapour chemical potential b 
and of the temperature T of the vapour-gas environment (as was shown in Section 4), 
we can rewrite Eq. (5.4), with taking into account Eqs. (5.1), (5.3), as 

W~(V,E)=W+(V- \)\h=he,T=Te-ST. (5.10) 

The nuclear absorption rate on the right-hand side of Eq. (5.10) is related to an imagi
nary vapour-gas environment with the vapour chemical potential be and the temperature 
which is less than temperature Te by the quantity 5T determined by Eq. (5.7). 
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The formulae (5.8) and (5.10) give a useful physical interpretation for the nuclear 
emitting rates W{\) and W~(v,E). 

6. The statistical derivation of the nuclear emitting rate 

Let us consider the statistical ground for formula (4.5) describing the nuclear emitting 
rate. Because formula (3.6) follows from Eq. (4.5) in view of detailed balance equations 
(4.1), so we can also give a statistical foundation for thermodynamic formula (3.6) 
which describes the equilibrium two-dimensional distribution of nuclei. 

As we said previously, the nucleus is in the state of internal thermodynamic equi
librium before the events of interaction with the vapour-gas environment. Thus the 
nucleus can be considered as a closed system with the fixed number v of molecules 
and the fixed energy E. Being in this state, the nucleus emits a molecule into the 
vapour. 

The rate W~(v,E) of emission of a vapour molecule by the nucleus is, evidently, 
proportional to the part of nuclear molecules having the kinetic energy of translation 
motion higher than the vaporisation heat. So we can write 

oo 

W-(v,E)cx If(e)de. (6.1) 

P 

Here, we use symbol oc to mark the proportionality of quantities, e is the kinetic energy 
of translation motion of a nuclear molecule (as well as the nuclear energy E and the 
vaporisation heat /?, e is expressed in units kT of the thermal energy of the vapour-gas 
environment), / (e ) is the distribution function for the nuclear molecules in their kinetic 
energy e. The dependence o f / ( e ) on variables v and E of the state of internal nuclear 
equilibrium is not indicated. In view of meaning of function / (e ) , we can write the 
normalisation condition: 

oo 

jf(8)dB=\. (6.2) 

b 

The state of nuclear internal thermodynamic equilibrium preceding the event of emis
sion of a vapour molecule is described by the microcanonical distribution function. In 
order to find function / (e) , we can follow Ref. [11] and apply the method used to 
prove the Gibbs theorem for the canonical distribution function [12]. 

Considering the nucleus before the event of emission as a closed system in the 
microcanonical ensemble, we will assume that an individual nuclear molecule represents 
a small subsystem. Correspondingly, the large subsystem of the whole closed system 
is the population of other v — 1 nuclear molecules. 

According to the Gibbs theorem for the canonical distribution function, for the prob
ability function co(e) of finding the nuclear molecule in one of its microstates, we have 
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the following relation: 

co(£)=exp[S(E-z)-S(E)]. (6.3) 

Here S(E — e) and S(E) are the entropies of the large subsystem and the whole system 
expressed in units of the Boltzmann constant k and determined as functions of the 
corresponding energies E — e and E. For the sake of simplicity, the dependence of the 
entropies on the number of molecules (and on the volumes) of the large subsystem 
and the whole system is not indicated. 

Let us find the dependence of entropy S(E — E) on E with the help of first three 
terms in expansion of S(E — E) in the Taylor series in powers of E. Using thermo
dynamic relation BS/dE =T/Te and relation d2S/dE2 = — T2/cvT2 (which follows from 
dS/dE=T/Te in view of Eq. (1.1)), we have 

S(E-E) = S(E)- eT/Te - a2T2/2cvT2 . (6.4) 

Recognising that the number of molecular microstates contained within the element 
ds of the kinetic energy e of a nuclear molecule is proportional to E}/2 de and using 
Eqs. (6.3), (6.4) and (6.2), we find 

/(£) = ME) exp(-E2T2/2cvT2), (6.5) 

where 

ME) = (2/7t]-l2)(T/Tef
2El/2cxp(-ET/Te) (6.6) 

(here we have recognised that the main contribution to the normalisation relation (6.2) 
is given, according to Eqs. (1.3) and (1.4), by factor /o(e)). 

Apparently, function /O(E) represents the Maxwell distribution function. The devia
tion of / ( E ) from /o(e) caused by small size of the nuclei is the manifestation of the 
microphysical effects. 

Let us substitute Eqs. (6.5) and (6.6) into Eq. (6.1). According to Eqs. (1.3)-(1.6) 
we can replace E and Te in the exponential in Eq. (6.5) by /? and T, and also replace 
the pre-exponential factor E1/'2 in Eq. (6.6) by /?1/2. Carrying out integration over E in 
Eq. (6.1), we obtain 

W~(v,E) oc exp(-/?777;)exp(-/j2/2cv), (6.7) 

where we have taken into account, in accordance with Eqs. (1.4) and (1.5), only the 
factors giving the main contribution to the dependence of W~(v,E) on fi and Te. 

Recognising f}T/Te = q/kTe, let us linearise the exponent in the first exponential in 
Eq. (6.7) in deviation of temperature Te from temperature T under condition of constant 
vaporisation heat q. Using Eq. (1.1), we can rewrite Eq. (6.7) in the form 

W~{v,E) oc exp(/?£/cv)exp(-£2/2cv) . (6.8) 

Taking into account the dependence of W~(v,E) on the nuclear chemical potential 
which is determined by factor W~{v) in Eq. (4.4) (this factor is not explicitly included 
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in proportionality relations (6.1) and (6.8)), we see that formula (6.8) can be reduced 
to formula (4.5). This makes a statistical foundation for formula (4.5). 

7. The kinetic treatment of the event of emission of a vapour molecule 
by the nucleus 

Let us investigate the event of emission of a vapour molecule by the nucleus as 
a subject by itself. Certainly, it will require invoking some kinetic conceptions. As a 
result we will give some additional confirmation to relations (6.7) and (6.8) for the 
nuclear emitting rate W~(v,E). 

The nucleus in the course of emission of a vapour molecule does not already rep
resent the closed system. Correspondingly, the distribution of the nuclear molecules in 
energy e is different in the course of emission from that given by formulae (6.5) and 
(6.6) for the equilibrium distribution before the event of vapour molecule emission. 

Let f(s,t) be the distribution of nuclear molecules in energy e at the moment t. The 
argument t underlines the difference between distribution f(e,t) and the equilibrium 
distribution f(s). We will assume (and justify this assumption later) that the distribution 
f(s,t) varies in time according to the Fokker-Planck equation, 

df(e, t)/8t = -dJ(s, t)/dE . (7.1) 

Here J(e,t) is the flux of nuclear molecules along the axis of energy e. We have for 
this flux 

J(e, t)=- Df(8)d[f(E, t)/f(e)]/8e , (7.2) 

where D is the diffusion coefficient for nuclear molecules in the e-axis. We have 
taken into account in Eq. (7.2) that the flux J(s,t) equals zero for the equilibrium 
distribution of nuclear molecules. The value of coefficient D is not essential for the 
following consideration. 

Two boundary condition to Eq. (7.1) may be imposed as 

f(e,t)/f(B)\r.=p = 0, (7.3) 

/(M)//(<0|,=o = i . (7.4) 

Condition (7.3) expresses the reasonable requirement that the number of molecules 
with energy e = /}, which are able to leave the nucleus, is practically equal to zero. 
Condition (7.4) expresses another reasonable requirement that the distribution of nuclear 
molecules with energy c = 0, which is certainly insufficient for leaving the nucleus, 
practically coincides with the equilibrium distribution. We will see below that the 
value e = 0 of energy c in condition (7.4) can be increased to the value c^/i/p where 
p = 1.5-2. 
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Strictly speaking, the Fokker-Planck equation (7.1) is applicable if the following 
inequality takes place: 

<5e/Ae<=l, (7.5) 

where 5e is the characteristic change in the energy e. of nuclear molecule in the col
lisions with other nuclear molecules, Ae the mean-squares fluctuation of energy of 
nuclear molecules under the equilibrium distribution. Evidently, we can estimate de. as 
Se^Te/T. Recognising due to Eqs. (1.3) and (1.4) that we can replace in the expression 
for Afi the equilibrium distribution f(r.) by the Maxwell distribution /o(fi) given by 
formula (6.6) (as we did in normalisation relation (6.2)), we have Ai-: — (3/2)^2Te/T. 
We see, that inequality (7.5) and, together with it, the Fokker-Planck equation (7.1) 
are only marginally valid. Nevertheless, it justifies using of the Fokker-Planck equation 
for an approximate treatment of the event of emission of a vapour molecule by the 
nucleus. 

Let us suppose that the emission takes place at the steady distribution of nuclear 
molecules in energy e. The assumption requires a fast establishment of the steady 
distribution which seems reasonable for such condensed system as nucleus. 

For a steady state (we indicate this state by index s), the distribution /,(c) does not 
depend on t, and the flux Js does not depend on / and, due to Eq. (7.1), on c. We 
have in this case from Eqs. (7.2)-(7.4): 

MC) J ^ , (7.6) 

de 
(7.7) Js J Df(E) 

0 

For the sake of simplicity, we will consider the diffusion coefficient D to be constant. 
With taking account of Eqs. (6.5) and (6.6), equalities (7.6) and (7.7) can be written as 

/,(£) nl>2Js (%^i2 f 
<p(e )de , (7.8) / (e ) 2D \T 

i: 

jri^r/*""- (7-9) 
0 

where 

<p(e) = e
_ 1 / 2 exp(fir/^)exp(e2r2/2cv7;2). (7.10) 

Let us now take into account the limitations (1.3)-(1.6). Now, we can see the fol
lowing. With decreasing s from the value E — jiio value s — Te/2T which, according to 
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Eq. (7.10), determines with a high accuracy the location of the minimum of func
tion <p(e), the second factor in Eq. (7.10) decreases already significantly as variable 
s achieves value [i/p where p ~ 1.5-2. The last two factors in Eq. (7.10) do not es
sentially change before E achieves value [i/p. With further decreasing e. from value 
e. = Te/2T to value e = 0, the right-hand side of Eq. (7.10) grows infinitely due to fac
tor £~^2. However, since the singularity introduced by this factor at € = 0 is integrable, 
the integral of function </>(e) over the region 0^E^Te/2T is small in comparison with 
the integral of function <p(e) over the region Te/2T<e^/i (the ratio of these integrals 
does not exceed small quantity fi]l2 exp(—/?777^)exp( —/j2/2cv)). As a result we have 
with a high accuracy 

P 

I (p(E')dE' = P~l/2e\p(pT/Te)exp(P2/2cv) (O^e^p/p, /?«1.5-2) . (7.11) 

i: 

Substituting Eq. (7.9) in Eq. (7.11) gives 

2D ( T \3,/2 
Js=n& \fj i 3 ' / 2 e x P ( - ^ ^ ) e x P ( - i 8 2 / 2 c v ) . (7.12) 

Relations (7.8) and (7.11) show that the steady distribution /v(e) of the nuclear 
molecules coincides with the equilibrium distribution / (e ) not only at the point e = 0 
(as it was demanded by the boundary condition (7.4)), but they practically coincide 
even at E^fi/p where / ?~ 1.5-2. 

Evidently, flux Js is proportional to the nuclear emitting rate W~(v,E). In this 
case we have previous relations (6.7) and (6.8) from Eq. (7.12) under conditions 
(1.3)—(1.6). The fact that conditions (1.3)-(1.6) are the same for the whole consider
ation in the paper reveals self-consistence of the consideration. 

It is not to be supposed that distribution of nuclear molecules in energy stays steady 
after the event of emission of a vapour molecule. Indeed, the time interval required 
in the kinetic theory for averaging of kinetic characteristics is limited from above, as 
was mentioned in Ref. [2], by the time \/W~(y,E) which allows no more than one 
event of emission of a vapour molecule by the nucleus. After the event, the nucleus 
passes into the state of internal equilibrium for comparatively long period (in a full 
agreement with the assumptions made in the paper). 

8. Deviation of the kinetic equation of nonisothermal nucleation from the 
Fokker-Planck equation 

Let us consider finally the manifestation of the microphysical effects in deviation of 
the kinetic equation of nonisothermal nucleation from the Fokker-Planck equation. 

The kinetic equation of nonisothermal nucleation governing the development of 
nonisothermal nucleation in time was proposed in Ref. [1] and explicitly derived in 
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Ref. [3]. As was shown in Ref. [3], the deviation of this equation from the Fokker-
Planck equation is associated with the relative weight of two following quantities. 
The first quantity represents the ratio of the change in the nuclear energy in the ele
mentary event of absorption or emission of a vapour molecule to the half-width (cv)1/2 

of the potential well of the activation energy of nucleation, i.e. it equals /?/(cv)'/2. The 
larger this quantity, the larger the rate of development of the stable variable E in time. 

The second quantity represents the ratio of the change in the number of nuclear 
molecules in the elementary event of absorption or emission of a vapour molecule to 
the half-width Av of the potential hump for the activation energy of nucleation, i.e. it 
equals 1/Av. The larger this quantity, the larger the rate of development of the unstable 
variable v in time. 

If the ratio of the first quantity to the second quantity, i.e. (Av)/?/(cv)^2, is much 
larger than unity, then stable variable E varies in time much faster than unstable vari
able v does. Then we need to take into account all derivatives with respect to E in 
the kinetic equation of nonisothermal nucleation. This means that we need to go out 
of the scope of Fokker-Planck approximation with respect to variable E. At the same 
time, it is sufficient to keep only the first and second derivative with respect to v 
which is characteristic for Fokker-Planck approximation in this variable [3]. This is 
the situation which we meet in the case of nonisothermal nucleation because due to 
Eq. (1.6) and inequality Av > 1 (which fulfils at moderately high vapour supersatura-
tion ratios) we have 

(AvW(cv)1/2 > 1 . (8.1) 

Though the kinetic equation of nonisothermal nucleation is considerably complicated 
after adding the higher-order derivatives with respect to E in the situation under dis
cussion, we surely have the hierarchy of the characteristic time scales in this situation. 
The hierarchy reflects that the stable variable E varies much faster in comparison 
with the unstable variable v, and it allows us to use an iteration method, derived in 
Ref. [3], for solving the kinetic equation of nonisothermal nucleation. The fulfil
ment of inequality (8.1) is provided by the microphysical effects in nonisothermal 
nucleation. 

Finally, we can make the following important conclusion. If we cannot limit our
selves with the Fokker-Planck approximation in the kinetic equation of nonisothermal 
equation, we surely have a hierarchy of the characteristic time scales for develop
ment of nonisothermal nucleation. This hierarchy makes possible solving of the kinetic 
equation of nonisothermal nucleation by the iteration procedure developed in Ref. [3]. 
Thus, we can say that the sources which cause the deviation of the kinetic equation 
of nonisothermal nucleation from the Fokker-Planck equation show the way how this 
kinetic equation can be solved. 

The conclusion formulated concerns with not only two-dimensional nonisothermal 
nucleation, but with kinetics of multi-dimensional phase transitions as well. 

As was shown in Ref. [3], the hierarchy of characteristic time scales of nonisother
mal nucleation becomes stronger in presence of passive gas-carrier in the vapour-gas 
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environment. Strengthening the hierarchy, the presence of the gas-carrier, however, 
does not allow us to reduce the kinetic equation to the Fokker-Planck form. 

If the vaporisation heat is not so large (in fact, we cannot exclude this possibility 
from the consideration), then the two-dimensional kinetic equation of nonisothermal 
nucleation has the Fokker-Planck form. However, then the hierarchy of time scales of 
development of nonisothermal nucleation no longer exists at small concentration of the 
carrier gas in the vapour-gas environment. The general method for solving of multi
dimensional equation of the Fokker-Planck form in kinetics of phase transitions with 
the help of special technic of separation of variables was proposed in Refs. [13,14]. 
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