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Abstract—The equations describing the dissolution and adsorption of the matter comprising the condensation 
nucleus in the droplet originating on this nucleus from supersaturated vapor were derived. The relaxation of the 
solution of the matter comprising the nucleus inside the droplet to chemical equilibrium with allowance made 
for its transport into the solution from the nucleus and its consumption by the adsorption surface layer of a drop­
let was studied. The dependences of the time of chemical relaxation of a solution on the sizes of the droplet and 
solid residue of the nucleus, the nucleus solubility, the rate of dissolution of the matter comprising nucleus, the 
coefficient of its diffusion in a solution, the adsorption, the coefficients of adsorption and desorption of this mat­
ter on the droplet surface, and the logarithmic derivative of adsorption with respect to solution concentration 
were revealed. The passage from the local (over the course of time) approximation where the adsorption is 
determined by the current value of the solution concentration at its boundary with the droplet surface layer was 
made for an arbitrary adsorption isotherm. Times of solution chemical relaxation under conditions typical of 
partial or complete dissolution of nucleus in a droplet were found in the analytical form. It was proved that the 
variation of droplet boundaries might be neglected at the initial (important for nucleation) stage of surmounting 
the activation barrier of nucleation by the droplets. It was shown that, at this stage, the state of the solution inside 
the droplets remains virtually constant. The hierarchy of the scale of kinetic times was disclosed, which enables 
us to understand the complex multistage process of overcoming the activation barrier of nucleation by the drop­
lets. The applicability of thermodynamics to the kinetics of this process was also demonstrated. 

INTRODUCTION 

The kinetic theory of the initial (important for 
nucleation) stage where the activation barrier is sur­
mounted by the droplets originating in supersaturated 
vapor on the macroscopic condensation nuclei was 
developed in [1]. The height of this barrier is specified 
by the vapor supersaturation-dependent difference of 
the height of the potential maximum and the depth of 
the potential minimum of the work of the heteroge­
neous droplet formation on the nucleus. 

The kinetic theory was developed [1] in such a gen­
eral way that it allows the coverage of both surface-
inactive and surface-active condensation nuclei, which 
may completely or only partially dissolve in the drop­
lets during the surmounting the activation barrier of 
nucleation by these droplets. Undoubtedly, the applica­
tion of this kinetic theory makes it necessary to formu­
late basic relationships specified by the thermodynam­
ics of the droplet formation on the macroscopic nuclei. 
At complete dissolution of the nucleus in a droplet, 
these thermodynamics were developed for the case of 
surface-inactive nuclei in [2] and for surface-active 
nuclei in [3-7]. At partial dissolution of the nucleus in 
a droplet, i.e., at the formation of a liquid film on the 

solid residue of the nucleus, these thermodynamics 
were developed in [8-10]. 

In order to make the thermodynamic results 
obtained in [2-10] truly applicable to the kinetic theory 
developed in [1], the hierarchy of the following typical 
kinetic times should exist (in the order of their 
increase), such as the adsorption relaxation time of the 
droplet surface layer, the chemical relaxation time of a 
solution inside the droplet, the time of the establish­
ment of the steady-state droplet size distribution over 
the course of the surmounting of the activation barrier 
of nucleation, and the time of droplet size variation in 
this process. The aim of this work was to disclose this 
hierarchy. 

Because thermal equilibrium in a droplet is estab­
lished during very short times [11], whereas the 
mechanical equilibrium of the droplet is reached much 
faster, the hierarchy (involved in this work) of typical 
kinetic times should be supplemented by the condition 
of the smallness of the thermal relaxation time of a 
droplet as compared to the adsorption relaxation time 
of the droplet surface layer. As this inequality is obvi­
ous, it will not be mentioned further in this work. 
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The disclosure of the hierarchy of characteristic 
kinetic times (stated as the final aim of this work) at the 
stage corresponding to the surmounting of the activa­
tion barrier of nucleation by the droplets originating on 
the macroscopic nuclei requires the determination of 
these times per se; first of all, the relaxation time of the 
solution of the matter comprising nucleus inside the 
droplet to the chemical equilibrium should be deter­
mined (note that this time scarcely studied). It is the 
determination of the chemical relaxation time of a solu­
tion that is the main problem of this work. Calculations 
will be performed for the arbitrary adsorption isotherm 
by the solution of the equation of the nonstationary dif­
fusion of the matter comprising nucleus in a solution 
inside the droplet with account for two complex bound­
ary conditions: (1) transport of the matter comprising 
nucleus from the residue of the nucleus into the solu­
tion is governed by the rate of its dissolution; (2) con­
sumption of the matter comprising nucleus from the 
solution by the droplet surface layer is determined by 
its adsorption ability. Generally speaking, this ability 
has a nonlocal (in time) character and is dependent on 
the solution concentration at the boundary with the 
droplet surface layer both at the current time and at all 
preceding times. 

When the condensation nuclei are macroscopic, the 
droplet sizes in the near critical region only slightly 
exceed the size, at which the maximal chemical poten­
tial of the condensate is reached. Data on the width of 
the near critical region and on the dependence (in this 
region) of the droplet radius and the thickness of its liq­
uid film (at nucleus partial dissolution) on the nucleus 
initial size, the droplet surface tension, and the possible 
effect of adsorption in the droplet surface layer are pro­
vided by the thermodynamics developed in [2-10]. 
When the nucleus is surface-active, the effect of 
adsorption on the droplet surface tension might be sig­
nificant. Together with this effect, the influence of 
adsorption on the chemical relaxation time may also be 
rather noticeable. 

Earlier, the issue of adsorption (governed by the 
adsorption and desorption in the surface layer) and dif­
fusion-controlled (determined by the diffusion transfer 
in bulk solution) kinetics of the surfactant solution 
relaxation was treated in [12-17]. For example, three 
types of boundary conditions have been analyzed in the 
diffusion-controlled kinetics of adsorption [12-15]; the 
integral-differential equations of the adsorption kinet­
ics were derived and numerically solved for various 
adsorption isotherms in [16,17]. 

This work is unique because it is aimed at the study 
of the widely spread natural kinetic process of droplet 
nucleation in the supersaturated vapor on the macro­
scopic condensation nuclei, the determination of the 
adsorption relaxation time of the droplet surface layer 
for the arbitrary adsorption isotherm, and the calcula­
tion of the chemical relaxation time of the solution of 
the matter comprising the condensation nucleus inside 

the droplet with allowance made both for the transport 
of this matter from the nucleus into the solution and its 
consumption from the solution by the adsorption sur­
face layer of the droplet. 

1. DISSOLUTION KINETICS 
OF THE NUCLEUS 

Let v„ be the number of molecules in the condensa­
tion nucleus with radius /?„ present initially in the 
vapor-gas medium. If the matter comprising nucleus 
dissociates to the ions during its dissolution in the con­
densate, the v„ quantity specifies the number of ions, 
which may be formed from the initial condensation 
nucleus. Further, let v„ be accordingly the number of 
molecules or ions in the solid residue of the condensa­
tion nucleus with radius R„ inside the droplet at the 
moment when the nucleus is not yet completely dis­
solved. Assuming that the nucleus and its solid residue 
are spherical, v„ and /?„, and v„ and R„ are interrelated 
by the evident relationships: 

v„ = 4KR3„/3vn, V„ = 4KRI/3V„, (1.1) 

where v„ is the volume per molecule (or ion) in the con­
densation nucleus. 

The rate v„ of the variation in the number v„ with 
time is defined by the equation 

v„ = 4K~R2„knCc\ --~cn). (1.2) 

Here, r is the radial coordinate in the spherical system 
with the origin in the nucleus center; k„ is the coeffi­
cient of the dissolution of the matter comprising the 
nucleus in the condensate [18, 19]; c is the concentra­
tion of molecules (or ions) of the matter comprising the 
nucleus per unit of the droplet volume at the current 
time moment /; and cn is the concentration of mole­
cules (or ions) of the matter comprising nucleus per 
unit of the droplet volume when the solution and the 
residue of the nucleus with specified radius R„ are in 
equilibrium. 

The kn coefficient is almost independent of the solu­
tion concentration in the droplet and can be represented 
as 

*„ = Anexp(-E„/kT), (1.3) 

where k is the Boltzmann constant, T is the absolute 
temperature, and parameter A„ has the dimensionality 
of the rate and may be estimated by the value of the 
average Maxwell velocity of the molecules of the mat­
ter comprising nucleus at the solution temperature. The 
En parameter in (1.3) has the meaning of the activation 
energy of the nucleus dissolution. The experimental 
data oh the values of parameters A„ and E„ are available 
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for various solid-solvent systems, first of all, for inor­
ganic salts in water [18]. Information on the depen­
dence of these parameters on the size of dissolving 
solid particle is lacking. 

Equilibrium solution concentration cn (solubility of 
nucleus residue in condensate) entering into equation 
(1.2) is dependent on the R„ radius of the nucleus resi­
due. According to the Ostwald-Freundlich equation, 
we obtain 

c„ = c„e\p(2ynvn/kTRn), (1.4) 

where c„ is the equilibrium volume concentration of the 
matter comprising nucleus in a solution (solubility of 
the matter comprising nucleus in a condensate) at the 
flat solution-solid interface, and y„ is the surface ten­
sion of the nucleus residue which was determined 
mechanically. Unlike the surface tension of solids 
determined thermodynamically, the information on the 
y„ values is insufficient at present. Note that at macro­
scopic dimensions of the nucleus residue, both c„ and c„, 
as well as A„ and E,„ are slightly different from their 
values for the fiat surface of nucleus. 

2. KINETICS OF ADSORPTION 
Passing to the description of the adsorption kinetics 

of the dissolved matter comprising nucleus at the drop­
let surface, we deal with the most interesting case when 
the nucleus contains a soluble surfactant capable of 
forming an adsorption monolayer. Let f be the adsorp­
tion of the matter comprising nucleus at the current 
time moment at the droplet surface with radius R, i.e., 
the number of adsorbed molecules (or ions) per unit 
area of the monolayer at the droplet surface. Let us 
write the equation for the rate of the adsorption dt/dt 
variation with time t in the following form: 

dt/dt = a{t)~c\r = R{\-f/rj-P(f)f, (2.1) 

where cc( f ) and |3( T) are the coefficients of adsorption 
and desorption, respectively; and r„, is the adsorption 
capacity of the monolayer, i.e., the limiting value of 
adsorption corresponding to the complete coverage of a 
monolayer. 

The first term in the right-hand part of equation 
(2.1), which is proportional to the free surface area, 
describes the flux of surfactant molecules adsorbing 
from the solution. This flux is linearly dependent on the 
concentration and is generally determined [via a ( f ) ] 
by the state of the monolayer. The second term in the 
right-hand part of (2.1), which is proportional to the 
monolayer area covered with surfactant molecules, 
describes the flux of surfactant molecules desorbing 
from the monolayer into the solution. As is seen from 
the definition, this flux is independent of the state of the 

solution (of the solution concentration) and is deter­
mined [via P(f)] only by the monolayer properties. 

In general, the dependence of the a(T) and P(f) 
coefficients on adsorption F can be rather complex. 
For the ratio of these coefficients under the equilibrium 
of the adsorption monolayer with solution; i.e., at 
dtldt = 0, we find from (2.1) that 

P(D/a(n = ( c / r ) ( i - r / r j . (2.2) 

Here, T and c are the equilibrium values of adsorption 
and the volume concentration of the solution, respec­
tively. Using the known theoretical or experimental 
adsorption isotherms, we determine c and derive [by 
means of (2.2)] the expression for the dependence of 
the p(0/o:(r) ratio on the equilibrium value T. 
Because the P(r)/a(0 ratio is independent of the state 
of solution, we extend the expression thus obtained to 
the case of nonequilibrium f values. 

Dealing further with the monolayer relaxation to the 
equilibrium state, we consider the relative deviations of 
adsorption f and concentration c 

5rs ( f -T) / r , 8c = (c-c)/c (2.3) 
from their equilibrium values small 

|5T| < 1, |8c| <̂  1. (2.4) 
The linearization of equation (2.1) with the account 

for (2.2M2.4) yields 

dST/dt = $(F)[$c\r = R - (d\nc/dlnr)ST]. (2.5) 

It follows from the linearized equation (2.5) that at 
5c|,., A = const, the characteristic time tA of adsorption 
relaxation is generally determined by the logarithmic 
derivative of adsorption with respect to the solution 
concentration 

i d j n T 
d i n e ' 

(2.6) 

It is seen that with allowance made for (2.6) differ­
ential equation (2.5) is equivalent to the integral inter­
relation 

8T(0 = exp(-f/^)8r(0) 
i 

+ P(T) pxexp[ (T - t)/tA]bc{x)\r__R, 
(2.7) 

where 517(0) is the initial value of the relative deviation 
of adsorption from its equilibrium value. Dealing fur­
ther with the relaxation of the monolayer and the matter 
comprising nucleus dissolved in the droplet to the 
chemical equilibrium, we assume that 6r(0) and the 
initial value of the relative deviation 5c(0)| r , R of the 
solution concentration at the boundary with the mono­
layer are equal to zero (the nonequilibrium state of a 
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solution arises from the dissolution of the condensation 
nucleus and disturbances of solution concentration). 
Taking these facts into account, we differentiate first 
the left- and right-hand sides of (2.7) with respect to t 
and then integrate the right-hand side by parts; as a 
result, after simple transformations, we arrive at the fol­
lowing relationship for dST/dt: 

t 

dhYldt = V(r)fdxexp[(x-t)/tA]d&c/dT\rMR. (2.8) 
o 

We will employ this relationship further for the for­
mulation of the boundary condition at the droplet sur­
face for the diffusion equation. 

3. KINETICS OF ADSORPTION 
FOR THE MONOLAYER WITH LATERAL 

INTERACTIONS 
Let us consider the Frumkin model as an example of 

the monolayer with lateral interactions [20,21]. Let us 
assume that the adsorption coefficient a(T) is indepen­
dent of the coverage of monolayer F/Tj, i.e., let us 
assume that 

cc(f) = a = const(f). (3.1) 

For the equilibrium Frumkin adsorption isotherm, 
we obtain [20,21] 

c = cai

 T/^~T exp^Kr/r^), (3.2) 

where ca is the isotherm parameter taken so that the 
TJca quantity has the meaning of the Henry constant 
for the surfactant in question, and K is the parameter of 
the lateral interactions of the surfactant molecules in a 
monolayer. 

Using (2.2) with the allowance made for (3.1) and 
(3.2), we find the following expression for the depen­
dence of the desorption coefficient 0(1") on T 

p(H = a(c a/r o e)exp(-2Kr/r„). (3.3) 
The characteristic time tA of the adsorption relax­

ation with account for (3.3), (3.1), and (2.6) may be 
defined as 

t r j i - r / r j 
A " a c j i - 2*r/rm + 2K(r/rj 2] (3.4) 

x e x p ( 2 i c r / r j . 
It is easy to note that the tA time is positive at any 

degree of monolayer coverage r/Fx within the range of 
admissible values (0 < F/T^ < 1) at K < 2. As is known, 
at K t 2, there are the ranges of the coverage degrees 
r/r„ where the monolayer is unstable. In these ranges 
of the r/rM values, time tA becomes negative. It is clear 

that such situations are omitted from further consider­
ation. 

When the parameter of lateral interactions vanishes, 
time tA reduces to the well-known time of adsorption 
relaxation of the Langmuir monolayer: 

tA = ( r ^ / a c j d - r / r j (3.5) 
or, with account for (3.2), to 

tA = (r„/cc)(c + c a ) - ' . (3.6) 

4. DIFFUSION OF THE MATTER COMPRISING 
NUCLEUS IN THE BULK PORTION 

OF A DROPLET 
Let us assume that the characteristic time of the 

exchange of the droplet by the condensate molecules 
with the surrounding vapor-gas medium is much 
longer than the internal relaxation time of the droplet to 
chemical equilibrium with respect to the dissolved mat­
ter comprising the nucleus. Accordingly, we ignore the 
motion of the droplet surface; i.e., we assume that drop­
let radius R is independent of time. The assumption 
made will be rigorously substantiated for the near crit­
ical range of the droplet dimensions in Section 8. 

The equation of the molecular diffusion of the dis­
solved matter comprising nucleus in the bulk portion of 
a droplet has the following form: 

d~c/dt = (Dn/r)d\rc)/dr\ (4.1) 

where D„ is the diffusion coefficient of molecules (or 
ions) of the matter comprising nucleus in a solution. At 
the surface of the nucleus residue at r = R„, the bound­
ary condition is determined by the law of its dissolu­
tion. According to (1.2), we obtain 

Dnd~c/dr\r=.Rn = k„(c\r = kn-cn). (4.2) 

The flux in the left-hand side is directed toward the 
nucleus surface. At r = R, the boundary condition is 
determined by the variation (with time) of the amount 
of the matter comprising nucleus that is adsorbed on the 
droplet surface. As a result, the second boundary condi­
tion for equation (4.1) is 

D„dc/dr I = R = -dt/dt. (4.3) 

The flux in the left-hand side is directed away from 
the monolayer surface. 

Under the chemical equilibrium inside the droplet, 
the solution concentration c coincides with the solubil­
ity c„ of the nucleus residue with radius Rn. Taking 
this fact into account and linearizing equation (4.1), 
together with the boundary conditions (4.2) and (4.3) 
with allowance made for (2.3), (2.4), and (2.8), we 
obtain 

88c/8f = (D„/r)d\rbc)/dr2, (4.4) 
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Dnd§c/dr\r=.Rn = knbc\r = R / (4.5) 

DndZc/dr\r = R = -[pCnr/c] 
p (4.6) 

x \dxexp[(z-t)/tA]dBc/d%\rssR. 
o 

We remind the reader that the value of adsorption 
PCO entering into condition (4.6) both directly and via 
desorption coefficient T and time tA is not an arbitrary 
quantity but is related to the adsorption isotherm by the 
equilibrium concentration c. As was already noted, at a 
partially dissolved nucleus, c=cn; hence, according to 
(1.4), the value of adsorption T is given by the radius 
R„ of the nucleus residue. 

Note that equation (4.4), together with boundary 
conditions (4.5) and (4.6), also describes the case of the 
complete dissolution of the nucleus in a droplet. In this 
case, we should assume in condition (4.5) that R„ = 0 
and k„ = 0. The procedure of the determination of the 
final (for the kinetic theory) equilibrium concentration 
c was demonstrated elsewhere [3-7], 

We have no need for the explicit form of the initial 
condition for equations (4.1) and (4.4). We will deal 
further with the relaxation in the droplet at the times 
tf> tA when the possible difference between the initial 
values of 8T(0) and bc(0)\rjcR and the zero values 
[which were required for the derivation of relationship 
(2.8) for dbr/dt] becomes insignificant. 

At times t > tA, we seek the approximate solution of 
the linearized equation (4.4) with boundary conditions 
(4.5) and (4.6) using the standard procedure of the sep­
aration of variables. 

8c - J^exp(-X2

kDnt)Nk(r). (4.7) 

Functions Nk(r) and values Xk (k = 1,2,...) entering 
into (4.7) satisfy the equations 

d2[rNk(r)]/dr2 + X2

krNk{r) = 0 (4.8) 

with boundary conditions 

dNk{r)/dr\r__h = ( t / D J A f t ( r ) | r i j . (4.9) 

and 

dNk(r)/dr\rmR 

q(n( i-r /w!„ (4-10) 

Condition (4.9) follows from (4.5), whereas condi­
tion (4.10) is obtained approximately from (4.6) using 
equality (2.2) with allowance made for the fact that at 

t > tA only the series members with Xk Dn =s fA are 

significant because in this case expHr^1 - X2

kD„)t] <̂  1. 

Solutions to equation (4.8) corresponding to the 
zero value of Xk have a form Nk(r) = Bk + CkJr, where 
both integration constants Bk and Q are identically equal 
to zero in view of boundary conditions (4.9) and (4.10). 
At non-zero values of Xk {k = 1,2,...), which are of inter­
est to us, solutions to equations (4.8) acquire the form 

Nk(r) = (f l t /r)sin(X t r) + ( Q / r ) c o s ( V ) . (4-11) 

where coefficients Bk and Ck are determined from the 
initial and boundary conditions for equation (4.8). Lin­
ear homogeneous equations for Bk and Ck obtained by 
the substitution of (4.11) into (4.9) and (4.10) have the 
non-zero solutions, provided that Xk satisfies the tran­
scendental equation 

tan[XK(R-RN)} 

= { X t [ i / j ? „ - i / / f - a ( r ) ( i -r/rjtA 

xX]/{\-X2

kDntA) + kn/D„]}/{X2

k (4.12) 

+ [\/R + a(r)(i - r / r j 
x tAX]/{ 1 - X2

kDntA) ](l/RN + kn/Dn)}. 

5. TIME OF INTERNAL RELAXATION 
OF A DROPLET AT THE DIFFUSION-

CONTROLLED KINETICS OF ADSORPTION 

As is apparent from (4.7), the least of positive values 
X2

kD„(k= 1,2,...) is responsible for the internal relax­
ation time for a droplet to chemical equilibrium with 
respect to the dissolved matter comprising condensa­
tion nucleus. The corresponding value of Xk coincides 
with the least of the positive roots of transcendental 
equation (4.12). Let us denote the least of roots Xk (k = 
1, 2, ...) of equation (4.12) by subscript 1. Then, the 
desired internal relaxation time of a droplet may be rep­
resented as 

f, = X]2D-tt\ (5.1) 

In general, equation (4.12) makes it possible to dis­
close the dependence of time t\ of internal relaxation of 
a droplet on the radii of the droplet and the solid 
nucleus residue, the nucleus solubility, the rate of solu­
bility of the matter comprising nucleus, its diffusion 
coefficient in the solution inside the droplet, the adsorp­
tion, and the coefficients of adsorption and desorption 
at the droplet surface at the arbitrary adsorption iso­
therm. Time t, also depends on the logarithmic deriva­
tive of adsorption with respect to the solution concen­
tration via the characteristic time tA of adsorption relax­
ation. 
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As was already noted in the introduction of this 
work, the droplet radius and the thickness of the liquid 
film on a droplet and, hence, the radius of the solid 
nucleus residue in the near critical range as a function 
of the initial nucleus size, the droplet surface tension, 
and the adsorption of the matter comprising nucleus on 
the droplet surface layer are defined by the thermody­
namics developed in [2-10]. 

As a whole, the dependence of time tt on the exter­
nal characteristics of a problem seems to be rather com­
plex; however, during its derivation, we may take 
advantage of a number of additional simplifying 
assumptions. 

Hereafter, we consider that strong inequality 

(5.2) 

2 _ 1 

is valid. In view of (5.1), this means that X, D„ < tA . 
In this case, times t ~ t{ typical of droplet internal relax­
ation to chemical equilibrium (with respect to the dis­
solved matter comprising nucleus) will fit the range 
t > tA. As is seen, the first term and the time retardation 
in the second term in the right-hand side of (2.7) may 
be ignored, i.e., we may assume that 8c(x)\r=R = 
Bc(t)\r=R. Calculating the remaining integral with 
respect to T and with allowance made for (2.6) and ine­
quality exp(r//A) > 1, equation (2.7) will be reduced to 
equality 

6T(/) = (dlnr/d\nc)bc(t)\r = R. (5.3) 

Differentiating (5.3) with respect to time, we obtain 

dhT{t)/dt = {d\nT/d\nc)dhc(t)/dt\f = R. (5.4) 

In this case, instead of (4.6), we have 

DndSc/dr\r = R = -{dT/dc)d?>c/dt\r = R. (5.5) 

Possible derivation of relationship (5.4) also directly 
from (2.8) confirms that assumptions &T(0) = 0 and 
6c(0)|r,/f = 0 made during the passage from (2.7) to 
(2.8) are insignificant. 

Remember that, according to (2.3), 5r and 5c are rel­
ative (but not absolute) deviations of the f and c quan­
tities from their equilibrium values; therefore, relation­
ships (5.3)-(5.5) correspond to the approximation of 
the diffusion-controlled adsorption kinetics when equi­
librium in a monolayer corresponding to the current 
solution concentration c (f)|r« « at the monolayer-solu-
tion interface is established. 

In this approximation, which we confine ourselves 
to, equation (4.12) with allowance made for (2.2) and 

(2.6) is reduced to equation 

tan[\{R-R„)] 

_ Xk( 1 /Rn - 1 /R - X\dT/dc + k„/D„) 

~ Xl + (\/R + X2

kdr/dc)(\/R„ + kn/D„)' 

(5.6) 

Equation (5.6) presumes that the strong inequality 
XkD„ tA is fulfilled at all k = 1,2, ...; nevertheless, 
it is apparent that one should keep in mind that this ine­
quality as well as equation (5.6) are actually required 
only at k = 1, i.e., for the least of all positive values 
X2

kDn. Note that the a(T) and p(H coefficients of 
adsorption and desorption do not enter into relation­
ships (5.3) and (5.6). Also note that the passage to the 
approximation of the diffusion-controlled kinetics of 
adsorption was performed for the arbitrary adsorption 
isotherm. Earlier [12], this passage was treated for the 
Langmuir adsorption isotherm. 

Below, we will study the dependence of the Aj value 
and, correspondingly, time t{ on the problem parame­
ters for two typical extreme cases of the droplet relax­
ation: at the initial stage of the nucleus dissolution and 
at its complete dissolution. 

6. DROPLET RELAXATION AT THE INITIAL 
STAGE OF NUCLEUS DISSOLUTION 

As was demonstrated in [9], the region of incom­
plete nucleus dissolution in a droplet at the macroscop-
icity of the condensation nuclei may be significant for 
the thermodynamics of droplet nucleation only at the 
initial stage of dissolution when the thickness of the liq­
uid film of a solution is small compared to the droplet 
radius, i.e., when the film is actually flat. It is this 
approximation that we confine ourselves to during the 
consideration of the region of incomplete nucleus dis­
solution. 

From (5.6) in the flat film approximation at Rn —• «> 
and R —•* °° follows the equality 

t w > M kn/Dn-X\dT/dc 
t a n ( ^ } = \k[i+kn(dr/dc)/Dny (6-1} 

where 

h = R-Rn (6.2) 
is the thickness of a droplet liquid film. While deriving 
(6.1), we assumed additionally that at a fairly large R 
the inequalities 

knR/Dn > 1, (6.3) 

\\RdY/dc > 1 (6.4) 
are valid. 

Note that in the approximation under consideration 
the equilibrium concentration of the matter comprising 
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nucleus in a droplet is equal to the solubility c„. Hence, 
the dT/dc derivative in (6.1) and (6.4) is determined by 
the c„ value and is independent of the size of the 
nucleus residue. 

The film thickness h in the near critical range of the 
droplet sizes is determined by its dependence [9, 10] on 
the initial nucleus radius, the droplet surface tension, 
the correlation length in a film, and the spreading coef­
ficient of condensing liquid at the surface of condensa­
tion nucleus. 

For the majority of surfactants, the T value at the 
solution concentration equal to the solubility of the 
matter comprising nucleus is close to the limiting value 
of r„ corresponding to complete monolayer coverage. 
It is well known that the dependence of adsorption T on 
concentration c reaches the plateau when the mono­
layer approaches its saturation. Therefore, it may be 
expected that, regardless of the ratio between the kn and 
D„ values, the effect of adsorption on the internal relax­
ation time of a droplet will be a kind of correction at the 
partial nucleus dissolution. Hence, we assume that ine­
qualities 

and 

X2

kDn{dT/dc)/kn < 

kn(dr/dc)/D„ <Z 1 
are taking place. 

Then, equation (6.1) is reduced to 

tan(Xkh) = kn/XkDn. 

(6.5) 

(6.6) 

(6.7) 

Let us first consider the case when strong inequality 

(6.8) knh/Dn > 1 

is valid. By its physical meaning, this case corresponds 
to a fairly large rate of nucleus dissolution. As is appar­
ent from (6.7), the Xx root is a little bit smaller than 
n/2h\ then, from (5.1), we obtain 

4h2/K2D„ (6.9) 

As is seen from (6.9), the 1x time determined for the 
fulfillment of condition (6.8) is independent of coeffi­
cient kn of the rate of nucleus dissolution. Therefore, 
condition (6.8) implies that at given parameters /?, kn, 
and D„ the layer with equilibrium concentration c„ may 
be formed near the surface of the nucleus residue over 
the course of time much shorter than time tx. In this 
case, the boundary condition (4.5) transforms to condi­
tion 8c| - = 0. Note that, in view of (6.8) and relation 

Xx «7t/2/j, the inequality (6.5) is deliberately valid, pro­
vided that condition (6.6) is fulfilled. As is apparent 
from (6.9), the fulfillment of condition (5.2) requires 
that the inequality 

h2 > (%2/4)DntA (6.10) 

should also be fulfilled. 
When inequality (6.8) is not fulfilled, the equilib­

rium is established at the same film thickness over the 
longer time specified by relationship (6.9). Then, the tx 

time will be dependent on the k„ values. In the limiting 
case, when the reverse [to (6.8)] inequality 

knh/Dn < 1 (6.11) 

is valid, the Xxh value lies at the beginning of the first 
quadrant. Then, from (6.7) and (5.1), we obtain 

and 

Xx - (kn/hD„) 

tx « h/kn. 

1/2 (6.12) 

(6.13) 

Note that, in view of (6.11) and (6.12), inequality (6.6) 
is deliberately fulfilled, provided that inequality (6.5) is 
valid. As is seen from (6.13), the fulfillment of condi­
tion (5.2) requires the fulfillment of inequality 

h > kj n'A- (6.14) 

The smaller dT/dc, the shorter time tA [see (2.6)], 
and the inequalities (6.10) and (6.14) [hence, condition 
(5.2)] are better fulfilled. 

In both cases in question, the presence of summands 
in the numerator and the denominator of the right-hand 
side of (6.1) describing the effect of adsorption results 
in a decrease in Xx and, correspondingly, in an increase 
in tx. 

As was shown in [9], in the situation described 
above, when the film can actually be considered flat, the 
relationship R„ =» Rn is valid with a high accuracy. This 
indicates that R„ is virtually independent of time, 
thereby removing at once the problem of the possible 
motion of the nucleus boundary. 

7. DROP RELAXATION AT COMPLETE 
NUCLEUS DISSOLUTION 

Let us now find out what will happen when the 
nucleus is completely dissolved and the radius of the 
condensation nucleus residue R„ and coefficient kn 

vanish. At Rn 0 and k„ 0, we obtain from (5.6) 

tan(XkR) = 
XkR 

1 + XlRdT/dc 
(7.1) 

The dependence of the droplet radius R in the near 
critical range of its sizes on the initial nucleus radius 
and droplet surface tension (determined by strong 
adsorption) was demonstrated in [3-7]. This depen­
dence was revealed in [2] under the insignificant role of 
adsorption. 

When the nucleus is completely dissolved in a drop­
let, the value of adsorption T can be arbitrary small, the 

COLLOID JOURNAL Vol. 60 No. 1 1998 



SHCHEKIN et al. 118 

desired substantiation is reduced to the demonstration 
that strong inequality 

tx/tR < I (8.1) 

is valid. 
To begin with, let us consider the case when the near 

critical range of the droplet sizes corresponds to the 
complete dissolution of the condensation nucleus in a 
droplet. At time tR, we have 

tR = Rl\R\, (8.2) 

where R is the rate of the variation of the droplet radius 
R with time. As was shown in [1], in the near critical 
range, the exchange of molecules between the droplet 
and the vapor occurs almost always in the free-mole­
cule regime. Then, according to formulas (11) and (16) 
from [1], in this range we have 

R = <xc vT(nv/nL){v - v c ) / 2 ( A v c ) 2 , (8.3) 

where ac is the condensation coefficient for the droplet 
surface; vT is the thermal velocity of the vapor mole­
cules; nv is the number of vapor molecules per unit vol­
ume of the vapor-gas medium; nL is the number of the 
condensate molecules per unit volume of a solution in 
a droplet; v is the number of the condensate molecules 
in a droplet; v c is the number of the condensate mole­
cules in a critical droplet; and Avc is the halfwidth of 
the near critical range of the droplet dimensions at the 
v-axis. 

As was shown in [2], under the condition of the 
macroscopicity of the condensation nuclei in the near 
critical range R may be replaced by R0 where the zero 
subscript indicates the values in the point of maximum 
of the condensate chemical potential. Also taking into 
account that, according to (8.3), the |/?| value in the 
near critical range is maximal at the boundaries of this 
range (where V = v c ± Avc) from (8.2) and (8.3), we 
obtain the inequality 

tR > 2(nL/nv)R0Avc/acvT, (8.4) 

In the considered case of the complete dissolution of 
nucleus in a droplet, if we employ the largest [of all val­
ues given by relationships (7.4) and (7.6)] time tu we 
arrive at the approximate inequality 

£, ^ acvT(nv/nL)RQ 

h ~ 2n2D„Avc 

The dependence of the R0 and Avc values on the ini­
tial number v„ of molecules (or ions) in a droplet and on 
the droplet surface tension (determined by strong 
adsorption) was established for the case of complete 
dissolution of a nucleus in [3-7]. If we may neglect the 
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equilibrium concentration c can also become arbitrarily 
small as the droplet radius R increases at fixed initial 
nucleus radius. As the adsorption T decreases, the value 
of dT/dc derivative either monotonically increases, as 
is the case for the Langmuir adsorption isotherm and 
the Frumkin adsorption isotherm at low coefficients of 
the lateral interactions K, or reaches its maximal value 
in some intermediate point of the 0 < r/F„ < 1 range, 
as in the case of the Frumkin isotherm for larger values 
of K. Let us consider as an example the limiting situa­
tion where T/T^ < 1. Considering that at the fulfill­
ment of strong inequality r/r„ <̂  1 the Henry adsorp­
tion law is valid, we obtain 

dT/dc = rVc„, (7.2) 

where TJca is the Henry constant. 
As follows from (7.1), (7.2), and (5.1), for the drop­

lets whose radii satisfy strong inequality 

R > n2r„/ca, (7.3) 

the internal relaxation time il is represented by the 
expression 

tx - R2/(l.43n)2DN. (7.4) 

According to (7.1) and (7.2), as the TJca ratio 
increases at fixed droplet radius R , the Xx value 
decreases. When the reverse [with respect to (7.3)] ine­
quality 

R «l n2ryca (7.5) 

is reached, the X{ value becomes equal to K/R. In this 
case, in view of (5.1), time tx becomes as large as the 
following value 

f, = R2/K2D„. (7.6) 

Times tx given by relationships (7.4) and (7.6) and 
time tA specified by relationship (3.5) satisfy the condi­
tion (5.2) because the inequality 

R 2 > 7 c 2 r o o P n / a ( D c a (7.7) 

is valid for macroscopic droplets. 
Inequality (7.7) is compatible with the reverse 

inequality (7.5) because the relationship 
7i2a(r)r„/ca£>„ > 1 is usually readily true. 

8. CHARACTERISTIC TIME OF THE MOTION 
OF THE DROPLET BOUNDARY 

IN THE NEAR CRITICAL RANGE OF ITS SIZES 
Let us substantiate the assumption made in Section 4 

that the droplet motion in the near critical range of its 
sizes may be ignored. Denote the characteristic time 
required for the external droplet boundary to be sub­
stantially displaced due to the absorption and evapora­
tion of the molecules by a droplet by tR. Evidently, the 
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effect of adsorption, then for R0 and Avc we obtain sim­
ple formulas [1, formulas (15) and (27)] 

and 

R0 = 3 ( 3 / 4 7 t / l f . ) , / 3 ( v „ / 2 a ) l / 2 

Avt. = 2 7 ( 3 / 2 ) ' / 4 ( 2 a ) - V 2 v f l

7 / 6 , 

(8.6) 

(8.7) 

where a = 4K(3/4TznL)2nG/kT, and a is the droplet sur­
face tension. 

Using (8.6) and (8.7) and assuming that a =« 10, vT -
10 2 m s-', n t - 3 x 10 2 8 nr 3 , nv « 10 2 3 nr 3 (typical val­
ues for the condensation of the water vapor), and D„ =* 
10"9 m 2 s - 1 , we obtain 

acvT(nv/nL)R0 

27t2Z>„Av,. 
6.8 x 10" 5 a c v; 2 / 3 - (8.8) 

As is seen from (8.5) and (8.8), the inequality (8.1) 
is rather readily true at any v„ and <xc < 1. 

Let us now pass to the case where the near critical 
range of the droplet sizes corresponds to the partial dis­
solution of the condensation nucleus in a droplet. As 
was mentioned in Section 6, this case may be signifi­
cant for the thermodynamics of the droplet nucleation 
only when the thickness of the solution liquid film is 
small in comparison with the droplet radius, i.e., when 
the film is almost flat. We confine ourselves to the flat 
film approximation, discussed in Section 6. In this 
approximation, the relationship R„ « R„ [9] is valid 
with a rather high accuracy (at low solution concentra­
tion, the film thickness and, correspondingly, the drop­
let radius are mainly determined by the supply of the 
matter from the vapor rather than from the condensa­
tion nucleus). As was already mentioned in Section 6, 
in this case, the displacement of the nucleus boundary 
is negligible. 

For the characteristic time tR, which is required for 
the external boundary of a droplet to be significantly 
displaced due to absorption and evaporation of the mol­
ecules by the droplet (the film thickness is also signifi­
cantly varied), instead of (8.2) we now obtain 

tR = h/\R\. (8.9) 

Since the rate R of the variation of the droplet 
radius R with time in the near critical range of droplet 
size is, evidently, determined by the same expression 
(8.3), then, similarly to (8.4), we obtain the inequality 

tR>2(nL/nv)h0Avc/acvT. (8.10) 

Using for time r, in the flat film approximation the 
relationships (6.9) and (6.13) derived under the adher­
ence to inequality (6.8) and reverse inequality (6.11), 
respectively, we arrive at the following approximate 

inequalities: 

f, 2ac.vT(nv/nL)h0 

n'DnAvc 

(knhQ/Dn> 1) (8.11) 

and 

h ^ o.cvTnv/nL 

— s 2*„Avr 

(knh0/Dn< 1). (8.12) 

In the case of the partial dissolution of a nucleus, 
expression (8.7) for the halfwidth Avc. of the near criti­
cal range of the droplet sizes is already not applicable 
at the v-axis. In this case, according to estimate (6.26) 
from [10], for Avt., we have 

. -1/3, A I 3 / O N 1 / 9 ~ 2 / 3 

Av c ~ a (4nnLl / 3 ) v 0 , (8.13) 

where / is the correlation length in a film. Hence, this 
value is added to the set of the initial parameters of the 
theory. The v 0 value is defined by the equality 

v 0 = 4nnLR3

0/3; (8.14) 

i.e., it has the meaning of the number of the condensate 
molecules in a droplet (at maximal chemical potential 
of the condensate), which would occur in the absence 
of the condensation nucleus in a droplet. For the flat 
film, in view of approximate equality R =* Rn and the 
aforementioned rather accurate relationship R„ =*/?„, it 
follows from (8.14) and (1.1) that v 0 - nLvn\n (v„ is 
the volume per molecule or ion in a nucleus). Then, the 
estimate (8.13) is written as 

A v c ~ a (4nnLl / 3 ) (nLv„) v„ . (8.15) 

Using (8.15) and letting nLv„ « 1 and / = 2 x 10~9 m 
(as for the film of pure water on quartz [22]) and taking 
for other parameters the same values as for the consid­
ered case of the complete dissolution of a nucleus, we 
obtain 

2acvT(nv/nL)h0 _ ^ x , 0 - y ( ( g J 6 ) 

7t D„Av c 

and 

afk%"L
 ~ 3.3 x lO-V^/UK 2". (8-17) 

where on the right-hand sides we deliberately showed 
multipliers h^/l and DJknl in order to avoid explicit 
estimates of the h0 and k„ values (the analytical expres­
sion for the dependence of film thickness h0 on the ini­
tial nucleus radius, the correlation length in a film, and 
the spreading coefficient of the condensing liquid at the 
surface of the condensation nucleus was reported in 
[9, 10]). 

It was shown in [9, 10] that the film plays an impor­
tant role in the thermodynamics of the droplet nucle-
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ation when its thickness hq does not exceed the correla­
tion length / by more than the order of magnitude. 
Therefore, even if no explicit estimate of h0 is made, it 
is apparent from (8.11) and (8.16) that inequality (8.1) 
is readily valid at kJiQlDn > 1. Further, it is seen from 
(8.12) and (8.17) that inequality (8.1) is also true at 
kJt^lDn < 1; however, the stronger condition k,J%IDn < 1 
becomes, the worse it is fulfilled. 

In all the situations considered in this section, a 
decrease in ctc and an increase in v„ make the inequality 
(8.1) stronger. 

9. HIERARCHY OF CHARACTERISTIC TIME 
SCALES OF THE KINETICS OF DROPLET 

NUCLEATION ON THE MACROSCOPIC NUCLEI 
Together with times tA, t\, and tR, there is yet one 

characteristic time scale of the nucleation process, 
namely, time ts of the establishment of the steady-state 
droplet distribution in the near critical range of their 
sizes [1 ]. Unlike times tA, tt, and tR for a single droplet, 
this time scale is of statistic origin. It is determined by 
the width of the potential maximum of the droplet for­
mation work at the given vapor supersaturation. 

When formulating the kinetic theory of the hetero­
geneous nucleation, it was assumed [I] that, in the near 
critical range of the sizes, the droplets remain under the 
internal equilibrium during the fluctuation surmounting 
the activation barrier of nucleation. Evidently, this pro­
cess requires the adherence to strong inequality 

f,/r, « I . (9.1) 
In general, time ts is given by the relationship 

ts = (Av c ) 2 /27 ia f vTnvR2

0. (9.2) 
This relationship is defined by formulas (11) and 

(25) from [1]. Let us find out when the inequality (9.1) 
is valid. 

As in Section 8, we begin with the case when the 
dissolution of the nucleus in a droplet is complete. 
Using the largest [of all times given by relationships 
(7.4) and (7.6)] time f,, we arrive at the approximate 
inequality 

r, 2acvTnvR4

0 (9.3) 
TtDn(Avcy 

Further, using (8.6) and (8.7) and taking the same val­
ues of the initial parameters as in Section 8, we obtain 

2 0 W / v / ? ° ~ 10- 4a cv„-' / 3. (9.4) 
nDn(Avcy 

It is apparent from (9.3) and (9.4) that inequality 
(9.1) is readily true. This conclusion was made earlier 
in[ l ] . 

Let us pass now to the case when the dissolution of 
the nucleus in a droplet is incomplete, to be more exact, 

when almost flat liquid film is formed around the 
nucleus residue that had no time to be dissolved (it is 
this case that is of interest for the thermodynamics of 
the droplet nucleation). 

Using for time t{ in the flat film approximation rela­
tionships (6.9) and (6.13) derived for the adherence of 
inequality (6.8) and reverse inequality (6.11), respec­
tively, we arrive at the approximate equalities 

2 2 
t\ &acvTnvh0R0 

7iD„(Av c ) z 

and 

t\ 2KOLcvTnvh0R0 

I " *„(Av c) 2 

(k„h0/D„>\) (9.5) 

(knhQ/Dn < 1). (9.6) 

Then, using in the flat film approximation estimate 
(8.15) and relationship R0 =- Rn, taking into account 
(1.1), and assuming the same values of the initial 
parameters as in Section 8, we obtain 

2 2 

5 - - 4 x 1 0 ac(h0/l) v„ 
7tD„(Av c) 2 

(9.7) 

and 

2K*cVTnvh0R0 _ 1 0 - V ( Z V M ) ( V O v - 2 / 3 f ( Q g ) 

**(Avc) 

where on the right-hand sides we deliberately showed 
the multipliers (h0/l)2 and (Dlt/kJ)(h0/l) in order to 
avoid explicit estimates of the h0 and k„ values. 

As was noted in Section 8, the film thickness /i0does 
not exceed the correlation length / by more than the 
order of magnitude; therefore, it is seen from (9.5) and 
(9.7) that inequality (9.1) is true at knh0/D„ > 1. As is 
seen from (9.6) and (9.8), the adherence to inequality 
(9.1) at knh0/D„ < 1 for nuclei with a slow dissolution 
rate may require the establishment of the lower bound­
ary for all nucleus sizes that are permissible by the the­
ory. 

In all the situations considered in this and previous 
sections, a decrease in a c and an increase in v„ makes 
inequality (9.1) stronger. 

The estimates of the ratios of characteristic times 
tJtR and f,//, obtained in this and preceding sections 
enable us to reveal the domain of the values of the ini­
tial parameters of a problem where conditions (8.1) and 
(9.1) that are necessary for the construction of thermo­
dynamics and kinetics of the droplet nucleation are 
valid. 

It is apparent already from the comparison of rela­
tionships (8.8), (8.16), and (8.17) with (9.4), (9.7), and 
(9.8), respectively, that condition (9.1) is more rigorous 
than (8.1); i.e., the time tR is longer than time t„. Let us 
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verify this conclusion by the direct comparison of the tR 

and t„ times. 
At the complete dissolution of the condensation 

nucleus in a droplet, from (8.4) and (9.2), we have the 
inequality 

3 v 0 / A v c , (9.9) 

where v 0 = 4nnLRl/3 is the number of the condensate 
molecules in the droplet with radius R0. According to 
strong inequalities (32) from [2], the relationship 
v 0 /Av c > 1 is readily true. Then, the fulfillment of 
strong inequality 

tR/ts > 1 (9.10) 

readily follows from (9.9). 
When the condensation nucleus is partially dis­

solved in a droplet (to be more exact, when the flat film 
is formed around the undissolved nucleus residue), 
from (8.10), (8.13), (8.14), and (9.2), we obtain the ine­
quality 

+ / . ^ T 7 / 9 , , _ \ 2 / 9 1 / 3 , / , l / 3 / n i t \ 

tR/t,>3 (4KnL) a n0/l . (9.11) 
Taking into account that h0/l ~ 10 and n | / 3 / ~ 10, we 
prove again that strong inequality (9.10) is true. 

It is evident from (5.2), (9.1), and (9.10) that the 
hierarchy of the characteristic times of the kinetics of 
the droplet nucleation on the macroscopic condensa­
tion nuclei ranges as follows: 

tA<tx< ts < tR. (9.12) 

This hierarchy enables us to understand the complex, 
multistage process of the surmounting the activation 
barrier of nucleation by the droplets and to demonstrate 
the applicability of the thermodynamics of this process 
developed in [2-10] to its kinetics elaborated in [1]. 
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