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A complex pattern of behavior is observed by the extrema of the chemical potential of a substance condensed 
from vapor into a drop formed on a surfactant nucleus dissolved in the substance, with the adsorption of the 
surfactant on the drop surface being variable. The Langmuir and Shishkovsky formulas from the theory of 
monolayer surfactant adsorption are used to determine the adsorption of the surfactant from the nucleus and 
the surface tension of the drop as junctions of the concentration of the solution inside the drop. It is shown 
that, depending on the values of the initial parameters of the size of the nucleus, there may be either one 
extremum (which will be maximal in this case) or three extrema (two of which must be maximum and one of 
which must be a minimum). A determination is made of the threshold value of the chemical potential, of the 
vapor, which is determined by the maximum of the chemical potential of the condensate (or the larger of the 
maxima, in the case of two maxima). The results of the analytical theory are illustrated by direct numerical 
calculations of the chemical potential of the condensate as a Junction of the number of condensate molecules. 

With allowance for the adsorption of the substance of the nucleus on the surface of a drop, the study [1] constructed 
a closed system of equations linking the thermodynamic characteristics of the drop when the chemical potential of the 
condensate has an extremum (here, the drop consists of condensate formed from the vapor phase). The present article is 
devoted to study of this system of equations in the general case of an arbitrary degree of saturation of monolayer adsorption. 

The Langmuir and Shishkovsky formulas are used for the adsorption of the substance of the nucleus on the surface and 
the surface tension of the drop as functions of the concentration of the solution inside the drop. Widely used in the theory of 
die monolayer adsorption of surfactants, these formulas make it possible to fully explore the complex, nonlinear nature of the 
thermodynamics of condensation on soluble surfactant nuclei. Here, condensation thermodynamics are determined mainly by 
the degree of adsorption and the surface tension as functions of the concentration of die surfactant solution. Compared to the 
studies [I, 2] we focus on the cases of complete saturation of adsorption and a high degree of undersaturation. 

Initial System of Equa t ions . With allowance for adsorption, the closed system of equations constructed in [1] links 
the thermodynamic characteristics of a drop in which the condensate has a chemical-potential extremum: 

(1 + 2 w - 2 « 3 lns/31n.v)z- - Ни т 3 ) : + 9 = U. (I) 

и = v (£ + 1 >/£, (2) 

v = w - in (£ -M ) , (3) 

31ns/ain.Y = ! / ( £ + 1) (4) 

([1], Eqs. (40), (50-52)). Here: 
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([1], definitions (32), (36), (46-48)). Henceforth: v0 is the total number of condensate molecules; vn is the total number of 
condensation-nucleus molecules or ions; x is the relative concentration of the substance of the nucleus in solution within the 
bulk phase of the drop; x a is the characteristic (for the Langmuir and Shishkovsky formulas) value of concentration x such 
that filling of the surfactant adsorption monolayer begins at x « xa and is completed at x > > xa (a quantitative definition 
of the characteristic value xa is obtained from Eq. (13) in [1]); s is the dimensionless monolayer adsorption (determined by 
Eq. (4) in [1]); is dimensionless monolayer adsorption for complete saturation of the monolayer); a is the dimensionless 
surface tension of the drop (determined by Eq. (4) from [3]); a is the dimensionless surface tension of the drop in the absence 
of adsorption, The quantities vn, xa, s^, and w are external parameters of the problem. 

Together with definition (6), Eq. (1) expands into the thermodynamic equation 

(dW3^)o = 0, (10) 

where b,, is the chemical potential of the condensate inside the bulk phase of the drop. The subscript zero characterizes the 
values of the quantities at the extremum of chemical potential (for simplicity, this subscript is indicated only for the quantity 
v in (5-9)). Equations (2) and (4) follow from the Langmuir formula 

s = И ( 'О 

([1], Eq. (49)), while Eq. (3) is equivalent to the Shishkovsky formula. 

Following [1, 2] we choose the quantity z, defined by (5), as the independent variable to describe a drop for which 
the condensate has a chemical-potential extremum. The quantity z is the fraction of the total amount of the substance of the 
nucleus that is adsorbed. Here, the quantity vn (an external parameter of the problem) will be a function of z. As will be 
shown below, the variable z will also allow us to discern the entire thermodynamic pattern of behavior of the chemical-potential 
extrema of the condensate. No special problems are encountered in changing over in the final formulas from the independent 
variable z to the independent variable *>n. 

Concentration of the Solution Inside the Drop with an Arb i t r a ry Degree of Monolayer Sa tura t ion , The following 
result is obtained from (1-2), (4) by elementary calculation 

Inserting (3) into (12), we obtain the equation 

= i • l + 

( 3 ~ z ) 2 

+ {- ± - • (12) 
2zv 

(3 zf 
(13) 

I 2z\w~~ l n f | - f 1 ) | 

linking the variables z and £. 

In accordance with (13), we have the asymptote 

'£ = 2u 'z/9 (z < 9 / 2 w ) . (14) 

This asymptote ensures satisfaction of the inequality £ < < 1 in the region z « 9/2 w in which it is valid. 

Differentiating (12) with respect to z when w is fixed and using (3), we arrive at an equation for 3(l/£)/3z. Solving 
this, we find 

= z2(2v+\) - 9 e 

bi 2z2v + z (3 - z ) 2 ? 2 (I + 1 Г 1 u~ l 
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Fig. 1. Dependence of solution 
concentration £ inside the drop on the 
variable z describing the drop. 

The below relations follow from (15) 

Ъфг > 0 ( K z m ) , ( 1 6 ) 

Э5/Эг = 0 (z = z m ) , ( l 7 ) 

d$ /3z<0 (z>zm), ( 1 8 ) 

where the value of z m yielding the maximum of the concentration £ of the solution inside the drop with the chemical-potential 

extremum of the condensate satisfies the equation 

( 2 ^ + 1 ) ' 
(19) 

the subscript m denotes values of quantities at the point z = z m , where concentration £ is maximal (at the extremum of 

condensate chemical potential). In accordance with (12), for the maximum value of £ m the concentration £: 

1 O-^mf 

In accordance with (3), the greater £, the smaller v. The value v m is thus the minimum value for v. It should be noted 
that the general information presented above on the concentration £ of the solution inside the drop was obtained without solving 
Eq. (13) for £ (which is impossible to do analytically). 

Relations (16-18) are analogous to relations (9-11) in [2] for a model of a drop with a constant degree of adsorption, 
However, the value of z m is now different, while the derivative 3£/3z — as shown by asymptote (14) — tends toward a finite 
nontrivial value as z -> 0. At the same time, concentration £ also approaches a finite nontrivial value as z -> 1. In fact, we 
find from (12) that 

i l : B l = GV2>L-*i- (2D 

In accordance with (21), we may even obtain £ | z = 1 > > 1. Although the condition £ > > 1 for the validity of the 

drop model with constant adsorption is satisfied in this case, Eq. (21) nevertheless yields results which diverge from those 

obtained from nucleation theory in the given model — in which £ - 0 at z = 1 [2]. The reason for the difference lies in the 

fact that in the drop model with constant adsorption (in which s = s^) attainment of the limiting value z = 1 is only a formal 

possibility. Specifically, it is possible only at the value ( r n / s № ) 3 / 2 of the variable z at which £ = 0, in accordance with the 

equation of the material balance in the drop 

•x = vnv-1 -siTxh (22) 
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([1], Eq. (5)) and definition (9). In the theory which considers the dependence of adsorption on solution concentration inside 
the drop, attainment of the limiting value z = 1 is actually possible (albeit asymptotically). This occurs with the natural 
inequality £ > 0 remaining in force. 

It was also noted in [2] that the nucleation theory in the drop model with constant adsorption becomes invalid as the 
variable z approaches its upper limit 2 = 1 . 

Figure 1 shows the behavior of concentration £ in relation to z as determined from (16-18), (14), and (21). 
Thermodynamics of a Drop with an Arbitrary Degree of Monolayer Saturation. In accordance with general 

thermodynamic expressions (34-35) from [1], we obtain the following with allowance for Eq. (11) and definition (9): 

" " ~. ^ ' < 2 3 ) 

4> s -
'o = — (24) 

Equations (23), (24) become the analogous expressions (17-18) from [2] in the case £ > > 1, although the dependence 
of £ on z may even then (with £ > > I)"be the same as in the drop model with constant adsorption. 

In the other limiting case, £ « 1, we have the following in accordance with (14), (23-24): 

= — u « 4 / 2 w ) , (25) 
J 2 

= (9unl2 a)'A {Z<9I2W), (26) 

where the quantity 1 — z is identified with 1 (at z < < 9/2w). Asymptote (26) corresponds to Eq. (25) from [1] for the case 
of a high degree of undersaturation of adsorption. Expressing z in the above-obtained asymptote (14) in terms of ej / 2 by means 
of (25) and considering (8-9), we also find that (14) corresponds to Eq. (26) from [1] for the case of a high degree of 
adsorption undersaturation. 

We use (23-24) to obtain the relations 

" * l z = . = °- (27) 

»\>AI_. = , = 0. (28) 

Since these relations ensure a drop volume equal to zero, they are consistent with Eq. (21). In accordance with the latter, 
solution concentration at z = 1 differs from 0. Drop volume decreases more rapidly than the area of its surface as the size 
of the drop approaches 0. It is understood that (27-28) have a purely formal meaning in the macroscopic theory. 

We can use (23) to find 

9i# ^ ( 1 - z I 7 , ( 2 $ - 1) Э ( 1 / | ) _ (3 - г) S* 

& ~ 2xa

 1

 Z ' A ( 5 + П * Ъ г 2 ' A u + l ) ' A 1 ( 2 9 ) 

Partial derivatives are taken with fixed parameters x a , s ^ , and w. The second term in the right side of (29) is negative 
throughout the physical region 0 < z < I. 

However, as is clear from (16), the first term in the right side of (29) will also be negative in any region in which £ 
> 1/2 and z < z m . Thus, in accordance with (29), dvjdz < 0 throughout this region — including the very point z = z m 

at which (following (17), (29)) the below equation is valid 

I 

Л ftn + l ) * ( 3 0 ) 

Asymptote (25) shows that the inequality dvjbz < 0 is also valid at z < < 9/2w, when £ < < 1. Thus, it is certain 
that the condition £ > 1/2 is violated. Although the first term in the right side of (29) remains positive in this case, it is less 
than the absolute value of the second (negative) term in the right side of (29). Thus, the inequality dvjdz < 0 holds 
throughout the region 0 < z < z 
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Generally speaking, it is impossible to definitively establish the sign of the derivative dvf-idz in the region z m < z 
< 1. However, it can be determined that the derivative дрЦ2/дх is nonetheless negative at the upper boundary z = 1 of this 
region. In fact, in accordance with (21), (29), we have 

9 ^ 

^ = (u + 2)*~ ( 3 1 ) 

If the parameter w is large enough so that the inequality 

exp(w - 1 2 ) > 1 (32) 

is observed, (this inequality being necessary in the constant-adsorption drop model so that the chemical-potential extremum of 
the condensate can be obtained with complete saturation of the adsorption monolayer — see inequality (14) in [2]), then the 
derivative dv\(2/dz changes twice within the region z m < z < 1. This will become clear from the subsequent discussion. 
Since, in accordance with (30), this derivative is negative at z = z m , it becomes positive with an increase in the variable z from 
the value z = z m and then again becomes negative — in accordance with (31) — as z approaches z = 1. 

Consequently, by turning out to be a necessary condition in the drop model with constant adsorption, inequality (32) 
illustrates an important fact in the general theory of nucleation with variable adsorption: The derivative диЦ21дг is not negative 
anywhere within the physical region 0 < z < 1 of the variable z. As is clear from (8) satisfaction of inequality (32) in fact 
requires that surface tension й be fairly high in the absence of adsorption and, conversely, that adsorption s^ be fairly small 
with complete saturation of the monolayer. 

Further progress in the thermodynamics of nucleation with an arbitrary degree of monolayer saturation is impossible 
without solving Eq. (13), linking the variables z and £. In turn, as already noted, Eq. (13) cannot be solved for the variable 
£ in analytical form (in contrast to the analogous equation in the drop model with constant adsorption). 

Concentrat ion of Surfactant Solution Inside the Drop as a Variable in the Description of the Drop. Equation (13), 
connecting the variables z and £, can be solved for z. We will take advantage of this property of Eq. (13) below (the equation 
is necessarily quadratic due to the form of general thermodynamic equation (1) in the variable z). 

Accordingly, instead of z, we take the solution concentration £ inside the drop as the independent variable to describe 
the drop (in which the condensate has a chemical potential with an extremum). No particular difficulties are encountered in 
changing over in the final formulas from the independent variable £ to the more convenient (for analyzing the results) 
independent variable z and then changing from z to the natural (for practical purposes) variable vxv 

Thus, choosing concentration £ as the independent variable and solving Eq. (13) for z, we obtain 

= ( g + l ) » + 3 { ? уДГПТ»2 - 6 £ ( 2 £ - l ) u ( 3 3 ) 

H 2 u + I) 

The superscripts - and + with the variable z denote the two branches of its dependence on £ (these branches correspond to 
the minus sign and plus sign next to the curve in Fig. 1). In accordance with (3), the quantity v is in turn a function of £ with 
fixed x a , S o o , and w. We can use (33) to also find the inverse dependence of £ on z. This will be done below. 

Together with the formulas obtained above, Eq. (33) gives an analytical solution for the entire nonlinear problem of 
finding the thermodynamic characteristics of a drop having a chemical-potential extremum with an arbitrary degree of saturation 
of the monolayer of the nucleus substance on the drop surface. 

With allowance for (3) it follows from (33) that 

z _ = 9£/2u' ( £ « U ) (34) 

Comparing (34) and (14), we see that the branch z_ of the dependence of z on £ in Eq. (33) includes an asymptotic part 
corresponding to a high degree of undersaturation of monolayer adsorption. 

The fact that Eq. (33) is real-valued implies satisfaction of the condition • 

6£ ( 2 £ - l ) 
и > — (J5) 
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The two branches z_ and z + of the dependence of z on £ in Eq. (33) merge at the point £ = £ m , z = z m (see Fig. 1). The 
quantity under the square root sign in (33) vanishes at this point, while (35) becomes 

6 £ m ( 2 U - l ) 
Um - i^r (36) 

As is clear from (3), a decrease in concentration £ from its maximum value £ m is accompanied by a monotonic increase 
in the quantity in the left side of (35) from its minimum v m . Here, the quantity in the right side of (35) decreases 
monotonically. However, the inequality £ > 1/5 remains valid. Before this inequality is violated, the quantity in the right 
side of (35) becomes negative (at £ > 1/2). This ensures satisfaction of condition (35). 

In sum, it is apparent that Eq. (36) guarantees satisfaction of limitation (35). The equality sign exists in (35) only when 
£ = £ m . If £ < £ m , there will be an inequality sign in (35). It is also evident from (36) that we will always at least have £ m 

> 1/2 and v m <, 12. 
Solving Eq. (36) for £ m , we obtain 

3 ( 2 u m + l ) / 2 - u „ (37) 

In accordance with (20) and (37), we obtain the previous relation (19). 
The below formula follows from Eqs. (19) and (36) 

Z m likUL (38) 

this formula expressing z m directly through the maximum concentration £ m . Also following from (19) and (36) is the inverse 
of (38) 

Expanding (36) in accordance with (3), we arrive at a closed equation for £ m : 

w - in ftm + I) = 6 | m ( 2 ^ ^ 1 ) - (40) 

It is clear from the above proof of condition (35) by means of Eq. (36) that the root £ m of Eq. (40) is unique (for each assigned 
w). 

If the inequality £ m > > 1 is satisfied, then it can be concluded with a high degree of accuracy that the quantities in 
the right sides of (36) and (40) will have a value of 12. With a similarly high degree of accuracy, it then follows from (36) 
and (40) that 

vm = 12 ( 4 I ) 

\ m = exp (w - 12) (42) 

while it follows from (19) that 

Zm = 3/5 (43) 

It turns out that 12 is the maximum possible value of v m in the general case. With £ m > > 1, Eq. (43) is easily found directly 
by means of (38). In addition, (38) can easily be used to determine that 3/5 is in general the minimum possible value for z m . 
It is also apparent from (40) that the inequality £ m > > 1 holds when inequality (32) is observed (the latter inequality is not 
fundamental to the general theory of condensation with arbitrary adsorption). Equations (41-43) agree with relations (14), (13), 
and (12), respectively, in [2] for the drop model with constant adsorption. 

Taking (15) into account and using (42-43), we can show that the following relation is valid when inequality (32) is 
satisfied 
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Fig. 2. Dependence of In vn on z with w = 10, xa = 1Q" 5 , and sm = 1. 

tn v0 

20 

Fig. 3. Dependence of In ^ 0 on z with w = 10, x a = 1 0 - 5 , and s O T = 1. 

(44) 

this relation coinciding with Eq. (16) from [2]. Together with (17), (42), and (43), Eq. (44) shows that the dependence of 
concentration £ on the variable z in the neighborhood of the point z = z m of the concentration maximum and the position of 
this point on the z axis are the same with satisfaction of inequality (32) in the nucleation theory in which adsorption is constant 
and in the nucleation theory in which allowance is made for the concentration dependence of adsorption. This should be 
expected, since, in the neighborhood of the point z = z m , the condition £ > > 1 of validity of the drop model with constant 
adsorption is always satisfied with inequality (32). 

In accordance vvidi (41), the value of v found from (7) for the maximum solution concentration inside the drop has the 
same minimum v m = 12 whether or not inequality (32) is satisfied. This confirms the conclusion reached in regard to die 
constant-adsorption model in [2]: the solution concentration inside the drop - where chemical potential has an extremum - has 
a stabilizing effect on the minimum value of the surface tension of the drop. 

If (32) is violated, then v m < 12 (and z m > 3/5). As has already been noted, the value 12 is the maximum value 
possible for v m (even though v m is itself the minimum value of v for each assigned w). 

Extrema of Condensate Chemical Potential with Arbitrary Monolayer Saturation. Let us discuss the results 
calculated on the basis of exact formulas (23-24), (29), (33), (36), (38), and (40) of the nucleation theory in which allowance 
is made for the dependence of adsorption on the drop surface on the concentration of the solution ins.de die drop. 

We begin with the situation in which inequality (32) - equivalent to the inequality £ m » 1 - is violated. We set 
w = Ю. Solving Eq. (40) for £ m in tins case, we obtain * i n = 5.96. In accordance with (36) and (38), we then have v m -
8.06 and z m = 0.725. 
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Fig. 4. Dependence of In vn on z with w = 20, x a = 1 0 ~ 5 , and = 1. 

Figure 2 shows the dependence of pn on the variable z in its physical region 0 < z < 1 for w = 1 0 . This curve was 
constructed from ( 2 3 ) , ( 2 9 ) , ( 3 3 ) and is shown in logarithmic scale. We put xa = 1 0 ~ 5 and s ^ = 1. 

It is apparent that vn decreases monotonically with an increase in z throughout the region 0 < z < 1. In accordance 
with ( 2 5 ) , this decrease begins from the asymptotic value oo as z = 0 and, in keeping with ( 2 7 ) , ( 3 1 ) , approaches 0 as z -* 
1. 

Thus, for each assigned vn within the interval 0 < P U < o o } there is only one ex t remum for the chemical potential 
of the condensate. Of course, this extremum will be a maximum (as is clear from the general hypothesis that the chemical 
potential of the condensate approaches — oo as P -» 0 ) . 

Figure 3 also uses a logarithmic scale to show the dependence of P Q on z in its physical region 0 < z < 1 at w = 10 . 
This dependence was obtained from ( 2 4 ) , ( 3 3 ) . A qualitative indication of the value z n i = 0 . 0 7 2 5 is given relative to the z 
axis. We put xa = 1 0 ~ 5 and s ^ = 1. 

It is apparent that vQ decreases monotonically with an increase in z throughout the region 0 < z < 1 . This decrease 
begins from the asymptotic value oo at z = 0 (in accordance with ( 2 5 - 2 6 ) ) and approaches 0 as z -» 1 (in accordance with (28 ) ) . 

Let us now turn to the opposite situation, in which inequality ( 3 2 ) — equivalent to the inequality £ M > > 1 — is 
observed. In this case, Eqs. ( 4 1 - 4 3 ) will also be valid. We put w = 2 0 . In accordance with ( 4 2 ) , w e then have £R N = 3 - 1 0 3 . 

Figure 4 uses the logarithmic scale to show the dependence of РП on the variable z in its physical region 0 < z <> 1 
at w = 2 0 . This dependence was constructed from ( 2 3 ) , ( 2 9 ) , ( 3 3 ) . A qualitative indication is given of the value z m = 0 . 6 0 0 3 
on the z axis. We put xa = 1 0 ~ 5 , s ^ — 1. 

As before, the curve of the dependence of РП on z agrees with ( 2 5 ) , ( 2 7 ) , ( 3 1 ) . However , the quantity pn no longer 
decreases monotonically with z. It is apparent that 

bujbz < 0 (z<zS°) ( 4 5 ) 

bvn\bz = 0 ( 2 = z i a ) ) (46) 

du„ldz>0 ( z i f l ) < z < z i d ) ) ( 4 7 ) 

d»nldz = 0 ( z = z i b ) ) (48 ) 

dpjdz<0 ( z > z i b ) ) ( 4 9 ) 

where z& and zQ^ are coordinates of points at which РП reaches a minimum and a maximum on the z axis, respectively. When 
w = 2 0 , xa = К Г 5 , = 1, we have z , « = 0 . 6 4 5 , z.<b> = 0 . 9 0 5 , P „ . W = 6 4 5 , vnJ& = 2 . 5 - 1 0 5 , where * v ( a ) and 

are the values of the minimum and maximum for pn. The following is valid 

zm <*<?>< z £ b )

 ( 5 0 ) 

so that at 0 <, z <, z m we always have dvjdz < 0. Also naturally valid is the expression 

(51) 

Thus, we now have three basic possibilities for each assigned value of pn within the interval 0 < vn < oo . 
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If 0 < р п < j> n *^ , then chemical potential has only one extremum. This extremum will be a maximum. 

If p n * ^ < p n < pnJ^\ then chemical potential will have three extrema. Two of these will be maxima and one will 

be a minimum. In this case 

2, <2\а\ l[a)<Z2 <1^\ 2 3 > r l M (52) 

where the values z{ and z 3 of the variable z characterize drops having maxima of chemical potential Ь„. The value z 2 of tJie 
variable z characterizes a drop having a minimum of chemical potential b r 

Finally, if р п > р п * ^ ь \ then chemical potential b^ will again have only one extremum. This will be a maximum. 
The part of the curve of the dependence of vn on z shown in Fig. 4 by the solid line for 0 < z < z*M and z*( b ) < 

z < 1 corresponds to a maximum of chemical potential b , , while the part of this curve shown by the dashed line for z ^ a ) < 
z < z*(b) corresponds to a minimum of chemical potential b^. Points 1 and 3 on the curve correspond to drops which have 
a maximum of chemical potential bv for the assigned p i v Point 2 on the curve corresponds to a drop which, for the assigned 
vxv has a minimum of chemical potential b„. 

Figure 5 uses tlie logarithmic scale to present the curve of the dependence of p q on the variable z within its physical 
region 0 < z < 1 at w = 2 0 . This curve was constructed from (24), (33). We put xa = 1 0 " * 5 , s ^ = 1. For the coordinates 
ixt^ and z * * ^ on the z axis — at which p 0 reaches a minimum and a maximum, respectively — we have (with w = 2 0 ) 
z«( a) = 0 .643 and z * * ^ = 0.904. The parts of the dependence of p 0 on z shown by the solid and dashed lines in Fig. 5 have 
the same significance as in Fig. 4 . This is also true of points 1-3 on the curve. These points correspond to values of ^ 0 1 , p 0 2 , 
and p Q 3 — roots of Eq. ( 1 0 ) . The curve agrees with ( 2 5 - 2 6 ) , (28). 

Let us see how the values ^ 0 1 , p 0 2 ) and p 0 3 are positioned on the axis of the variable v relative to each other for the 

assigned p i v He re , we have 

l)n\ = vn2 = »ni (53) 

It follows from ( 2 3 - 2 4 ) that 

vt^n = + l ) * < ' $ , / : 0 ( 5 4 ) 

In accordance with (17-18), we have 
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d [ z « + l)/f]/3z > 0 (z>zm-) ( 5 5 ) 

(the range of application of this inequality is actually broader than indicated). By virtue of (50) and (52), we find that 

zm <z2 < z 3 (56) 

Using (53-56), we obtain 

uQ2 < vQ3 (57) 

Thus, with the assigned Р Ю the value of P Q 2 ensuring a minimum of chemical potential b , is to the left of vQ3 (which ensures 
a maximum of chemical potential b,,) on the axis of the variable P. 

Since the minimum is located between two maxima, it also follows from (57) that 

This additionally shows the relative location of P O U P Q 2 , and P 0 3 on the P axis for an assigned р п . It is obvious that (58) is 
consistent with the general hypothesis that the chemical potential of the condensate approaches - co as v -* 0 and ceases to 
depend on p when 

Region of Coexistence of Three Chemical-Potential Ext rema. As has already been noted, with an increase in the 
parameter w, the monotonia decrease in pn with an increase in z is replaced by a nonmonotonic decrease in p n . Let us 
determine the values of w at which this change takes place. 

Regarding Eqs. (46) and (48) as the equations for the coordinates z * ^ and z*(b) of the minimum and maximum of the 
dependence of p n on z, we write these equations as follows with the use of (29), (15), and (12) 

/ 0 0 1 г я %(«) = 0, f(z)\ 2 = jb) = 0 (59) 

where 

( 3 - z ) ( 3 - 2 z ) ( 3 ^ z ) 2 , 
/ ( z ) = l - z - — - - _ - (z — z + 3) ( 6 0 ) 

2zv 4z tr 4 1 

Together with the function f(z), we will also need its derivative f'(z) with respect to z. In accordance with (60), (9), (15), and 
(12), we have 

1 
/ (*) = — — \ - z 4 ( 2 u . + l ) 2 + 1 8 z 2 ( u + l ) - 5 4 z + 81 + 

4z и 2 

4 z ( 3 - z ) [ z 2 ( 3 - 2 z ) u + (3 ~z)(z2 - z + 3)] [ z 2 ( 2 u + l ) - 9 ] \ ( 6 1 ^ 

[2z (z - 1) v + ( 3 - z ) 2 1 [2z 2 v + (3 - z ) 2 ] + 2z (3 - z ) 2 I 

Taking z*(a) and z * ^ as assigned values, we can use (59-60) to obtain a quadratic equation for v at the points z = z**ft* 
and z = z * ^ . Solving this equation, we obtain 

3 - 2 X 

У = [ 2 ( 3 - 2 г ) + ^ ( 1 2 - 7 г - 4 г * ) ] ( z = z i f } и z = z[b)) ( 6 2 ) 
4z (1 - z) 

The second root of the equation is negative and is thus of no physical interest. 

The replacement of the monotonic decrease in рп with an increase in z by a nonmonotonic decrease in the former occurs 
when the parameter w reaches the boundary value w b at which 

zia) - z<*>« zb (63) 

Here, the coordinates z * ^ and z* ( b) of the minimum and maximum of Pn{z) join to give the coordinate z b of the point of 
inflection. It follows from (59), (63) that 

2 2 0 



Л * > 1 г . . й - 0 (64) 

Equation (64) is equivalent to the equation obtained from (62) with observance of (63) for v at the point z = z b . 
Inserting (63) into Eq. (65) after expansion of the latter by means of (61) yields a closed algebraic equation for the sought 
quantity z b . The equation contains no external parameters and has a single positive real root. 

Solving the equation numerically, we find 

zh = 0.757 (66) 

In accordance with (62), (66), and (12), the values v b and £ b corresponding to v and £ for the point of inflection z - z b are: 

4 = И .89, ^ = 2 7 . 3 5 ( 6 7 ) 

Finally, using (67) and (3), we obtain 

Щ = l 5 - 2 3 (68) 

The values of v b , £ b , and w b - as z b itself - are independent of the external parameters. 
In essence, the conditions w < w b and w > w b distinguish the two characteristic situations examined above. Relation 

(68) makes it possible to accurately determine which of the situations prevails in reality. Previously, we could have made such 
a judgment only on the basis of whether or not strong inequality (32) was observed. 

Besides satisfaction of the condition w > w b , the simultaneous existence of three chemical-potential extrema implies 
satisfaction of the condition P N * ^ < vn < * v ^ . Thus, we must find P N * ^ and ^*in order to determine the region in which 
these three extrema coexist. 

First we find z * W and zjb\ The value of z j a ) is close to z m . Thus, the following is valid with a high degree of 
accuracy 

f(z£ > ) - / (zm) + / ' ( z m ) • (z <f) - zm ) (69) 

Considering the equality that follows from (36) and (39) 

9 - z i , m 

we find on the basis of (60-61) that 

2Zm 

( 3 + z m ) 2 

(70) 

(71) 

Г (гт) = — ^ — T (72) 
(3 + z m ) 2 

Inserting (71-72) into (69) and then taking (59) into account, we arrive at an equation for ЙР. Solving this equation, 

we find 

Ла) - ~ ( z m + 2Szm - 9 ) (73) 

The value of z*(b) is close to 1. Thus, the following expression is valid with a high degree of accuracy 

f{zlb))^ / ( ! ) + / ' ( D U l ^ - l ) (74) 

Proceeding on the basis of (60-61), we have 
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и + 3 

(75) 

(76) 

Z ~ 1 
Inserting (75-76) into (74) and then considering (59), we arrive at an equation for z^b\ Solving this equation, we find 

2 i » . ^ 1 ^ ^ , ( 7 7 ) 

2u 3 -2v2 ~ 4 5 u - 42 ^ { 

The quantities z m and v j 2 = 1 in Eqs. (73) and (77) are unambiguously related to the parameter w by relations that 

follow from (39-40) and (21) , (3) , respectively 

w - _ -f In ( ) (7o) 
2l-m Szm - 3 

w = v\,_ . + ln ( ^ - ) | ( 7 9 ) 

In accordance with (78-79) we have z m = 0 .6003 and v | z = l = 17.7 at w = 2 0 . Using Eqs. ( 7 3 ) and ( 7 7 ) , we then 
find: z* ( a ) = 0 .64 (exact value z.<a> = 0.645) and z*<b> = 0.91 (exact value z . ( b ) = 0 . 9 0 5 ) . Further, when w = w b = 15.23, 
we have: z m = 0 .6156, v | z e l = 13.2. Using formulas (73) and (77) , we then find: z*<a> « 0 . 75 and z^ b > = 0 .85 (by 
virtue of (63) and (66) , the exact values would be z*W = z* ( b ) = z b = 0 . 7 5 7 ) . 

It is apparent that Eq. (73) ensures a high degree of accuracy for all w > w b . The accuracy of formula ( 77 ) is lower 
only when w is slightly greater than w b . 

Together with formulas (62) and (3) , formulas (23) and (73) give a closed expression for *> n*^ for assigned values of 
x f t , , and w. Similarly, together with formulas (62) and (12) , formulas (23) and (77) give a closed expression for vnJ& with 
assigned x a , s ^ , and w. 

Threshold Value of the Chemical Potential of the Vapor in Nucleation on Nuclei of Soluble Surfactants. In 
accordance with general thermodynamic formula (41) from [ 1] the following is valid for the extreme value (b„) 0 of the chemical 
potential of the condensate bv 

2zu 
{ b v ) ^ x 1

 3 ( 1 _ g ) ~ l ] ОТ 

The chemical potential of the condensate b„ is expressed in thermal units of energy and is reckoned from the value 
corresponding to equilibrium of the vapor with the condensing liquid when their contact surface is planer. 

The threshold value b t r of the chemical potential of the vapor is determined by the maximum of the chemical potential 
of the condensate hv or — if there is more than one maximum — by the largest of the maxima. We express the threshold value 
b l r (as bv) in thermal energy units and reckon it from the value corresponding to equilibrium of the vapor with the condensing 
liquid when their contact surface is planer. 

When allowance is made for the effect of the concentration of the solution inside a drop on the degree of adsorption 
of *he surfactant on the drop surface, we find that there are two characteristic situations in regard to the thermodynamics of 
condensation on soluble surfactant nuclei. 

First we will examine the situation in which inequality (32) is not satisfied (more exactly, when w < w b ) . In this case, 
Eq. (10) will have one root P 0 within the interval 0 < pn < oo for each assigned *>n. It yields a maximum of chemical 
potential b r Accordingly, when 

btr~ (fiv)o (81) 

where, in accordance with (80) , (2) , and (9): 

(Mo = [ — - — — - J ] Ш ) 
3 ( ] - z ) $ { } 
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Now we will examine the second situation, when, conversely, inequality (32) is observed (more exactly, when w > 
w b ) . 

If the value of the parameter vn turns out to be within the interval 0 < pn < PU*№ or the interval РП > РПх^\ then 
Eq. (10) has one root P 0 . It gives a maximum of chemical potential b r In this case, Eqs. (81) and (82) remain valid (although 
the values of z, £, and v in these expressions will be different, of course). 

If the value of РП turns out to lie within the interval i>{°J < vn < , then Eq. (10) has two roots P0 = P01 and 
VQ = P Q 3 . These roots give a maximum of chemical potential b , (there is also another root, pQ = P 0 2 , which gives a minimum 
of chemical potential b^). Since the threshold chemical potential of the vapor is determined by the larger of the maxima of 
chemical potential b^, then 

bTr= m a x [ ( М о 1 , ( М о з ] (83) 

where, in accordance with ( 8 0 ) , (2), and (9): 

2zt + l)u,. 
( М о / = х * Ы - п x y ~ 4 (84) 

3 (1 - zi) £/ 

(£j, v- correspond to values z{ of the variable z; i = 1, 3) . When i = 2 , Eq. (84) determines the minimum of chemical 
potential b r 

Previous sections of this article described algorithms for finding the quantities in the right sides of (82) and (84) with 
assigned external parameters vn> x a , s ^ , and w. 

In place of ( 8 1 ) and ( 8 3 ) , we can easily find a single expression for the threshold value b l r of the chemical potential 
of the vapor when inequality ( 32 ) is satisfied (more exactly when w > w b ) . We will use the subscript 3 to denote the single 
root j>0 of Eq. (10) at 0 < РП < p n ^ and the corresponding values of z, £, v, and (by)Q. This number will at the same time 
serve to emphasize that the given root is an analytic continuation of the root P 0 3 from the region v\aJ < vn < ^} • In 
addition, we will use the subscript 1 to denote the single root v0 of Eq. (10) at РП > pn*№ and the corresponding values of 
z, v, and (b^) 0 . This number also serves to emphasize that the given root is an analytic continuation of the root p Q l from 
the region p{

n

aJ < vn < p{

n

bJ . Then combining (81) and (83), we obtain 

f ( ^ ) о з iP<vn<^l)) 

btr = max [ № Л ь 1 М о з ] ( ^ ) < ^ < ^ ) ) ( 8 5 ) 

where (b„) 0 i is determined from Eq. (84 ) . 
In the case of a high degree of undersaturation of the monolayer on the drop surface — when Eq. (10) has one root 

(corresponding to a maximum of chemical potential b^) — we can use (80), (2-3) , and (14) to obtain the simple asymptotic 
expression 

b t r ^ 2 x ^ 2 x ^ i£<\) (86) 

(here, we took (9) into account). Since relation (26) from [I] is valid in the case of a high degree of monolayer 
undersaturation, we can write Eq. (86) as 

b t r = 2(2 a^lllu^ $<\) (87) 

this being Kohler's formula [4] (see [3], Eq. (11)). 
Let us discuss the results of calculation of the threshold value b l r of the chemical potential of the vapor in the general 

theory, with allowance for the dependence of adsorption on the concentration of the solution inside the drop. 
Curve I in Fig . 6 shows the dependence of b t r on pn described by Eqs. (81-82) with w = 10, x a - 1 0 " 5 , s M = 1 

(when inequality (32) is not satisfied), A logarithmic scale was used for P I V For comparison, curve II shows the dependence 
of b t r on PN according to asymptotic formula (87). This formula is actually valid only if PU is sufficiently large (f 1], condition 
(27)). In this case, curve II nearly merges with I. The deviation of I from curve II illustrates the effect of adsorption on the 
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Fig. 6. Dependence of b t r on In vn with w = 10, x a — до~5

э and = 1 

threshold value of the chemical potential of the vapor. Let us explore this effect further. We begin with the region of very 
high values of pn (values at which condition (27) from [1] is observed for certain). Adsorption is seen to have little effect on 
the threshold chemical potential of the vapor in this case (it is not even perceptible in Fig. 6) . While small, this effect 
nonetheless leads (in accordance with Eq. (29) from [1]) to the previously discovered [1] increase in the threshold chemical 
potential of the vapor when the substance of the condensation nucleus is surface-active (when s > 0). 

However, the effect of adsorption on threshold chemical potential changes in terms of both sign and magnitude with 
a decrease in ptt. Figure 6 convincingly shows that, with a decrease in РПУ adsorption conversely decreases (and very 
substantially) the threshold chemical potential of the vapor. The decrease in the latter with a decrease in pn occurs within the 
region of large values of vn— where the condition regarding the macroscopic nature of the condensation nucleus РП>> 1 is 
satisfied (this condition corresponds to condition (37) in [3]). 

Curves 1-3 in Fig. 7 show the dependence of the extreme values (b„) o i (i = 1, 2 , 3) of the chemical potential of the 
condensate Ъу on In pn according to Eq. (84) when w = 20, xa = 1 0 ~ 5 , and = 1 (when inequality (32) is satisfied). As 
before, a logarithmic scale is used for *>n. The extreme values (b„) 0 1 and (b^) 0 3 are maxima of chemical potential b^, while 
the extreme value (Ь„) 0 2 is a minimum of chemical potential b r This minimum exists only when p[

n

aJ < un < v{

n

bJ . In 
this case, it exists with both maxima. In the region и < vn < p[

n

aJ there is only one maximum ( b ^ ) 0 3 , while in the region 
vn > there is only one maximum ( b F ) 0 1 . In accordance with (85), the threshold value b l r of the chemical potential 

of the vapor for each value of *>n is determined by the highest parts of curves 1 and 3 . The maxima (b^) 0 1 and (b^) 0 3 

responsible for the threshold value b t r of the chemical potential of the vapor change places at the point of intersection of curves 
1 and 3. Curves 1 and 3 terminate respectively at ( b F ) 0 1 and (b^) 0 3 . As might be expected, the minimum (b„) 0 2 lies below 
the maxima (b„) 0 1 and (b K ) 0 3 , 

We make the following observation. With the use of the logarithmic scale for pn and pQ in Figs. 2-7, it is implied that 
pn > 1 and J>0 ^ 1. Thus, In РП ^ 0 and In pQ > 0. In this case, the agreement between Figs. 2-7 and formal relations (27-
28) is only qualitative. 

Direct Calculations of the Chemical Potential of the Condensate with Variable Adsorpt ion. We will illustrate the 
above analytical findings regarding the extrema of the chemical potential of the condensate b,, by direct calculation of Ъу as a 
function of the variable p with assigned parameters P I V x f t , s ^ , and w. 

We will proceed on the basis of the general thermodynamic expression presented in [1] for b / . 

([1], Eq. (9)). We will also take into account Eq. (22) for the material balance in the drop. In light of (7-9), the dependence 
of the surface tension of the drop a and the amount of adsorption s on concentration x is given by Eqs. (3) and (11). 

We use (22) and (11) to obtain a quadratic equation for concentration x (with assigned pn, s f t , x ^ ) . Solving the 
equation we find 

(88) 
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i ,/ 1 ; • —, — 
X = у ("n v~X - W " 3 -Xa) +• — V (i/„ i/" 1 - ^ ^ - Л . ^ г (89) 

The second root of this equation is negative and is thus of no physical interest. 
In accordance with ( 8 9 ) , we will have 

x = vnv~l -s^v~ly - + ° o (i/-»-0) (90) 

X = VnV"1 ->0 ( y - > o o ) (91) 

Although Eq. (90 ) and the consequent (by virtue of (3)) approach of a to - o o as v -» 0 are of purely formal 
significance, they nevertheless lead (in accordance with (88)) to the correct result: b^ -> - oo as v -> 0. This result is not 
influenced by the fact that the first term in the right side of (88) must be replaced by - I n x when x -» oo [3] . 

The variable v has no upper bound when allowance is made for the dependence of adsorption on the drop surface on 
the concentration of the solution inside the drop. This contrasts with the drop model in which adsorption is constant [2] . 
Relations (88), ( 3 ) , and (91) are consistent with the general hypothesis that the chemical potential of the condensate bv 

approaches zero from the side of positive values when p -> oo. 
Figure 8 shows results calculated from formulas (88), (3), (7 -9) , and (89) to determine chemical potential b„ as a 

function of P. We put vn = 1 0 0 0 , xa = 1 0 ~ 5 , s M = 1, й = 20 , and, accordingly, w = 20 . As is clear from (68), the 
inequality w > w b is satisfied for the chosen parameter values. We also find that * v ( a ) < pn < * V ( b ) (*V ( a ) = 6 4 5 > " n * ( b ) 

= 2.5T0 5 when xa - 1 0 ~ 5 , s ^ = 1 , and w = 2 0 ) . Thus, both of the above conditions regarding the simultaneous existence 
of three extrema of chemical potential b„ are satisfied. These extrema can be seen in Fig. 8. Their relative location on the 
axis of the variable v is consistent with ( 5 8 ) . 

A decrease in pn would cause the left maximum to approach the minimum of chemical potential b r These extrema 
would even merge at РП = v n ^ \ leaving chemical potential b„ with just one (the right) maximum. Conversely, an increase 
l n * n

 w ould cause the right maximum to approach the minimum of chemical potential b r These extrema would merge at РП 

= V { b ) and chemical potential b„ would have only one (the left) maximum. 

If, with assigned pn and x a , we were to change s ^ and a so as to decrease the parameter w, the left maximum of 
chemical potential bv would also decrease. At w = w b , the left maximum and minimum of chemical potential b^ would merge 
(and only the right maximum would remain at w < w b ) . 
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Fig. 8. Chemical potential as a ftmction of v with vn = 
1000, x a = 10"" 5, = 1, w = 20, and adsoфt ion 
dependent on concentration. 

If we were to instead change and й so as to increase w for assigned i>n and x a , we would see the following pattern. 
The left maximum of chemical potential b^ would increase. The minimum of chemical potential b„ would be moved farther 
from this maximum and become more distinct. The value of *>n*^ would decrease and become nearly equal to *>n» in the drop 
model with constant adsorption [2]. The value of y n * ^ , conversely, would increase. As a result, the condition ^n

aJ < vn < v^J 
for the simultaneous existence of three extrema of chemical potential b , would be satisfied (assuming that РП is assigned) with 
a large margin of error. 

The extrema of the chemical potential of the condensate b , must be studied analytically in order to predict the complex 
effect of all four external parameters *>n, x a , s № } and w on by as a function of the variable v by direct numerical calculation. 
We should also recall the statement in [2] to the effect that numerical determination of the dependence of chemical potential 
b„ on v yields a result that is valid only for one value of the external parameter pni while analytic relations established between 
the thermodynamic characteristics of a drop in which the condensate has an extremum of chemical potential embrace the entire 
range of possible values of the parameter vn. 
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