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Allowance is made for the adsorption of the substance of the nucleus on the surface of the drop in the material 
balance equation for a condensation nucleus dissolved in a drop. Vie thermodynamics ofnucleatlon is studied 
for the case of a high degree of adsorption undersaturation. A condition is established in thermodynamic form 
to determine the extremum of the chemical potential of the condensate in the drop in the general case of an 
arbitrary degree of adsorption saturation. With allowance for adsorption of the substance of the nucleus, a 
closed system of equations is constructed to link the thermodynamic cliaracteristics of a drop in which the 
condensate has a chemical potential with an extremum. 

The study [1] and earlier publications [2-4] on the thermodynamics of condensation on nuclei that are soluble in newly 
formed drops did not consider adsorption of the substance of the nucleus on the surface of the drop. Under the conditions of 
practical interest, condensation on soluble nuclei occurs with a low level of vapor supersaturation, and drops with a low 
concentration of the substance of the nucleus in the solution inside the drop play the determining role in the thermodynamics 
of condensation [1]. As a result, the assumption made in [4] that the absolute value of adsorption is small is quite acceptable 
for inorganic electrolytes (frequently with negative adsorption). Their particles are always present in the winter atmosphere, 
and their possible role as condensation nuclei has been discussed repeatedly in the literature (see [4], for example). As regards 
surfactants — whose adsorption is appreciable even for very low solution concentrations — this assumption is almost never 
valid. We will concern ourselves with soluble surfactant nuclei in this article. 

Depending on the concentration of the solution inside the drop, adsorption in turn affects concentration. At the same 
time, adsorption also, affects the surface tension of the drop, causing it to be dependent on concentration. The nonlinear 
relationships which arise in this case greatly complicate the behavior of the chemical potential of the condensate (condensed 
in the drop from the vapor of the substance). In the case when the substance of the nucleus is surface-active, these relationships 
may lead to to the existence of more than one extremum and even more than one maximum of condensate chemical potential. 

Finding the threshold chemical potential of the vapor — which is determined by the maximum of the chemical potential 
of the condensate or the largest maximum of same (if there is more than one maximum) — is the central problem in the 
thermodynamics of condensation on soluble nuclei. Approaching the solution of this problem with allowance for adsorption 
of the substance of the nucleus, we first study the simplest case of a high degree of adsorption undersaturation. By studying 
mis case, we will also be able to explain how adsorption could have been ignored in [1-4]. Then considering the general case 
of an arbitrary degree of adsorption saturation, we formulate the principles of thermodynamics on soluble nuclei and construct 
a closed system of equations linking the thermodynamic characteristics of a drop in which the chemical potential of the 
condensate has an extremum. In conclusion, we will examine the transition to the limiting situation of complete adsorption 
saturation. 

The system of equations that we construct will be studied further in subsequent articles. 
Effect of Adsorption of the Substance of the Condensation Nucleus on the Surface of a Drop. We will use с to 

denote the concentration of the condensate inside the bulk phase of the drop — the number of molecules of the condensate per 
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unit volume. The notation c n will be used to represent the concentration of the substance of the nucleus dissolved inside the 

bulk phase — the number of molecules or ions of this substance per unit volume. When с > > c n > the radius of (lie 

equimolecular (in regard to Ше condensate) interface nearly coincides with the radius of the d rop R determined by Eq. (2) from 

[1]: 

where v, is the molecular volume of the condensing liquid; X is a linear parameter (the radius of an equivalent sphere); v is 

the total number of condensate molecules in the drop. 

We then have the material balance equation 

v = cV, v =c V + AvR2? (2) 
n n 

where fn is the total number of molecules or ions of the condensation nucleus; V = 4 T R 3 / 3 is the volume of the drop; Г„ 

is the adsorption of the dissolved substance (the excess number of molecules — for the electrolyte, it is the sum of the excess 

number of all ions per unit area of the surface). Introducing the relative concentration 

x = cjc (3) 

and the dimensionless adsorption 

s = 4n\2 Гп ^ 

and excluding the volume V from Eqs. (2), after using (1) we find that 

Henceforth, we will refer to x and s simply as concentration and adsorption. 
Differentiating (5) with respect to v and applying to s the rule on differentiation of quantities dependent on x 

a/a v = (Эх/а * ) э / э х ( 6 ) 

we obtain an equation for dxldu. Solving it, we have 

bxjbv=~{v - - s ^ 2 / 3 ) / ^ 2 ( l + v~ il3ds/bx) 0) 

(vR is assumed to be fixed). 

As (5) shows, in physical terms we will have vn — svm > 0 and, all the more , vn - ( 1 / 3 ) s ^ 2 / 3 > 0. We see that 
3s/8x > 0 for soluble surfactants. Thus, it follows from (7) that 

d x / a ^ < o (8) 

In accordance with (8), there is a one-to-one correspondence between the concentration x and the number of condensate 
molecules v, and the former decreases monotonically with the latter. 

Using the same reasoning as in [1] to find the chemical potential of the condensate inside the bulk phase of the drop, 
we have 

b„ = -x + C/3)*v-lf3 (9) 
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As in [1 ] , the chemical potential is expressed in thermal energy units and is reckoned from the value corresponding to 
equil ibrium of the vapor with the condensing liquid when their contact surface is planer. The dimensionless surface tension 
of the d rop a is determined by Eq. (4) from [1] . 

In contrast to the analogous formula (3) from [1], in formula (9) the concentration x does not coincide with the vnlv 
and is determined by Eq. (5) . Inserting (5) into (9), we obtain 

bv = -vni>~1 +(2/3)(a + 3sl2)u-1'3 (10) 

W e should note that the weakness of the solution of the substance of the nucleus always (if the substance of the nucleus 
is an electrolyte) guarantees small values of electrical corrections to (9) and (10) for the chemical potential of the condensate 
relative to the nonelectrical contributions in (9) and (10). 

Besides the already-established effect on the concentration of the solution inside the drop, another important effect of 
adsorption is its influence on the surface tension of the drop. As a result of this, drop surface tension becomes a function of 
solution concentrat ion inside the d rop . 

The dependence of surface tension on concentration is given by the Gibbs adsorption equation. In the dimensionless 
variables a, x, and s introduced by definition (4) from [1] and definitions (3-4) above, this equation takes the form 

да/ox - —sjx 4 J 

The fact that Eq . (10) contains quantities a and s which depend on solution concentration x — which is in turn a 
function of v — greatly complicates the thermodynamics of heterogeneous condensation. In this case, finding the 
thermodynamic characterist ics of a drop in which the chemical potential of the condensate has a maximum requires the solution 
of a complex nonlinear problem. 

W e will be concerned with this below. First we study the simplest case, in which the effect of adsorption of the 
substance of the condensation nucleus on the drop surface remains weak. In particular, this allows us to find a condition which 
validates the decision made in [1-4] to ignore the effect of adsorption in the thermodynamics of condensation on soluble nuclei. 

T h e r m o d y n a m i c s of Nuelea t ion in t he Case of a High Degree of Undersa tura t ion of the Vapor . We will study 
the case in which 

s/s^ < 1 0 2 ) 

where s ^ is adsorption in the case of complete saturation. This case corresponds to a high degree of adsorption 
undersaturation. 

In the above expression, s is proportional to x: 

S = (S /X )x <l3> 

where the proportionality factor is also the definition of characteristic concentration xa. In accordance with (13), inequality 
(12) is equivalent to 

Usually the ratio s^/a is considerably less than unity. Thus, the following inequality is observed in addition to (12) 

s/a<l 0 5 ) 

this inequality appreciably facilitating the rest of our investigation. 
It follows from (11) and (13) that 

(16) 
a - a - s 
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where the superimposed bar denotes the value of surface tension in the absence of adsorption. Inserting (16) into (10), 
obtain 

К = ~vn V ' X + ( 2 / э № + s ' 2 > ~ ! '*' (17) 

We will show that when inequality (15) is observed, adsorption of the substance of the nucleus results in only a small 

correction to the theory [1-4] in the absence of adsorption. 

We will use the results of this theory for the zeroth approximation. In accordance with Eq. (6) from [ 1], we then have 

u0 ^{9vJ2a)3'2 (18) 

where the zero subscript characterizes values of quantities at the maximum of the chemical potential of the condensate. The 

sign of the approximate equality corresponds to the zeroth approximation. Taking (18) into account, we have 

It is evident from (15) and (19) that the following is valid for a drop in which the chemical potential of the condensate 

is near its maximum 

su2^h < 1 (2°) 

This shows the smallness of the contribution of adsorption to Eq. (5), which accordingly reduces to 

x-v lv (21) 

Thus, most of the substance of the condensation nucleus is in the solution inside the drop, rather than on its surface. 

When inequality (15) is observed, adsorption also produces a small correction in (16) and (17). 
It is clear from (17) that for the effect of adsorption to also be manifest in the expression for dbjdv — which, in 

accordance with the equation 

{bbjbv\ = О (22) 

([1], Eq. (5)) identifies the drop in which the chemical potential of the condensate is maximal (mis being the most important 

drop in terms of the thermodynamics of condensation on soluble nuclei) — it is necessary that the following inequality be 

satisfied 

Using (6), (13), and (21), we obtain 

\bsfM< a/v (23) 

(24) 

It is evident from (15-16) and (24) that inequality (23) actually exists. 

Having demonstrated the smallness of the effect of adsorption of the substance of the condensation nucleus on the 
surface of the drop when inequality (15) is observed, we conclude that formula (18), obtained in the absence of adsorption, 
ensures a very high degree of accuracy in the zeroth approximation of v0. This approximation has already been used in (19). 

In accordance with (18) and (21), we thus have 



where, within the range of accuracy of the zeroth approximation, we have replaced the quantity a by й. Here, the sign of 
approximate equality denotes that we are ignoring corrections on the order of the small quantity Syfa — which, by virtue of 
(15) and (16), nearly coincides with the small quantity sla. 

As is clear from (26), satisfaction of inequality (14) for the most important drop implies satisfaction of the condition 

VIJ2 > ( 2 * / 9 ) 3 ' ' 2 / * a (27) 

This condition places a lower limit on 
We should note that (12-17), (20-21), and (23-24) and the ensuing conclusions regarding the smallness of the effect 

of adsorption will be even more valid in the region of v in which vlvQ > 1. However, this region is not important for the 
theory. 

Despite this, the present study permits the following statement to be made. In the limit v -* » t all of the material of 
the condensation nucleus dissolved in the drop will be in the volume of the drop. Meanwhile, the concentration of the 
substance will be infinitesimal in this case. 

The sensitivity of the quantity b„ to v in the neighborhood of the point v - vQ turns out to be exaggerated, due to (22). 
When we use the general thermodynamic formula 

6 r r = max&„ = (&„)<> ( 2 8 ) 

([1], Eq. (9)) to find the threshold value b^ of vapor chemical potential with a first-order correction for the small (due to (15) 
and (16)) quantities sla, we only need to use approximate expression (25) for b,, in (17) (the corrections for the small quantity 
slu were omitted in (25)). In accordance with (28), (17), and (25), we have 

2(2a)^2 3s 
btr= 7 7 1 / 2 ( 1 + ~ ) (29) 

21v 1 4a 
n 

where the size s of the correction factor is given by (13) and (21) with v equal to the value vQ determined by means of (25). 
When s = 0, Eq. ((29) becomes formula (11) from [1] — a formula that was first obtained by Keller [2-4]. The threshold 
value b t r of the chemical potential of the vapor is expressed in thermal energy units in (28) and (29) and is reckoned from the 
value corresponding to equilibrium between the vapor and condensing liquid when their contact surface is planar. 

It is clear from (29) that in the case of a high degree of adsorption undersaturation, the act of adsorption may either 
slightly increase or slightly decrease the chemical potential of the vapor. Whether an increase or a decrease occurs depends 
on whether s > 0 or s < 0, respectively. 

Expression (29) shows that condition (27), ensuring satisfaction of inequalities (14) and (15), corresponds to the 
situation that is energetically the most favorable for heterogeneous condensation, i.e., the situation in which the threshold 
chemical potential of the vapor may be minimal. 

At the same time, it is also clear that when condition (27) is observed, it is valid to (as was done in [1-4]) ignore the 
effect of adsorption in the thermodynamics of condensation on soluble nuclei. 

The greater the surface activity of the substance of the condensation nucleus, the smaller the concentration \ a . Thus, 
the stronger the lower limit imposed on t>J/ 2 by condition (27). As a result, the situation in which there is a high degree of 
undersaturation of adsorption almost never occurs for drops containing a very low concentration xa of soluble surfactants. 

System of Equa t i ons of t he T h e r m o d y n a m i c s of Nucleation with an Arbi t ra ry Degree of Adsorption Saturat ion. 
Let us now proceed to a general investigation of the thermodynamics of condensation on soluble nuclei, with allowance for 
adsorption of the substance of the nucleus on the surface of the drop. Differentiating (10) with respect to v and using (5-7) 
and (11), we find 

—- = v j , - 2 _ - (a + - s W ~ 4 / 3 + 
Ъи n 9 2 

3 1 2 / 3 

+ — sv 4 / 3 

(30) 

sv2!3 

3 

3 \+v-43bs/dx ^ n - ^ 2 / 3 
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Inserting (30) into (22), we obtain 

2 3 

n g 4 2 

, 3 А ! « I 1 ^ 3 ( 3 1 ) 
2 2 " 3 + _ s —- = о 

• 3 l + ^ 1 / 3 d s / 3 x vn - s i ^ 5 / 3 

For the sake of simplification, we will not indicate that the quantities x, a, s, 3s/dx, and dlns/dlnx pertain to the value v = 

The root y 0 of Eq. (31), expanding Eq. (22), corresponds to the extremum of chemical potential b,,. As will be seen 
from the below discussion, the root vQ may not be unique. Accordingly, chemical potential Ъ„ may have more than one 
extremum and even more than one maximum. The zero subscript then characterizes the values of quantities at the extremum 
of the chemical potential of the condensate — but not necessarily at its maximum. Naturally, the largest of the maxima must 
be used in Eq. (28) for the threshold value b t r of the chemical potential of the vapor. 

Let us change over from v0 to the quantity 

z=sVy*!vn ( 0 < z < l ) (32) 

which represents the fraction of the adsorbed substance of the condensation nucleus from the total amount at the extremum of 
the chemical potential of the condensate. This fraction will obviously be within the range from 0 to 1, as indicated in definition 
(32). We can now write (32) in the form 

vo-bjs)3''2!3'2 (33) 

In accordance with (5) and (32), we have 

s 3 / 2 1 , i / 2 = _ _ ( 3 4 ) 

X z 3/2 

< - X— ( 3 5 ) 

Having put 
и = a/s 

q= 1 -

— 3 l n s / d l n x 
(36) 

and then using (33), we reduce Eq. (31) to the form 

2qz2 + 2uz2 +z2 -6qz - 2uz - 6z + 9 = 0 Qg) 

Solving Eq. (38) for q, we find 

(3 -z)2 - 2uz{\ - z ) 
4 2 z ( 3 _ z ) (39) 

We equate the right sides of Eqs. (37) and (39) for the same value of q, here accounting for (35) in (37). The resulting 
equality is then reduced to a common denominator. After multiplying the entire equation by the factor 1 — z, we obtain 

(1 + 2u - luo \nsjb\x\x)z2 - 2(u + 3)z + 9 = 0 (40) 
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which does not contain q and is quadratic in terms of the variable z. Equations (40) and (36) take the condition for the 
extremaliry of condensate chemical potential, expressed by (22), and expand it into thermodynamic form. 

Proceeding on the basis of (9) and (35-36), we obtain the following general thermodynamic expression for the extreme 
value (b„ ) 0 of the chemical potential of the condensate 

( M o = * [ — 7 ^ — - 1 1 (41) 
3(1 - z) 

The main goal of the thermodynamics of nucleation in the case of adsorption of the substance of the condensation 
nucleus is determinat ion of the pattern of behavior of the thermodynamic characteristics of a drop in which the chemical 
potential of the condensate has an extremum. Of particular interest here are drops in which the chemical potential of the 
condensate is maximal . It is convenient to construct this pattern as a function of z rather than vn (which is an external 
parameter of the p rob lem) . In this case, va will be a function of z. The transition in the final formulas from the independent 
variable z to the independent variable vn is made without difficulty. 

W e therefore choose z as the independent variable to describe a drop in which the chemical potential of the condensate 
has an ex t remum. Relation (36) and Eq. (40), together with the formulas in the the theory of surface solutions which determine 
the dependence of adsorption s and surface tension a on solution concentration x, form a closed system of equations connecting 
the variables z and x. While the formulas from the theory of surfactant solutions needed to close (36) and (40) determine the 
dependence of solution concentrat ion x and surface tension a on adsorption s, the closed system of equations links the variables 
z and s. 

D e p e n d e n c e of A d s o r p t i o n and Sur face Tension on the Concentra t ion of the Surfactant Solution. We will restrict 
ourselves to the study of monolayer adsorption. Then the dependence of adsorption and surface tension on the concentration 
of the surfactant solution is described well by the Langmuir and Shishkovskii formulas [5, 6]: 

s = s^/ix+xj (42) 

a=W ~ sjn[(x + x j x j (43) 

These formulas satisfy the Gibbs adsorption equation (11) and, when inequality (14) is observed, agree with (13) and (16). 
It should be noted that the best agreement with experimental data on surface tension and adsorption is obtained from 

the Frumkin formulas , which account for lateral interactions of molecules or ions of surfactants in the monolayer on the surface 
[7): 

x/xa

 = [*/(*«o - s ) l e x p ( - 2 « s A J ( 4 4 ) 

a = a + s M [1 n(1 - s/s^) + к {s/s^ ) 2 ] (45) 

where к is a parameter characterizing the lateral interaction. However, as shown by the experiment in f8], this parameter is 
much less than unity. Also small [9] is the correction — not accounted for by Eqs. (44) and (45) — for Coulomb interaction 
in the surface layer in the case of an ionic surfactant. Also, since Eqs. (44) and (45) reduce to Eqs. (42) and (43) when к = 
0, we can use the Langmui r and Shishkovksii formulas without significant loss of accuracy. 

It will be convenient to henceforth use the following notation 

У = Фж (46) 

w = a/sx • (47) 
% s xix (48) 

For the sake of brevi ty, we will refer to £ simply as concentration. 
With al lowance for (46-48), we find from (42-43) that 

; = s j / l ^ U (49) 

u = w - l n ( f + l ) (50) 

Э 1 п 5 / Э 1 п х = ! / ( £ + • 1) ( 5 1 ) 
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For the quantity determined by (36), we use (46) and (49) to obtain: 

w =u(£ + ]) /> (52) 

Equation (40) and Eqs. (50-52) form a closed system of equations connecting the variables z and ^ of a drop in which 
i chemical potential of the condensate has an extremum. The system is valid for an arbi t rary degree of saturation of 
)nolayer adsorption. Here, the quantities vn and v0 are expressed through z and £ by (34-35) and (48-49). The quantities 
, s^, and w play the role of initial parameters of the problem. 

When the inequality xlxa » 1 (which is the opposite of inequality (14)) is observed, the Langmuir and Shishkovskii 
rmulas (42) and (43) become 

* s * o . (53) 

a=a ~sjn(x/xj (54) 

lich, as (42) and (43), identically satisfy Gibbs adsorption equation (11). Equations (53) and (54) express the limiting 
uation of complete saturation of monolayer adsorption on the surface of the drop — when adsorption turns out to be constant. 

With allowance for (46-48), we find from (53-54) that 

v=w-\n% (55) 

ains/ainjc = o (56) 
м = v (57) 

iiich is also easily obtained directly from (50-52) at £ > > 1. 
For the case of complete saturation of monolayer adsorption, Eq. (40) and Eqs . (55-57) form a closed system of 

[uations connecting the variables z and £ of a drop in which the chemical potential of the condensate has an ex t remum. Here, 
e quantities vn and vQ are expressed through z and £ .by (34-35), (48), and (53). As before , xa, s a , and w are initial 
irameters of the problem. 

The limiting situation described by Eqs. (53-57) when £ > > 1 corresponds to a model of a drop with constant 
lsorption. In general, the use of this model is not limited to the range of application of the Langmuir and Shishkovskii 
)rmulas. In fact, it follows from Gibbs adsorption equation (11) that the below is valid upon attainment of complete saturation 
f adsorption, i.e., when (53) is satisfied 

(58) 

/here x w is the solution concentration at which complete saturation of adsorption begins; is the surface tension 
orresponding to this concentration. Formula (58) is not connected with any specific mechanism of monolayer saturation. The 
ependence on x in (58) is the same as in Eq. (54). Since x a > > x a , the ranges of application of these formulas х / х й > 
and x/x a » 1 also coincide. 

Although relatively simple, the drop model with constant adsorption nonetheless makes it possible to describe laws 
vhich in general characterize the thermodynamics of condensation on soluble surfactant nuclei. W e will study this model in 
he next article. 
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